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A Uniform GTD Treatment of Surface Diffraction
by Impedance and Coated Cylinders

Paul E. HussarMember, IEEE

_Abstract—In the context of the uniform geometrical theory of shadow boundary). Instead, field computation is based on the
diffraction (UTD), computation of the scattered fields near the UTD transition-region representation and surface properties

shadow boundary of a smooth convex surface requires values for ; ; ; e
the Pekeris-integral function p* (&, ¢). While in a small number ?re taklep Igtokac.cofum b.y erfnploylgg a8n appropriate transition
of cases such as the case of perfect conductivity (= 0 and Ntegral in Pekeris-function form [6]-[8]. _ .
q — o), tabulated values of the function are available; in the While tabulated Pekeris integral values are available in

general case, these values must be obtained by some numericathe case of perfect conductivity, no such values can be
method. Here, a procedure for approximatingp™ (. ¢) by residue-  expected to be available in the general case. To overcome
series means will be introduced. In contrast with traditional this limitation, a method for optimizing the efficiency of

residue-series representations, the new procedure requires only a ical Keris-i | luati h b btained b
limited knowledge of pole locations even in the shadow boundary NUmerical Pekeris-integral evaluation has been obtained by

transition region and thereby extends the regime of practical Pearson [9]. Alternatively, Kim and Wang [1], [2] have
applicability of residue-series methods beyond the deep shadow.explored a heuristic means for evaluating the Pekeris integral
It will be demonstrated that the new procedure can be combined f,nction. Employment of either of these methods involves

with an earlier residue-series representation derived by this . . : . e
author and R. Albus (and with geometrical optics) to provide a implementation of a second numerical procedure in addition

computationally efficient procedure for computing fields scattered {0 the iden_tification of pOI(_a locations required by a KeI_Ier-type
by an impedance or coated cylinder. modal-series representation of the deep-shadow-region fields.

The purpose of the present paper is to introduce a general
procedure whereby the transition-region fields scattered by an
impedance or coated cylinder can be efficiently approximated
I. INTRODUCTION using the same pole locations as are employed within the

EVELOPMENTS in materials science and the advancéeep-shadow region. While residue-series expressions have

ment of low-observability techniques have created Reen used before to represent the fields in the transition
requirement for high-frequency scattering analysis techniqu@gion [10], [11], the new procedure is distinguished by
that are applicable in cases where the scattering surfacesthfe fact that it permits the number of residue-series terms
not perfect conductors. In order to address this requiremef@guired for convergence in the transition region to be fixed
various authors [1]-[3] have discussed the two-dimensiorfl some modest value that is independent of the problem
problem of scattering by a cylinder whose surface is eithgeometry. The argument that will be advanced on behalf
coated or characterized by an impedance boundary condit@inthe new procedure relies heavily on results from [10]
(IBC). A fundamental objective has been to introduce inté which a novel shadow-region residue-series solution for
solutions for impedance/coated-cylinder problems the kind tfe line-source and conducting-cylinder canonical problem
simplicity and computational efficiency that is, in the casé described. The solution from [10] (and here adapted to
of perfectly conducting scatterers associated with the unifoimipedance and coated cylinders) can be written in terms
geometrical theory of diffraction (UTD) [4]. As extensionf GTD ray coordinates and, unlike the cylinder solution
of [4], [1]-[3] must address field approximation in each ogémployed by Keller, converges at the shadow boundary. This
three roughly distinct regions (see [3], in particular). In theolution will undergo a slight reworking that will lead to the
iluminated region far from the shadow boundary (i.e., thimtroduction of a new function designated g¢, ¢,«) and
deep-lit region) a reflected-field component can be quickélefined for negative (lit region) as well as positive (shadow
and accurately evaluated via geometrical optics (GO). In thegion) values of. The motivation for introducing this new
deep shadow, a representation in terms of Keller-type modasction is that while the solution from [10] converges slowly
[5] is required in order to permit geometrical theory of diffracat the shadow boundary when the source and observation
tion (GTD)-type generalization from the circular-cylinder caspoint are remote from the scatterer, usepdfé, ¢, w) near
to cases of nonconstant cylinder curvature. Finally, in te= 0 permits a Pekeris-type transition integral [denoted as
vicinity of the shadow boundary (i.e., the transition region)* (£, ¢)] to be approximated from a modest number of residue-
neither GO nor the Keller-modal representations employed $eries terms. Computation of the transition-region fields via
[1]-[3] are adequate (the latter, in particular, diverge at thithe new procedure occurs first via residue-series evaluation

_ , , of p*(¢,¢,w) and then via the familiar UTD formulas with
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The outstanding consequence of the new procedure, namely
that the transition-region fields, can readily be computed from
knowledge of a limited number of pole locations and should
not be seen as being in conflict with accepted notions abouw
the behavior of residue-series solutions to familiar canonical
problems. Rather, the new procedure should be viewed as
taking advantage of a notable feature of the UTD format,
namely that the single functiop*(¢, ¢), which depends on
geometry only througlf, characterizes scattering by a given
cylinder over a large domain of source/observation-point con-
figurations. The new functiop*(¢,¢,u) can be interpreted
as a piece extracted from the residue-series solution in [1
that, within the transition region, exhibits in an approximate . . ) ) )
way the same property gs'(¢,q). This new function will for negative must be determined by .analytlc continuation.
be seen (for smalk) to asymptotically approach* (¢, q) Equalent results for the cc_)ated cyll_nder_ are obtained in
as the value of the argument is increased beyond unity. S€ction lll, except that certain approximations employed in
Efficient approximation ofp*(¢,¢) occurs via evaluation of _the_ Section Il for_mulatlon, as well as the accompanying I_|m—
p*(&, q,w) with « chosen close to unity whereupon, as will bdations, are avoided. !mpleme.ntatlo.n of thg results obtained
demonstrated, rapid residue-series convergence is assured? Sections Il and Il is described in Section IV. That, for

As the deep-lit region is approached (i.€.,assumes a Smallg, p*(£, ¢, u) rapidly approacheg® (¢, ¢) in the transition

large negative value), the asymptotic approachdt, ¢, v) region as: grows larger than unity is demonstrated with some
to p*(¢,q) occurs more slowly than fof near zero and examples. A smooth concatenation of impedance and coated-

approximation of p*(€,¢) with p*(¢,q,w) for w close to cylinder transition-region solutions with solutions applicable

unity becomes less accurate. A heuristic interpolation schefeother regions is obtained heuristically from examination of

has been implemented to allow the GO reflection coefficieft (¢ ¢, ) data. Eigenfunction series results are then employed
to be recovered smoothly as the deep-lit region is enterd® aSSess the accuracy of a complete uniform GTD solution that

The situation for positive¢ is less problematic. A modal IS based ow*(¢, ¢, ) in the transition region, GO in the deep-

representation having the form described in [10] can gléregm_n and the impedance/coated cylinder implementation

smoothly joined with the new transition-region representatidtf [10] in the deep shadow.

at positive¢ chosen in such a way that the large numbers of

residue-series terms that appear in [10] never arise. The overall II. IMPEDANCE CYLINDER

result that will be demonstrated is that the entire scattered fieldThe uniform GTD methods that will be described in this

can be determined from as few as ten pole locations withqséiper rely, ultimately, on the availability of the residue-series

regard for the problem geometry. format for representing the shadow-region fields. Consider,
Distinct treatments will separately be provided for the caskerefore, a unit electric or magnetic line source radiating in

where a simple IBC is applied at the cylinder surface antle vicinity of an infinitely long circular cylinder with surface

for the case where a perfectly conducting cylinder is coat@fipedancern, (see Fig. 1). At the surface of the cylinder

by a single layer of dielectric/magnetic material. These twe = ) the applicable boundary conditions atg, = E. /7,

formulations exhibit considerable overlap in terms of applfor the TM case andz, = —n, H. for the TE case. It is more

cability, and their relative merits will, therefore, be indicatecconvenient to write these boundary conditions as

The overall methodology described in this paper should not, OE,

LINE SOURCE
(1)

6(1. 1. Geometry for the line-source and impedance-cylinder problem.

however, be understood as being limited to these two cases. ar — JkCrmE. =0 (1a)

Rather, extension of the new procedure to further cases can i

be expected to be straightforward as comparison between f[‘Wethe T™ fields and

formulations here provided will illustrate. oH. jkCrpH. = 0 (1b)
In Section I, a shadow-region uniform GTD solution for a ar N

line source radiating in the vicinity of an infinitely long circularfor the TE fields wherd: = w(pog0) 2, Crp = 1s /1m0, Oyt

cylinder characterized by a constant surface impedance_is 1/Crg, and 9 = (pogo)/?. If Crg and Cry are

developed via a method analogous to that employed in [}{@presented generically & and thez-directed fieldsE. and
for the conducting case. It is shown that this solution can @Z are represented generica”yﬁsthe solution for both TM
rewritten in a format identical to that of the UTD solutiorgnd TE cases takes the form

except thaip*(¢, q) becomes replaced hy*(¢, ¢, u,), where

u, IS @ geometry-specific value of the argumentBecause, U/ = _d Z /

in the transition region, the problem-geometry-dependence 8 oo —oo

throughu, is weak, it becomes possible to replagg with HY (£a) — i0cHD (a

another, “optimal” argument value chosen close to unity -[H,(,l)(kr)— ’('2),( ) J 122)( )H,(,Q)(/w)
to ensure thatp*(£,q,u) can be efficiently evaluated. To Hy” (ka) — jCH,™ (ka)

extend this approach to the lit region, the formgo{¢, ¢, ) -HP (kry) expliv(¢ — ¢p1) — 2jnwn] dv 2)
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where(rq, ¢1) and(r, ¢), respectively, describe the line sourcavhile the diffraction coefficients are given by
location and observation point as shown in Fig. 1. In the

shadow region, the integral (2) can be evaluated in terms of a 27 202 mei™/* H2 —ijTﬁ
(1,2)_ T( B exp| —— |.

residue series. Substitution GFFE andCty for C determines Dy 2 — 1) [wh(7y 2ks1
whether (2) is an expression for the component of the

magnetic or electric field. The normalization is the same as (8)

in [10] andr, > r has been assumed. Q. andQ, represent the diffracted-ray attachment and detach-
) ) ment points in accordance with the GTD-ray formalism. The

A. Formulation for the Deep-Shadow Region presence within each modal diffraction coefficient given by (8)

For an observation point in the shadow region, the domina@ft an exponential factor involvingg causes the modal series
diffracted-ray contributions (i.e., those that do not involveepresentation defined by (7) and (8) to maintain convergence
multiple encirclements of the cylinder) derive from the= 0  at the shadow boundary and as the lit redior< 0) is entered.
andn = 1 terms in the summation and are associated withhis is a feature not observed in Keller’s original formulation.
the second term within the integrand. L&Y, represent the ~ While (3) or, equivalently, (7) and (8) provide a valid
contribution from a single such diffracted ray. In preciséepresentation a§ — 0, application of the solution in this
analogy with [10], an approximation fdr, is derivable from form will, for the purposes of this paper, be strictly limited
(2) in the asymptotic frequency regime in the form so as to exclude the vicinity of the shadow boundary. As has
been noted (and is described in detail in [10]), when these
formulas are employed at the shadow boundary, many terms
ky/5152 are required to achieve residue-series convergence whenever
u, is greatly in excess of unity. Computation of the fields
in the transition region with the aid of a limited number of
identified pole locations will be achieved instead via the new

mexp[—jk(s1 + s2 + 1))

U, =

q e —J€p

(@% — mp)[wy (7))

e_j("'v /2ug )2 (3)

L

wherem = (/m/g)l/i% andr, is the pth root of procedure based on the functiph(£, ¢, «), which is shortly
, to be introduced. In Section 1V, a scheme for computing the
wh(7) — qua(7r) =0 (4) entire scattered field from ten residue-series terms plus GO

will be described and (3) or (7) and (8) will be seen to play

well-known Fock-type Airy function and its derivative. The? a role only for¢ somewhat larger than zero. Finally, it should

parameterg and ¢ in (3) are used to represent, respectwel;pe noted that the pole locations in question are the roots of
the quantitiessé and mé where (4) that have received extensive discussion [12] and can be

calculated quite generally using a fourth-order Runge—Kutta

9:—{@5—1 <1) i (E)Jra} (5) formula [13].
71 r

The anglex is either—(¢ — ¢,) for a diffracted ray traveling B- Formulation for the Transition Region

counterclockwise in Fig. 1 op — ¢1 — 2 for a diffracted ray 1) Shadow-Transition RegionAccording to [1], the field
traveling clockwise in Fig. 1. The parametess and s, are associated with a single diffracted ray in the shadow region of
associated in the usual way [1] with the path of the diffractegh impedance cylinder is represented in UTD format as

ray and are given by, = (77 —a?)}/? ands, = (v2 — a?)1/?

with ¢ = —jmC. The functionsw,(7) and w)(r) are the

while wu, is given by U, = jm edk(sitsatt) |:_F(X) D) ©)
1 kst s 1/2 2ﬁ /{}\/8182 2\/7_T£
122
-~ <2(31 + 32)> ) ®)  wherex = (uy&)2. The functionF(X) is defined in terms of
a Fresnel integral [4]p* (5, ) is a Pekeris function given by

The parameter,, defined by (6) and represented simply

asu in [10], is subscripted here in order to indicate that a “(6,q) = —qV(r) T g
geometrical value, i.e., the right-hand side of (6) for a specific P4 2\/_5 \/_ — qwo(T) 4
problem geometry, is being represented. (10)

Since (3) can be understood as the impedance-boundary
analog of the solution given in [10] for the conducting case, tld 2V (7) = wi(7) — wa(7). Observe now that in the most
geometrical interpretation of (3) in a GTD context is straighstraightforward way, (3) can be rewritten in the form of (9)
forward. In particular, attenuation constants and diffractigorovided only thatp*(£, ¢) is replaced by
coefficients appropriate to a Keller-type modal representation

of the field [5] can be obtained for the impedance cylinder ,«(z ) — Flud)] \/_Z P =i /2u)”
from (3). This construction will provide, as discussed in [10], a 4 2\/_5 = (@ =)l (mp)]
uniform GTD representation for the field in the shadow region. (11)
The attenuation constants take the form
_.m with the understanding that the argumenis to be assigned
Qp = J;Tp (7)

the value ofu, from (6).
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Because (3) and (9) can both be expected to accurately?2) Lit-Transition Region:Since the Fresnel-integral term
represent the transition-region fields, it may be surmised ttatd the residue-series term that add to gi¥€, ¢, ) in (11)
p*(€,q,u,) and p*(€,q) are nearly equivalent functions. Itare individually well behaved a&— 0, it may be anticipated
is this surmise that forms the basis for the new approach tt@tp* (£, ¢, «) can be extended to the lit region and employed
computing the transition-region fields. A key ingredient is thab construct a representation of the lit-region fields. In the
inasmuch as this approximate equivalence can be expecabdence of any formal lit-region solution involvipg(<, g, w),
to hold for a wide range of;, values, it may therefore bethe straightforward approach is to emplpy(¢,q,%) as an
presumed that the dependence of*(¢, ¢, u) is weak. approximation forp*(¢,¢), just as in the shadow transition

The above statements can be made more precise by takiegion. Though the foregoing discussion implies that such an
advantage of certain results from [10], which treats the cagpproximation will be accurate gt= 0, there is no reason to
of perfect conductivity. In the limiting caseg = 0 and believe that this approximation will maintain accuracy far into
q — oo, the functionp*(£,q) reduces to the more familiar the lit region. The fundamental question is whether accuracy
UTD functions p*(£¢) and ¢*(£) [4] while, according to the is maintained through enough of the lit transition region that
above argumeniy* (£, ¢, 1) provides approximate equivalentsa representation for the entire lit region can be defined with
expressed in terms of familiar roots and turning values tiie aid of GO.
the Airy function and its derivative [7]. With these limiting The extension op*(&, ¢,«) into the lit region is not given
correspondences in mind, it is possible to readily understabg (11), but requires the inclusion of an additional term in
both functionsp*(&,4) and p*(&,¢,«) as arising from the order to preserve continuity. Fgr< 0, the definition

same integral, which is a generalization of [10, eq. (7c)] to F(u€)?] ' )

cases other thap = 0 and ¢ — ~. The generalization in P& g u) = —2— + yedlF/ A+ (ug)7]

guestion is obtained from [10, eq. (7c)] by replacing each Airy 2v/ng ’ ’ .
function ratio with the more general form of Airy function _ 27\/7?53 e 98 g3 (Tn/2u) 12)

ratio that appears within the integral in (10). Also, it is to be (q? — mp)[wh(mp)]?
understood that in [10, eq. (7¢)], the formal argumehtnd

« have been evaluated atf andw,, respectively. According may be regarded as unique because the small argument expan-
to results provided in [10], eithep*(¢,q) or p*(£,q,u) is sion (in powers ok as — 0_) for the sum of the first two
obtained from the one integral, depending on whether therms in (12) is identical to the small argument expansion (as
72 term that appears in the argument of the exponentials §s;— 04) [6] for the Fresnel integral term in (11).

respectively, ignored or retained. Note that the coefficient of Use of the UTD representation in the lit-transition region
the 72 term in [10, eq. (7c)] may be identified asj/(2u)?. requires consideration of direct- and reflected-ray contribu-

It follows that for arbitrary positivet, p* (¢, q,u) approaches tions. The reflected-ray contribution is determined by the UTD
p*(&,q) asu becomes large, as may be explicitly verified vigeflection coefficient given for angle of incidenég by

residue-series evaluation of the integral in (10). For values .
- — il 73
Rutn(§) = — /? dlm/at(€)?/12]

p=1

of %, such that (3) and (9) can both be expected to provide
an accurate representation of the shadow-region fields, it may .
be concluded that convergence @f(¢, ¢, w) to p*(£,q) has % [_F(kL a’) 07 q) (13)
nearly been achieved. 2y/m¢’ ’
Numerical data provided in [10] for a perfectly CondUCtin%\/here ¢ = —2mcosby, @ = 2cos26;, I/ = ssh/(sh +

cylinder, both in the case of TE fields (i.e.= 0) and in the s), and s, and s} are the distances, respectively, from the

case of TM fields (i.e.4 — oc) indicate that shadow-boundary"ae source to the point of reflection and from the point
field values predicted by (3) and (9) are nearly identical far, P P

u, greater than unity. Convergence @f(¢, ¢, u) to p* (£, q) of reflection to the observation point. In the vicinity of the

s (! : f
should, therefore, be understood as occurring rapidly fer0 Zzaggr(ve db%ugig??; t((j ’g’ U)rozztzgd?P S()e itno (Lig;tyaﬁgnc:lf
asw increases beyond unity. In the regimg > 1.0, therefore, P y app 4

; . . : readily be evaluated from a modest number of residue-series
it should not matter whethey* (¢, ¢) is employed in (9) or , . :

. . : terms. As¢’ becomes more negative, however, the residue
whetherp*(&, g) is replaced byw*(¢, ¢, ) with v given byu,

in (8) or, more importantly, with arbitrarily assigned any series in (12) becomes more slowly convergent. As will be
1 1 1 1 ! * !
other value within the convergence region. The number ofen n Section 1V, the approach pf(¢’, g,u) (0 p"(¢', q)

. . . : with increasingu also occurs more slowly. While (12) can,
residue-series terms required to evalugtéf, ¢,«) via (11) ; . .
. . . i ; therefore, be expected to be useful only in a portion of the lit
increases dramatically withk, but if « is chosen close to

. X . region, it will monstr in ion IV th mpl
unity, only a modest number of terms will be required. | 9 be demonstrated in Sectio that a complete

. . _~. lepresentation is available via a transition to GO.
other words, it should be possible to accurately and efﬂmentlyp

compute the fields in the shadow transition region using
p*(&,q,u) in (9) with a value ofu, chosen close to unity for
rapid convergence. It is important to reemphasize that (9) withThe geometry for a line source in the presence of a coated
p*(&, q,u) in place ofp*(&, q) is really the same as (3), exceptylinder is shown in Fig. 2. The interior cylinder of radiuss

for the exploitation of the weak dependence for convergenceassumed to be perfectly conducting, while the constitutive pa-
purposes. rameters of the coating are designated aand ... Boundary

IIl. CoATED CYLINDER
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observation point are not close to the cylinder surface. Also,
Bip and 3z, are given by

Bip = cos™ ! <k;/€L)> 17)

LINE SOURCE
(ru1)

(r)

wherer(1) = v andr(2) = r.

In [2], certain approximations are introduced to transform
(15) into a more convenient form and a GTD ray interpretation
is then provided. Note that the GTD ray paths, which thereby
arise, are those employed in [1], [4], and also in Section Il and
should be distinguished from the ray paths that occur within
Fig. 2. Geometry for the line-source and coated-cylinder problem. the coated-cylinder formulation described in [14]. The approx-
imations in [2] cause the resulting solution to lose convergence

diti . h fEi includ in the vicinity of the shadow boundary and a heuristic method
conditions appropriate to the geometry of Fig. 2 include 28§, transition-integral evaluation is introduced to obtain the

tangential .electric field at the surfa@g: a and continuity correct behavior at smalf. Here, the first requirement is
of t_angent|al ele.ctn.c aqd magnetic fields rat= b L,Et the for a residue-series expression that corresponds to (3) for the
z-directed electric field in the case of an electric line Sour?ﬁ’]pedance cylinder. Such an expression can be obtained from

(the TM cgse_) and the-directed magnetic field in the case of15y by approximating the argument of the exponential term
a magnetic line source (the TE case) be denoted generic Yre precisely than is done in [2]. Wit = (kb/2)%/3, let

as U. The solution forU is once again represented by (2)rp be defined agu, — kb)/m and expand the exponentiated
except that the constafit becomes replaced by:adependent term in (15) in powers of., through order2. The expansion
function given by v r

is given by
, Kkepo Jo(kea) N (kob) — N, (kea) ] (k:b) 2.2
CTM — v v 14 . B b m2r
v I ette Ty R\ N, (kab) — Ny (hoa)dy (ked) 4 k(@) sin B — B = besi — v cos 1<@ + o (18)
for the TM case and by wheres; = (2 — b?)1/2 and s, = (+ — b2)/2. When this
CTE _ keeo J!(k.a)N.(k:b) — N (k.a)J! (k.b) 14b approximation is inserted into (15), the resulting expression for
v T ke J(kea)Ny(keb) — N (kea)d, (kob) (14D) * the field contribution due to a single diffracted ray becomes
for the TE case, wheré. = w./ji €. U, — — 2 -
d ]%\/8182 pzz:l

A. Formulation for the Deep-Shadow Region o=t . g3/ 2uy)?

% @0
TkbHS (kb) 2 d(v)|,

—jksy —jks2
In order to obtain coated-cylinder equivalents to the e e (19)

impedance-cylinder expressions in Section ll, it is once again

required to expresE in a residue-series format. In particularyyhere ¢ is given by (5) witha — b and where the inverse
let us consider the dominant contributions to the field frofctors of (1, sin 1,)'/2 and (rsin f2,)'/? inside of the

the nonencircling diffracted rays. Such contributions can Q& \mation in (15) have been approximatedslg;@ and S§/2
approximated as respectively. The parameter, has the usual meaning given

Jo 1 b(vp) by (6). . o
Ug = 5/@2 — —7 A GTD interpretation of an expression identical to (19),
p=1 Vresin B /rsin Boy, 5o d(v)l, but without the exponential factors involving,, is provided
-exp[—j(kr1 sin B, — 1pF1p in [2] while the geometrical interpretation of these factors is
+ krsin Bay — vpBap — 1pa)] (15) apparent from [10]. The attenuation constants appropriate to a
modal series representation based on (19) are defined by (7)
where with @ — & and with 7, given by (v, — kb)/m. The modal
, diffraction coefficients are given by
b(v) = HY (kb) — 5C, HLV (kb) (16a) e
and D 2 4 e—I3T/4
d(v) = H® (kb) — jC, H® (kb) (16b) @) = \\og T HP (kb)) 2 d(v))|
and whereo = —(¢ — ¢1) for a counterclockwise traveling —ijTg
ray corresponding te = 0 in (2), while o = ¢ — ¢; — 27 - EXp 2ks1 o (20)

for a clockwise traveling ray corresponding to= 1 in (2).

The pole locations,, are defined byi(r,,) = 0. The Debye and differ from those in [2] only by virtue of the new
approximation has been used in (15) for Hankel functions ekponential factors, which, as before, provide for convergence
argumentcr; andkr under the assumption that the source arid the shadow-boundary transition region.
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B. Formulation for the Transition Region an impedance or coated cylinder to be accurately determined

While (19) can be expected to remain accurate throughémm .k'nowled.ge of a limited ngmber of pole locations. In t'he
the shadow region, computation of transition-region field&anSition region, the formulations that have been described
via (19) will not, in general, be efficient inasmuch as largVolve the functiorp™ (¢, ¢, w) introduced in this paper, while
numbers of residue-series terms may be required. This poddithe deep-shadow region, the formulations are simple exten-
bility was previously discussed in connection with (3) for théons of [10]. Here it will be numerically demonstrated that
impedance-cylinder case. This difficulty can, once again se formulations do indeed possess the features ascribed to

overcome via a transformation into the UTD format givef’€M and that together with the GO solution for the deep-
by (9). Recasting (19) into the form of (9) (faf > 0) lit-region fields, they can be used to compute the entire

and subsequent analytic continuation (fr< 0) leads to field scattered by an impedance or coated-cylinder with the

the definition of a functiorp*(€, ¢,u) applicable to coated- aid of limited pole-locgtion data.. Toward this. end,. it wiI.I
cylinder problems as be necessary to organize the various formulations (including

' ' . GO) by defining a range of applicability for each. In other

. O F[(ud)Y] N djeImITre (/2w words, for the purposes of this paper, the terms “deep-lit

P& qu) = —2ﬁ€ ;::1 \/%mka,(?)(kb)ai d(,/)| regiqn,” “deep-shado_vv_ _regio_n,” and “trans_ition region” _must
¥ v ¥p be given precise definitions in terms $fregions over which

(£>0) (21a) the corresponding formulas from either Sections Il, Ill, or

GO can be effectively applied. Furthermore, the transition-

) region formulas described in Sections Il and Ill rely upon
pE g ) = F(u6)”] 4 el b/ A ()] the function p*(¢, ¢,«) computed for an advantageous
o 2y/mé value that will, in general, be different from, in (6).

> 4je—jnwrpe—j(rp/2u)2 It will be necessary to identify an optimal value for the
+Z HD (2 d (£ <0) selectable parameter in such a way thatp*(£,q,4) can
pmi VEm v (Kb) 5y (V)|Vp effectively be employed as an approximation fgf(¢, q)

(21b) within the UTD transition-region formulas. It was decided,

h he d q h h with a certain degree of arbitrariness, that evaluation of
where the dependence on such parameters as the co various formulas should be limited to require no more

thickness, dielectric constant, etc. is understood. Representifg, 1on residue-series terms. Selection of ¢hegions over

the field ?n the shadow-transition region of a coated Cy_"nd%hich the different formulas are taken to apply, as well

by (9) with p*(¢, q) replaced byp™(¢, q,u) for u = ug IS 59 of the optimalu value, will be based on this require-

equivalent to using (19). It may be anticipated that for _

:‘srsrirptgfil(r:]aﬁ;ng;(r% aqcli?) adifci)r;?gdb)éy(liznldae)r aggk(ezrilsb)invtve“éraJAs a first step, it will be necessary to assess the behavior of
(&, g,w) both with respect to the rapidity with whigh (¢, ¢)

p*(€, ) such as is defined in [2]. Because of the slowness gf approached as increases and also with respect to the

the exp ectedL_ Varf'.atl'(;)n’ '.t ST]OUISTbS p055|ble_ to cogmputg t?giumber of residue-series terms required for accurate evaluation
transition-region fields via the expressions (9) and ( given values of; and¢. It is especially important to recall at

with p* (¢, ¢) replaced by (¢, ¢, u) from (21a) and (21b) and y;q point the fact that the argument for the near equivalence

U chpsgn closg to unity for rapid-series convergence. of p*(¢,q) and p*(¢, ¢, u) for « near unity was developed
It is interesting to compare the current treatment of coat%ir the shadow transition region only. A slower approach

cylinder transition-region fields with previous treatments. IB]c p*(€,¢,u) 10 p*(€,q) may be anticipated at increasingly

[2], it is proposed that the coated-cylinder transition mtegr;ale ative values of. It will be seen that effective use of

can be approximated by an imped_ance cylinder Pekeris integpr ¢.q,u) at large negativé is not possible and it is for this
computed for a value of determined by they = 1 modal \o,q4n that a crossover to the GO representation needs to be

impe_da_mce. The latter Rekeri_s integral is to be evaluated by }BFciny imposed ag’ decreases. ldentification of criteria for
heuristic method described in [1] and [2]. In [3] the Pekeri itching among the formulas as well of the optimavalue

integral defined for the generalized IBC case is evaluat Il be based on the numerical examinationz6{¢, ¢, ). In

by direct |_”|umerical irl'Fegratio_n. In_ contrgst, computation %he end, it will be shown that it is possible both to achieve
coated-cylinder transition-region fields via (21a) and (21 Smooth transition among expressions suitable in diffefent

dpes not require recourse to any approxmatg bounda_ry Co%'gions and to obtain results in close agreement with results
tion. By way of comparison with the formulation described i E)tained via eigenfunction series methods

Section I, however, it must be noted that the zeroes of (16
are not so easily obtained as the roots of (4). Applicable meth-

ods include the contour-integral search technique of Singaraiu,«(¢, ¢, u) Versusp* (¢, q)
et al. [15] and Davidenko’s method [16].

and

While comparisons betweest (£, ¢, u) and p*(£, ¢, ) were
made in both the impedance- and coated-cylinder cases, a com-
prehensive analysis of the asymptotic approach €, ¢, )

In Sections Il and I, formulations are proposed as permite p*(¢,q) was carried out only for the case where these
ting the fields in the deep shadow and transition regions foinctions are defined by (11), (12), and (9), respectively.

IV. NUMERICAL RESULTS
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The justification for applying the conclusions derived from 1
this analysis to the coated-cylinder case was based on the
observation that accurate scattered-field values and smooth
&-region transitions were thereby obtained. Computation of
p*(£, q,u) via (11) or (12) was based on roots of (4) calculated
by the method described by Hill and Wait [13]. Implementation+
of a capability to calculate up to 50 of these roots mades.
evaluation ofp*(&, ¢, u) possible over a large range ofand §
& values. Fig. 3(a) and (b) compares, respectively, the redr
and imaginary parts g5*(¢, ¢, ) for v = 1.0, w = 1.25, and

u = 2.0 with the real and imaginary parts pf(£, ¢) computed

via Pearson’s numerical integration technique [9]. Three values

[

0.5 -

-0.5

Illllllllllllll[vlllll

of ¢, specificallyg = 0, ¢ — oo, andg = 1.0¢~9%/* are - —_— P:(é’CI)
represented. Fay = 0 andg — oo, the familiar UTD function -1 S e p (£,9,1.0)
p* (&) or¢*(£), as appropriate, should be understood in place of 7 . p¥(E,g,1.25)
p*(¢,q). The convergence of* (¢, q,u) to p*(¢,q) isreadily 1 p*(&,q,2.0)
apparent from the quality of agreement between:the 2.0 .5 T T T T T T T e T
and thep* (¢, ¢) curves over the range gfvalues depicted. In 2 445 1 05 O0 05 1 15 2
contrast, the, = 1.0 curves show agreement with th&(¢, ¢) &
curves provided that > —1.0 but begin to diverge from
p*(£,q) at smaller¢ values. Essentially identical results were (@
observed in comparisons @f (¢, q,«) and p*(&,q) for the 1
real ¢ cases considered in [1]. p*(£,q)
Fig. 3(a) and (b) confirms the expectation that foclose *ry
i * H H T b e P (E-' :q110)

to unity, p* (¢, ¢, u) should closely approximate’ (£, q) in the 1 >

. . . S| e - p(8,9,1.25)
vicinity of £ = 0 and confirms, as well, the further expectation o 0* (% .0.2.0)

that the asymptotic approach ef (¢, q,w) to p*(&, q) will A
occur more slowly ast becomes large and negative. The S
choiceu = 2.0 appears to provide for close agreement betwee
p*(&, q,u) andp*(&, ¢) throughout the regior-2.0 < £ < 2.0.
Unfortunately, this choice is unsatisfactory in terms of limiting .
the number of pole locations required to evalugtés, g, )

via (12). This is illustrated in Table I, which gives, for certain
values ofu, and£, the number of residue-series terms required
in (11) or (12) to ensure that*(¢,¢,u) is determined to
within 5 x 10~2 absolute error in both the real and imaginary
part. It is clear from Table | that fof < —1.5, evaluation of

3art

ginary

Ima

p*(&, q,u) from ten or fewer pole locations requires thabe 0.5 - e T e s
chosen very near to unity. Since farnear unityp*(¢, ¢, u) 2 15 -1 05 0 05 1 15 2
is diverging from p*(¢,¢) in the vicinity of £ = —2.0, 3

obtaining a complete solution that relies on ten or fewer

residue-series terms was determined to be possible only if the (b)

GO representation could be employed at values ssmewhat Fig. 3. (a) The real part ofe—97/4p*(¢,q) versus the real part of
larger than—2.0. e~ I™/4p*(¢, q,u) for u = 1.0, 1.25, and 2.0. (b) The imaginary part
Parenthetically, it may be noted that inasmuch as diregt e—77/4p*(¢,¢) versus the imaginary part of—37/4p*(¢,q,u) for
application of (3) requires the same residue serigg @ ¢,») * = 1.0. 1.25, and2.0.

except that: must be evaluated asg, from (6), Table | should

be understood as providing an illustration of the CONVergenge . reflection coefficient computed fromi(¢, ¢, ), as well

difficulties that the new procedure avoids. In particular, foags the behavior of the GO reflection coefficient given by
£ < 0, whenu, is increased arbitrarily beyond the range

of Table I, the number of residue-series terms required will ; C — cos(8;) -
. . . .. R ) = — v
continue to increase without limit. co(b:) O+ cos(r) (22)

in the region—2.0 < £ < —1.0 where, for moderate values of
u, p*(&, q,u) begins to diverge fromp* (£, ¢). For evaluation

To attempt to identify criteria for switching from thepurposes, the standard UTD representation was used to provide
p* (&, q,u) representation to GO in the lit region &becomes reflection-coefficient values that could be expected to be
large and negative, it was necessary to examine the behawdocurate throughout the lit region. A comparison of reflection

B. £-Region Breakdown and Optimal
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TABLE |
NumBeR OF TERMS REQUIRED FOR EVALUATION OF p*(€, ¢, u) viA (11) or (12)
u\g +0.5 0.0 -0.5 -1.0 -1.5 2.0
1.00 2 2 3 4 5 7
1.25 2 3 4 6 9 12
1.50 3 4 6 9 14 19
2.00 3 6 11 19 29 42
coefficients computed from (22) and via UTD with (¢, ¢) 6

obtained from data in [1] and from numerical integration (asq,

in [9]) appeared to indicate thdto begins to lose accuracy 'g
slowly as¢ increases above-2.0. The reflection coefficient = S
as computed fromp* (¢, ¢, ) via (13) was determined to be
accurate wheq is larger than—2.0 provided that. is chosen « 4
as large as 2.0. As noted above, for. —1.5, the requirement =
that p* (¢, ¢, ) be evaluated from ten or fewer residue-series®
terms forbids such a choice. On the other hand, as is especial$
clear in Fig. 4(b), the choice = 1.0 causesp*(¢,q) to be
poorly approximated by*(£, ¢, ) for £ < 1.5. A compromise
value of « was, therefore, determined to be required an
the valueuw = 1.25, suggested by the data in Table I, was.©
adopted after some experimentation. An important motivatio@ 1
for this choice was derived from the observation that a—
smooth transition betweeRgo and Ryrp computed from

mp

w

i Coef
N
[ IEREENENI NN RN RRANEERENEn!

Re

p*(£,4,1.25) could be effected by means of a simple linear 0

interpolation scheme. In this schemigo is recovered ag
is decreased below 1.8, while at¢ = —1.3 and above, the
reflection coefficient may be identified wif;rp as obtained
from (13) withp*(¢, ¢,1.25) in place ofp* (¢, ¢).

Amplitudes and phases of reflection coefficients computed
by various methods foy = 0.5¢—77/* and a representative
geometry are shown in Fig. 4(a) and (b). As expected, wheng
Ryrp(€) is computed using values of (¢, ¢) obtained from b
numerical integration, close agreement is observed betwee&
Ryrp and Rgo at large negativeé. On the other hand,
for small negativeé, it does not seem to matter whether
p*(&,q) or p*(&,q,u = 1.25) is employed to comput&yrp.
What is important to observe in these figures is that centered
at approximately¢ = -—1.5, there is a region in which
neither Ro nor Ryrp computed fromp* (€, ¢, w = 1.25) has
deviated markedly from the correct behavior, which may be
identified with Ryrp computed fromp*(£, ¢). The reflection
coefficient R; obtained via the interpolation procedure can,
therefore, be expected to provide an acceptable approximation.
The availability of this interpolation procedure dictated the -
selection ofu = 1.25 as an “optimal” value for the parameter
u. While a larger value could, of course, be used at added
computational expense (because the number of residue-series
terms required to achieve convergence in (12) would increas,gzl,' 4

fficient

[}

0

onC

c

ecti

Refl

For convenience, Table Il summarizes the foregoing disc
sion by listing the various formulas that have been described

(1) esessee |R_|from Equation (31)

@ —— IR

urol from Equation (16)

(B) xxxxxxxx !RUTD| with p*(§,q,1.25)

in place of p*(£,q)

4 ----- |R| interpolated between
(1) and (3)

et p i Tty TTTITITTIT T rTrTd

g

(b)

3 25 -2 15 -1 05 0
(@)
OO
-20°
-40°
-60°
‘800_; (1) seeeese phase (RGO)
100°4 @ phase (Ry;p)
1 200 _; (3) XXXXXXXX phase (RUTD) 'o.
E based on p*(§,q,1.25)
140° J@4)----- phase (R))
-160°
1800 ‘IlII]IIIIIIIIIIIIIIIIIIIIIIII
-3 25 2 15 A1 -0.5 0

. . L . (a) Amplitude of the reflection coefficient computed by various
numerical investigations revealed that some loss in accuratyans for plane wave incidence on a cylinder of radiuss 10A. Other

would result from allowingu to be as small as 1.0. parameters arg = 0.5¢~77/* andu, = 2.0. (b) Phase of the reflection

coefficient computed by various means for plane wave incidence on a cylinder
radiusa = 10\. Other parameters are= 0.5¢=9%/4 and ug = 2.0.

together with the¢ regions to which these formulas carmand optimalw value for the coated cylinder were simply
be taken to apply. Observe that theregion boundaries adopted from the impedance cylinder analysis. For coated-
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TABLE 11
£-ReEGION BREAKDOWN CORRESPONDING Top™* (€, ¢, u = 1.25) CoMPUTED FROM TEN TERMS

( Section II)

GO reflection
coefficient (22)

interpolation
between I & HI

but p'(€,q,u) in
(12) replaces

UTD; p',q,u)
in (11) replaces

Region I Region II Region IIT Region IV Region V

E<-1.8 -1.8<&<-1.3 -1.3<€<0.0 00<£<0.5 £>0.5
Impedance Reflected-ray Reflection UTD reflection | Diffracted-ray Diffracted-ray
cylinder term based on coefficient is an | coefficient (13) | term (9) from term from (3)

or via Keller
modes using

formulas Y ()] ()] (7) and (8)
Coated Reflected-ray Reflection UTD reflection | Diffracted-ray Diffracted-ray
cylinder term based on coefficient is an | coefficient (13) | term (9) from term from (19)
(Section III) GO reflection interpolation but p'¢,q.u) in | UTD; p"(€.,q,u) | or via Keller
coefficients between I & III | (21b) replaces in (21a) modes using
(23a) and (23b) | formulas P&, replaces p'(£,q) | (7) and (20)
cylinder problems, (21a) and (21b) rather than (11) and (12) 0
are employed to defing*(¢, ¢, ), while the GO reflection
coefficient is given by
315 45
cos By — jn. cos6; tan(k.d cos 0
RGO:_T]O t Jnc [ ( c t) (TM Case)
1o cos By + jn. cos 8; tan(k.d cos 6;)
(23a)
and
cosf; — jn. cos B, tan(k.d cos 0
RGO — 7o [ Jnc t ( c t) (TE Case) 270 20 40 .60 90
1o cos 8; + jn. cos 0, tan(k.d cos 6;)
(23b)
whered = b —a,n. = /p./€., and
ko . ?
cosb =4/1— 7 sin 6: ) . (24)
c 225 135
Finally, note that while discussion has focused on the
problematic lit region, formula switching in Table Il is also

defined to occur at the shadow boundary and at +0.5. 180

The formula crossover af = 0 is between the lit- and
shadow-region representations @f(¢, ¢, ). The crossover
at ¢ = +0.5 is between the transition and deep-shadow

representations from Sections Il and Ill. In the shadow regiofig. 5. Comparison of patterns obtained via the impedance-cylinder solution

p*(&,q,u) is employed within (9), the use of which, atin Table | and via the exact solution in the vicinity of a cylinder of radius
¢ = 20.0 and relative surface impedan€é= 0.25;. The field is evaluated

arbitrarily large, can lead to certain problems as is describé;cgkr z
in [10]. The deep-shadow-region representations defined in
Sections Il and Il avoid these problems in exactly the manner ) . )
described in [10]. Numerical experimentation revealed th& Comparisons with the Exact Solution

at most eight terms will ever be required to converge (3) Predictions obtained from the formulations defined by
or (19) for & = 0.5, even in the limitw, — oo. Use Table Il were compared with corresponding eigenfunction
of the deep-shadow formulas (3) and (19) for> 0.5 is, series results for numerous cases involving both line sources
therefore, consistent with the ten-term limit that is desireghd plane wave incidence. Some representative results are
for the Table Il representation. ASis decreased below 0.5,shown in Fig. 5 (impedance cylinder) and Fig. 6 (coated
however, these formulas may require more than ten terms if cylinder). A systematic attempt involving over 2000 separate
large. For example, in the, — oo limit, (3) becomes Keller's cylinder scattering problems was made to assess the accuracy
solution as the exponential factoesp(—j(7,/2u,)?) go to of the impedance-cylinder formulation when the amplitude
unity. While only three terms gf* (£, ¢, 1.25) are required for of ¢ does not exceed 100.0, while the phasegofalls in
convergence in the regidnh0 < ¢ < 0.5, the number of terms the range from 0 to—x—inclusive. Problem geometries
required for the Keller solution increases from eight to 26 asvolving values ofu, ranging from less than unity to as

¢ decreases from 0.5 to 0.25 and continues to grow as thege as 4.0 were considered in order to demonstrate that
divergence at = 0 is approached. the Table Il formulations, which are based pNh¢, q,1.25)

EIGENFUNCTION SOLUTION
UNIFORM GTD SOLUTION

75.0 and is due to a line source At7; = 25.0 and¢; = 0°.
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0 desirable result was attributed to the slow breakdown of the
approximations that lead to (19) and to the rapid growth in
the denominator of (19) as a given pole is moved away from
kb. Only the breakdown of the Debye approximation with the
approach of a root té&r or kr; remained problematic. Fig. 6
was selected to demonstrate that the formulation in Section 11|
does not lose accuracy when poles recede frbinand
approach the real axis. In this example,= 24.096 — 50.117

and, it should be noted, multiple encirclements have therefore
270 20 |40 [0 g  been included.

The accuracy of the Table Il formulations was also observed
to depend (to a certain degree) ap. The new formulations
accurately reproduced eigenfunction series results for prob-
lems in which the condition., > 1.25 was satisfied. For
u, ~ 1.25, minor discrepancies were sometimes observed
in the interpolation region-1.8 < ¢ < —1.3. In particular,

225 135 details of pattern-null behavior were not precisely reproduced
when such nulls coincided with the interpolation region. In
Fig. 5, the interpolation region corresponds to angular regions

315 45

180 in the vicinity of ¢ = 70° and ¢ = 290°. Note that there
EIGENFUNCTION SOLUTION is some slight inaccuracy in the representation of the shallow
""""""""""""" UNIFORM GTD SOLUTION nulls at these angular locations.

Fig. 6. Comparison of patterns obtained via the coated-cylinder solution in As u, was decreased below 1.25, the breakdown of the
Table Il and via the exact solution in the vicinity of a coated cylinder of outey,_invariance property began to express itself in the form of
radiuskb = 20.0. The coating is 0.1 wavelengths thick with = 4.0¢9 and . lariti iall ithin the i lati .

jte = pto. The field is evaluated dtr = 70.0 and is due to a magnetic line PAtErN irregularities, especially within the interpolation region.
sourcekr; = 50.0 and ¢, = 0°. While the new formulations are likely to be adequate for
engineering purposes far, > 1.0, other techniques should
8§ employed when this condition is not satisfied. From [10], it

in the transition region, are applicable over a wide range : O . .
. X .IS apparent that a large domain of practical interest is available.
u, values. While no systematic parameter-range exploration_. .
h:mally, some remarks should be made concerning the

was deemed possible in the coated-cylinder case, the overa ; . o
) : L implementation of the various formulas. The availability of
conclusmn. from these |nvest|gat|ops was that accuracy gy Runge—Kutta technique permitted rapid computation of
a level with that observed in F|gs._5 and 6 can U e roots of (4), especially in cases where the requirgd
generally be expected, except under circumstances descri SHId be found nearby to their = 0 loci. In such cases
below. : ,

. . a ten-term evaluation op*(¢,q,1.25) via (11) and (12)
When the phase of is close to zero, af| increases, the permitted Pekeris function values to be approximated in the

p = 1 root of (4) moves rapidly away from itg = 0 l0CUS j1arval from —2.0 to 2.0 at least five to ten times more

and may come to reside very close to the real axis. Similarlé{uiddy than they could be obtained via a 122-point nu-

the important zeroes of (16b), which can be found near¥erica integration using the technique of [9]. (Though it

to kb whenk.d is small or the coating is lossy, may, undeghqyid be noted that if application of the technique in [9]
other circumstances, be found close to the real axis and far estricted tof > —2.0, a sizable reduction in the re-

from kb. Such pole-location behavior can lead to violation Qﬁuired number of integration points is possible.) A more
various assumptions that have been made. When a pole resilggnsive effort was required to implement the coated-cylinder
close to the real axis, inclusion of contributions from multiplggrmulas. The roots of (16b) were obtained using the contour-
encirclements is likely to be necessary. The formulations jﬁtegra| search technique of Singarag al. and via the
both Sections Il and Il rely on the Debye approximation fopavidenko method. Uniform asymptotic expansions [17] were
Hankel functions of argumentr and kr,. Difficulties can, ysed to represent Hankel functions of argumént Cer-
therefore, be expected when an important zefodf (16b)] tain higher order terms were included in the representa-
or whenka + mm;, [with 7, satisfying (4)] approachesr or tijon and are described in [18]. While implementation of the
kr1. Finally, the pole-location behavior in question can lead tgoated-cylinder formulas was observed to require application
a breakdown of further approximations, which are appropriag¢ somewhat greater computational resources than were re-
only whenr, can be considered to be small. quired in the impedance-cylinder case, it should be noted

While numerical investigations revealed the importanadat these formulas allow for a very compact representa-
of the above considerations, particularly in the case of thien of coated-cylinder scattering problems. Once a set of
Section Il formulation, it was observed that upon the inclyole locations has been computed by one of the standard
sion of multiple encirclements, accurate results were obtainewthods noted above, arbitrary scattering problems can be
from the Section Ill formulation in cases where dominaneasily solved via straightforward application of the Section |l
mode poles resided near the real axis and far figmThis formulas.



1008

V. SUMMARY [3]

It has been shown that a uniform GTD representation of
the transition-region fields in the vicinity of an impedancel4]
or coated cylinder is available in terms of a novel func-
tion p*(£,q,u). By means of this function, familiar UTD
transition-region formulas can be employed without recoursé!
to numerical integration to compute values of the Pekeri
integral. Instead, the required Pekeris-integral values can be
approximated using*(¢, ¢, ») computed from knowledge of
a limited number of pole locations.

The justification for the new procedure resides in the fact7]
that within the transition regiom* (¢, ¢, ») rapidly approaches
the Pekeris functiop* (¢, ¢) asu is increased beyond unity. A [g)
¢ becomes more negative, however, the approagti@f, ¢, »)
to p* (&, ¢) occurs more slowly with increasing Because the
number of terms required for residue-series computation of
p*(&, q,u) increases withy, it is desirable that the approxi-
mation of p*(&, ¢) via p* (£, q,u) occur for a value ofu as I
close to unity as possible. On the other hand, larger values of
u permitp* (¢, ¢, w) to mimic the behavior op*(¢, ¢) further  [11]
into the lit region. The numerical results presented in this paper
were based on a ten-term computationpdfé, ¢, 1.25). The [12]
transition region representation based @r¢, ¢,1.25) was
smoothly joined with the GO representation of the lit-region
fields and with a deep-shadow-region representation having {fh@
form of [10]. Excellent agreement with eigenfunction series
results was observed over a large number of test cases. [14]

The formulation described in Section Il is very attractive
from a computational perspective, because roots of (4)
readily obtained. The formulation described in Section II
requires a degree of effort in order to obtain the roots of (16b),
but imposes less restriction on the pole behavior. [16]
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