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A Uniform GTD Treatment of Surface Diffraction
by Impedance and Coated Cylinders

Paul E. Hussar,Member, IEEE

Abstract—In the context of the uniform geometrical theory of
diffraction (UTD), computation of the scattered fields near the
shadow boundary of a smooth convex surface requires values for
the Pekeris-integral function p�(�; q). While in a small number
of cases such as the case of perfect conductivity (q = 0 and
q ! 1), tabulated values of the function are available; in the
general case, these values must be obtained by some numerical
method. Here, a procedure for approximatingp�(�; q) by residue-
series means will be introduced. In contrast with traditional
residue-series representations, the new procedure requires only a
limited knowledge of pole locations even in the shadow boundary
transition region and thereby extends the regime of practical
applicability of residue-series methods beyond the deep shadow.
It will be demonstrated that the new procedure can be combined
with an earlier residue-series representation derived by this
author and R. Albus (and with geometrical optics) to provide a
computationally efficient procedure for computing fields scattered
by an impedance or coated cylinder.

Index Terms—Geometrical theory of diffraction.

I. INTRODUCTION

DEVELOPMENTS in materials science and the advance-
ment of low-observability techniques have created a

requirement for high-frequency scattering analysis techniques
that are applicable in cases where the scattering surfaces are
not perfect conductors. In order to address this requirement,
various authors [1]–[3] have discussed the two-dimensional
problem of scattering by a cylinder whose surface is either
coated or characterized by an impedance boundary condition
(IBC). A fundamental objective has been to introduce into
solutions for impedance/coated-cylinder problems the kind of
simplicity and computational efficiency that is, in the case
of perfectly conducting scatterers associated with the uniform
geometrical theory of diffraction (UTD) [4]. As extensions
of [4], [1]–[3] must address field approximation in each of
three roughly distinct regions (see [3], in particular). In the
illuminated region far from the shadow boundary (i.e., the
deep-lit region) a reflected-field component can be quickly
and accurately evaluated via geometrical optics (GO). In the
deep shadow, a representation in terms of Keller-type modes
[5] is required in order to permit geometrical theory of diffrac-
tion (GTD)-type generalization from the circular-cylinder case
to cases of nonconstant cylinder curvature. Finally, in the
vicinity of the shadow boundary (i.e., the transition region),
neither GO nor the Keller-modal representations employed in
[1]–[3] are adequate (the latter, in particular, diverge at the
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shadow boundary). Instead, field computation is based on the
UTD transition-region representation and surface properties
are taken into account by employing an appropriate transition
integral in Pekeris-function form [6]–[8].

While tabulated Pekeris integral values are available in
the case of perfect conductivity, no such values can be
expected to be available in the general case. To overcome
this limitation, a method for optimizing the efficiency of
numerical Pekeris-integral evaluation has been obtained by
Pearson [9]. Alternatively, Kim and Wang [1], [2] have
explored a heuristic means for evaluating the Pekeris integral
function. Employment of either of these methods involves
implementation of a second numerical procedure in addition
to the identification of pole locations required by a Keller-type
modal-series representation of the deep-shadow-region fields.

The purpose of the present paper is to introduce a general
procedure whereby the transition-region fields scattered by an
impedance or coated cylinder can be efficiently approximated
using the same pole locations as are employed within the
deep-shadow region. While residue-series expressions have
been used before to represent the fields in the transition
region [10], [11], the new procedure is distinguished by
the fact that it permits the number of residue-series terms
required for convergence in the transition region to be fixed
at some modest value that is independent of the problem
geometry. The argument that will be advanced on behalf
of the new procedure relies heavily on results from [10]
in which a novel shadow-region residue-series solution for
the line-source and conducting-cylinder canonical problem
is described. The solution from [10] (and here adapted to
impedance and coated cylinders) can be written in terms
of GTD ray coordinates and, unlike the cylinder solution
employed by Keller, converges at the shadow boundary. This
solution will undergo a slight reworking that will lead to the
introduction of a new function designated as and
defined for negative (lit region) as well as positive (shadow
region) values of . The motivation for introducing this new
function is that while the solution from [10] converges slowly
at the shadow boundary when the source and observation
point are remote from the scatterer, use of near

permits a Pekeris-type transition integral [denoted as
] to be approximated from a modest number of residue-

series terms. Computation of the transition-region fields via
the new procedure occurs first via residue-series evaluation
of and then via the familiar UTD formulas with

employed as an approximation for the Pekeris
integral.
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The outstanding consequence of the new procedure, namely
that the transition-region fields, can readily be computed from
knowledge of a limited number of pole locations and should
not be seen as being in conflict with accepted notions about
the behavior of residue-series solutions to familiar canonical
problems. Rather, the new procedure should be viewed as
taking advantage of a notable feature of the UTD format,
namely that the single function , which depends on
geometry only through , characterizes scattering by a given
cylinder over a large domain of source/observation-point con-
figurations. The new function can be interpreted
as a piece extracted from the residue-series solution in [10]
that, within the transition region, exhibits in an approximate
way the same property as . This new function will
be seen (for small ) to asymptotically approach
as the value of the argument is increased beyond unity.
Efficient approximation of occurs via evaluation of

with chosen close to unity whereupon, as will be
demonstrated, rapid residue-series convergence is assured.

As the deep-lit region is approached (i.e.,assumes a
large negative value), the asymptotic approach of
to occurs more slowly than for near zero and
approximation of with for close to
unity becomes less accurate. A heuristic interpolation scheme
has been implemented to allow the GO reflection coefficient
to be recovered smoothly as the deep-lit region is entered.
The situation for positive is less problematic. A modal
representation having the form described in [10] can be
smoothly joined with the new transition-region representation
at positive chosen in such a way that the large numbers of
residue-series terms that appear in [10] never arise. The overall
result that will be demonstrated is that the entire scattered field
can be determined from as few as ten pole locations without
regard for the problem geometry.

Distinct treatments will separately be provided for the case
where a simple IBC is applied at the cylinder surface and
for the case where a perfectly conducting cylinder is coated
by a single layer of dielectric/magnetic material. These two
formulations exhibit considerable overlap in terms of appli-
cability, and their relative merits will, therefore, be indicated.
The overall methodology described in this paper should not,
however, be understood as being limited to these two cases.
Rather, extension of the new procedure to further cases can
be expected to be straightforward as comparison between the
formulations here provided will illustrate.

In Section II, a shadow-region uniform GTD solution for a
line source radiating in the vicinity of an infinitely long circular
cylinder characterized by a constant surface impedance is
developed via a method analogous to that employed in [10]
for the conducting case. It is shown that this solution can be
rewritten in a format identical to that of the UTD solution
except that becomes replaced by , where

is a geometry-specific value of the argument. Because,
in the transition region, the problem-geometry-dependence
through is weak, it becomes possible to replace with
another, “optimal” argument value chosen close to unity
to ensure that can be efficiently evaluated. To
extend this approach to the lit region, the form of

Fig. 1. Geometry for the line-source and impedance-cylinder problem.

for negative must be determined by analytic continuation.
Equivalent results for the coated cylinder are obtained in
Section III, except that certain approximations employed in
the Section II formulation, as well as the accompanying lim-
itations, are avoided. Implementation of the results obtained
in Sections II and III is described in Section IV. That, for
small , rapidly approaches in the transition
region as grows larger than unity is demonstrated with some
examples. A smooth concatenation of impedance and coated-
cylinder transition-region solutions with solutions applicable
to other regions is obtained heuristically from examination of

data. Eigenfunction series results are then employed
to assess the accuracy of a complete uniform GTD solution that
is based on in the transition region, GO in the deep-
lit region and the impedance/coated cylinder implementation
of [10] in the deep shadow.

II. I MPEDANCE CYLINDER

The uniform GTD methods that will be described in this
paper rely, ultimately, on the availability of the residue-series
format for representing the shadow-region fields. Consider,
therefore, a unit electric or magnetic line source radiating in
the vicinity of an infinitely long circular cylinder with surface
impedance (see Fig. 1). At the surface of the cylinder

the applicable boundary conditions are
for the TM case and for the TE case. It is more
convenient to write these boundary conditions as

(1a)

for the TM fields and

(1b)

for the TE fields where ,
, and . If and are

represented generically as and the -directed fields and
are represented generically as; the solution for both TM

and TE cases takes the form

(2)



1000 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 7, JULY 1998

where and , respectively, describe the line source
location and observation point as shown in Fig. 1. In the
shadow region, the integral (2) can be evaluated in terms of a
residue series. Substitution of and for determines
whether (2) is an expression for the component of the
magnetic or electric field. The normalization is the same as
in [10] and has been assumed.

A. Formulation for the Deep-Shadow Region

For an observation point in the shadow region, the dominant
diffracted-ray contributions (i.e., those that do not involve
multiple encirclements of the cylinder) derive from the
and terms in the summation and are associated with
the second term within the integrand. Let represent the
contribution from a single such diffracted ray. In precise
analogy with [10], an approximation for is derivable from
(2) in the asymptotic frequency regime in the form

(3)

where and is the th root of

(4)

with . The functions and are the
well-known Fock-type Airy function and its derivative. The
parameters and in (3) are used to represent, respectively,
the quantities and where

(5)

The angle is either for a diffracted ray traveling
counterclockwise in Fig. 1 or for a diffracted ray
traveling clockwise in Fig. 1. The parameters and are
associated in the usual way [1] with the path of the diffracted
ray and are given by and
while is given by

(6)

The parameter , defined by (6) and represented simply
as in [10], is subscripted here in order to indicate that a
geometrical value, i.e., the right-hand side of (6) for a specific
problem geometry, is being represented.

Since (3) can be understood as the impedance-boundary
analog of the solution given in [10] for the conducting case, the
geometrical interpretation of (3) in a GTD context is straight-
forward. In particular, attenuation constants and diffraction
coefficients appropriate to a Keller-type modal representation
of the field [5] can be obtained for the impedance cylinder
from (3). This construction will provide, as discussed in [10], a
uniform GTD representation for the field in the shadow region.
The attenuation constants take the form

(7)

while the diffraction coefficients are given by

(8)

and represent the diffracted-ray attachment and detach-
ment points in accordance with the GTD-ray formalism. The
presence within each modal diffraction coefficient given by (8)
of an exponential factor involving causes the modal series
representation defined by (7) and (8) to maintain convergence
at the shadow boundary and as the lit region is entered.
This is a feature not observed in Keller’s original formulation.

While (3) or, equivalently, (7) and (8) provide a valid
representation as , application of the solution in this
form will, for the purposes of this paper, be strictly limited
so as to exclude the vicinity of the shadow boundary. As has
been noted (and is described in detail in [10]), when these
formulas are employed at the shadow boundary, many terms
are required to achieve residue-series convergence whenever

is greatly in excess of unity. Computation of the fields
in the transition region with the aid of a limited number of
identified pole locations will be achieved instead via the new
procedure based on the function , which is shortly
to be introduced. In Section IV, a scheme for computing the
entire scattered field from ten residue-series terms plus GO
will be described and (3) or (7) and (8) will be seen to play
a role only for somewhat larger than zero. Finally, it should
be noted that the pole locations in question are the roots of
(4) that have received extensive discussion [12] and can be
calculated quite generally using a fourth-order Runge–Kutta
formula [13].

B. Formulation for the Transition Region

1) Shadow-Transition Region:According to [1], the field
associated with a single diffracted ray in the shadow region of
an impedance cylinder is represented in UTD format as

(9)

where . The function is defined in terms of
a Fresnel integral [4]; is a Pekeris function given by

(10)

and . Observe now that in the most
straightforward way, (3) can be rewritten in the form of (9)
provided only that is replaced by

(11)

with the understanding that the argumentis to be assigned
the value of from (6).
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Because (3) and (9) can both be expected to accurately
represent the transition-region fields, it may be surmised that

and are nearly equivalent functions. It
is this surmise that forms the basis for the new approach to
computing the transition-region fields. A key ingredient is that
inasmuch as this approximate equivalence can be expected
to hold for a wide range of values, it may therefore be
presumed that the dependence of is weak.

The above statements can be made more precise by taking
advantage of certain results from [10], which treats the case
of perfect conductivity. In the limiting cases and

, the function reduces to the more familiar
UTD functions and [4] while, according to the
above argument, provides approximate equivalents
expressed in terms of familiar roots and turning values of
the Airy function and its derivative [7]. With these limiting
correspondences in mind, it is possible to readily understand
both functions and as arising from the
same integral, which is a generalization of [10, eq. (7c)] to
cases other than and . The generalization in
question is obtained from [10, eq. (7c)] by replacing each Airy
function ratio with the more general form of Airy function
ratio that appears within the integral in (10). Also, it is to be
understood that in [10, eq. (7c)], the formal argumentsand

have been evaluated at and , respectively. According
to results provided in [10], either or is
obtained from the one integral, depending on whether the

term that appears in the argument of the exponentials is,
respectively, ignored or retained. Note that the coefficient of
the term in [10, eq. (7c)] may be identified as .
It follows that for arbitrary positive , approaches

as becomes large, as may be explicitly verified via
residue-series evaluation of the integral in (10). For values
of such that (3) and (9) can both be expected to provide
an accurate representation of the shadow-region fields, it may
be concluded that convergence of to has
nearly been achieved.

Numerical data provided in [10] for a perfectly conducting
cylinder, both in the case of TE fields (i.e., ) and in the
case of TM fields (i.e., ) indicate that shadow-boundary
field values predicted by (3) and (9) are nearly identical for

greater than unity. Convergence of to
should, therefore, be understood as occurring rapidly for
as increases beyond unity. In the regime , therefore,
it should not matter whether is employed in (9) or
whether is replaced by with given by
in (6) or, more importantly, with arbitrarily assigned any
other value within the convergence region. The number of
residue-series terms required to evaluate via (11)
increases dramatically with , but if is chosen close to
unity, only a modest number of terms will be required. In
other words, it should be possible to accurately and efficiently
compute the fields in the shadow transition region using

in (9) with a value of chosen close to unity for
rapid convergence. It is important to reemphasize that (9) with

in place of is really the same as (3), except
for the exploitation of the weak dependence for convergence
purposes.

2) Lit-Transition Region:Since the Fresnel-integral term
and the residue-series term that add to give in (11)
are individually well behaved as , it may be anticipated
that can be extended to the lit region and employed
to construct a representation of the lit-region fields. In the
absence of any formal lit-region solution involving ,
the straightforward approach is to employ as an
approximation for , just as in the shadow transition
region. Though the foregoing discussion implies that such an
approximation will be accurate at , there is no reason to
believe that this approximation will maintain accuracy far into
the lit region. The fundamental question is whether accuracy
is maintained through enough of the lit transition region that
a representation for the entire lit region can be defined with
the aid of GO.

The extension of into the lit region is not given
by (11), but requires the inclusion of an additional term in
order to preserve continuity. For , the definition

(12)

may be regarded as unique because the small argument expan-
sion (in powers of as ) for the sum of the first two
terms in (12) is identical to the small argument expansion (as

) [6] for the Fresnel integral term in (11).
Use of the UTD representation in the lit-transition region

requires consideration of direct- and reflected-ray contribu-
tions. The reflected-ray contribution is determined by the UTD
reflection coefficient given for angle of incidenceby

(13)

where , ,
, and and are the distances, respectively, from the

line source to the point of reflection and from the point
of reflection to the observation point. In the vicinity of the
shadow boundary, with close to unity can be
expected to accurately approximate in (13) and can
readily be evaluated from a modest number of residue-series
terms. As becomes more negative, however, the residue
series in (12) becomes more slowly convergent. As will be
seen in Section IV, the approach of to
with increasing also occurs more slowly. While (12) can,
therefore, be expected to be useful only in a portion of the lit
region, it will be demonstrated in Section IV that a complete
representation is available via a transition to GO.

III. COATED CYLINDER

The geometry for a line source in the presence of a coated
cylinder is shown in Fig. 2. The interior cylinder of radiusis
assumed to be perfectly conducting, while the constitutive pa-
rameters of the coating are designated asand . Boundary
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Fig. 2. Geometry for the line-source and coated-cylinder problem.

conditions appropriate to the geometry of Fig. 2 include zero
tangential electric field at the surface and continuity
of tangential electric and magnetic fields at . Let the
-directed electric field in the case of an electric line source

(the TM case) and the-directed magnetic field in the case of
a magnetic line source (the TE case) be denoted generically
as . The solution for is once again represented by (2)
except that the constant becomes replaced by a-dependent
function given by

(14a)

for the TM case and by

(14b)

for the TE case, where .

A. Formulation for the Deep-Shadow Region

In order to obtain coated-cylinder equivalents to the
impedance-cylinder expressions in Section II, it is once again
required to express in a residue-series format. In particular,
let us consider the dominant contributions to the field from
the nonencircling diffracted rays. Such contributions can be
approximated as

(15)

where

(16a)

and

(16b)

and where for a counterclockwise traveling
ray corresponding to in (2), while
for a clockwise traveling ray corresponding to in (2).
The pole locations are defined by . The Debye
approximation has been used in (15) for Hankel functions of
argument and under the assumption that the source and

observation point are not close to the cylinder surface. Also,
and are given by

(17)

where and .
In [2], certain approximations are introduced to transform

(15) into a more convenient form and a GTD ray interpretation
is then provided. Note that the GTD ray paths, which thereby
arise, are those employed in [1], [4], and also in Section II and
should be distinguished from the ray paths that occur within
the coated-cylinder formulation described in [14]. The approx-
imations in [2] cause the resulting solution to lose convergence
in the vicinity of the shadow boundary and a heuristic method
for transition-integral evaluation is introduced to obtain the
correct behavior at small . Here, the first requirement is
for a residue-series expression that corresponds to (3) for the
impedance cylinder. Such an expression can be obtained from
(15) by approximating the argument of the exponential term
more precisely than is done in [2]. With , let

be defined as and expand the exponentiated
term in (15) in powers of through order . The expansion
is given by

(18)

where and . When this
approximation is inserted into (15), the resulting expression for
the field contribution due to a single diffracted ray becomes

(19)

where is given by (5) with and where the inverse
factors of and inside of the
summation in (15) have been approximated as and ,
respectively. The parameter has the usual meaning given
by (6).

A GTD interpretation of an expression identical to (19),
but without the exponential factors involving , is provided
in [2] while the geometrical interpretation of these factors is
apparent from [10]. The attenuation constants appropriate to a
modal series representation based on (19) are defined by (7)
with and with given by . The modal
diffraction coefficients are given by

(20)

and differ from those in [2] only by virtue of the new
exponential factors, which, as before, provide for convergence
in the shadow-boundary transition region.
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B. Formulation for the Transition Region

While (19) can be expected to remain accurate throughout
the shadow region, computation of transition-region fields
via (19) will not, in general, be efficient inasmuch as large
numbers of residue-series terms may be required. This possi-
bility was previously discussed in connection with (3) for the
impedance-cylinder case. This difficulty can, once again, be
overcome via a transformation into the UTD format given
by (9). Recasting (19) into the form of (9) (for )
and subsequent analytic continuation (for ) leads to
the definition of a function applicable to coated-
cylinder problems as

(21a)

and

(21b)

where the dependence on such parameters as the coating
thickness, dielectric constant, etc. is understood. Representing
the field in the shadow-transition region of a coated cylinder
by (9) with replaced by for is
equivalent to using (19). It may be anticipated that for
larger than unity defined by (21a) and (21b) will
asymptotically approach a coated cylinder Pekeris integral

such as is defined in [2]. Because of the slowness of
the expected variation, it should be possible to compute the
transition-region fields via the UTD expressions (9) and (13)
with replaced by from (21a) and (21b) and

chosen close to unity for rapid-series convergence.
It is interesting to compare the current treatment of coated

cylinder transition-region fields with previous treatments. In
[2], it is proposed that the coated-cylinder transition integral
can be approximated by an impedance cylinder Pekeris integral
computed for a value of determined by the modal
impedance. The latter Pekeris integral is to be evaluated by the
heuristic method described in [1] and [2]. In [3] the Pekeris
integral defined for the generalized IBC case is evaluated
by direct numerical integration. In contrast, computation of
coated-cylinder transition-region fields via (21a) and (21b)
does not require recourse to any approximate boundary condi-
tion. By way of comparison with the formulation described in
Section II, however, it must be noted that the zeroes of (16b)
are not so easily obtained as the roots of (4). Applicable meth-
ods include the contour-integral search technique of Singaraju
et al. [15] and Davidenko’s method [16].

IV. NUMERICAL RESULTS

In Sections II and III, formulations are proposed as permit-
ting the fields in the deep shadow and transition regions of

an impedance or coated cylinder to be accurately determined
from knowledge of a limited number of pole locations. In the
transition region, the formulations that have been described
involve the function introduced in this paper, while
in the deep-shadow region, the formulations are simple exten-
sions of [10]. Here it will be numerically demonstrated that
these formulations do indeed possess the features ascribed to
them and that together with the GO solution for the deep-
lit-region fields, they can be used to compute the entire
field scattered by an impedance or coated-cylinder with the
aid of limited pole-location data. Toward this end, it will
be necessary to organize the various formulations (including
GO) by defining a range of applicability for each. In other
words, for the purposes of this paper, the terms “deep-lit
region,” “deep-shadow region,” and “transition region” must
be given precise definitions in terms ofregions over which
the corresponding formulas from either Sections II, III, or
GO can be effectively applied. Furthermore, the transition-
region formulas described in Sections II and III rely upon
the function computed for an advantageous
value that will, in general, be different from in (6).
It will be necessary to identify an optimal value for the
selectable parameter in such a way that can
effectively be employed as an approximation for
within the UTD transition-region formulas. It was decided,
with a certain degree of arbitrariness, that evaluation of
the various formulas should be limited to require no more
than ten residue-series terms. Selection of the-regions over
which the different formulas are taken to apply, as well
as of the optimal value, will be based on this require-
ment.

As a first step, it will be necessary to assess the behavior of
both with respect to the rapidity with which

is approached as increases and also with respect to the
number of residue-series terms required for accurate evaluation
at given values of and . It is especially important to recall at
this point the fact that the argument for the near equivalence
of and for near unity was developed
for the shadow transition region only. A slower approach
of to may be anticipated at increasingly
negative values of . It will be seen that effective use of

at large negative is not possible and it is for this
reason that a crossover to the GO representation needs to be
forcibly imposed as decreases. Identification of criteria for
switching among the formulas as well of the optimalvalue
will be based on the numerical examination of . In
the end, it will be shown that it is possible both to achieve
a smooth transition among expressions suitable in different
regions and to obtain results in close agreement with results
obtained via eigenfunction series methods.

A. Versus

While comparisons between and were
made in both the impedance- and coated-cylinder cases, a com-
prehensive analysis of the asymptotic approach of
to was carried out only for the case where these
functions are defined by (11), (12), and (9), respectively.
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The justification for applying the conclusions derived from
this analysis to the coated-cylinder case was based on the
observation that accurate scattered-field values and smooth
-region transitions were thereby obtained. Computation of

via (11) or (12) was based on roots of (4) calculated
by the method described by Hill and Wait [13]. Implementation
of a capability to calculate up to 50 of these roots made
evaluation of possible over a large range ofand

values. Fig. 3(a) and (b) compares, respectively, the real
and imaginary parts of for , , and

with the real and imaginary parts of computed
via Pearson’s numerical integration technique [9]. Three values
of , specifically , , and are
represented. For and , the familiar UTD function

or , as appropriate, should be understood in place of
. The convergence of to is readily

apparent from the quality of agreement between the
and the curves over the range ofvalues depicted. In
contrast, the curves show agreement with the
curves provided that but begin to diverge from

at smaller values. Essentially identical results were
observed in comparisons of and for the
real cases considered in [1].

Fig. 3(a) and (b) confirms the expectation that forclose
to unity, should closely approximate in the
vicinity of and confirms, as well, the further expectation
that the asymptotic approach of to will
occur more slowly as becomes large and negative. The
choice appears to provide for close agreement between

and throughout the region .
Unfortunately, this choice is unsatisfactory in terms of limiting
the number of pole locations required to evaluate
via (12). This is illustrated in Table I, which gives, for certain
values of and , the number of residue-series terms required
in (11) or (12) to ensure that is determined to
within 5 10 absolute error in both the real and imaginary
part. It is clear from Table I that for , evaluation of

from ten or fewer pole locations requires thatbe
chosen very near to unity. Since fornear unity
is diverging from in the vicinity of ,
obtaining a complete solution that relies on ten or fewer
residue-series terms was determined to be possible only if the
GO representation could be employed at values ofsomewhat
larger than 2.0.

Parenthetically, it may be noted that inasmuch as direct
application of (3) requires the same residue series as
except that must be evaluated as from (6), Table I should
be understood as providing an illustration of the convergence
difficulties that the new procedure avoids. In particular, for

, when is increased arbitrarily beyond the range
of Table I, the number of residue-series terms required will
continue to increase without limit.

B. -Region Breakdown and Optimal

To attempt to identify criteria for switching from the
representation to GO in the lit region asbecomes

large and negative, it was necessary to examine the behavior

(a)

(b)

Fig. 3. (a) The real part ofe�j�=4p�(�; q) versus the real part of
e�j�=4p�(�; q; u) for u = 1:0; 1:25; and 2:0. (b) The imaginary part
of e�j�=4p�(�; q) versus the imaginary part ofe�j�=4p�(�; q; u) for
u = 1:0; 1:25; and 2:0.

of the reflection coefficient computed from , as well
as the behavior of the GO reflection coefficient given by

(22)

in the region where, for moderate values of
, begins to diverge from . For evaluation

purposes, the standard UTD representation was used to provide
reflection-coefficient values that could be expected to be
accurate throughout the lit region. A comparison of reflection
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TABLE I
NUMBER OF TERMS REQUIRED FOR EVALUATION OF p�(�; q; u) VIA (11) or (12)

coefficients computed from (22) and via UTD with
obtained from data in [1] and from numerical integration (as
in [9]) appeared to indicate that begins to lose accuracy
slowly as increases above 2.0. The reflection coefficient
as computed from via (13) was determined to be
accurate when is larger than 2.0 provided that is chosen
as large as 2.0. As noted above, for , the requirement
that be evaluated from ten or fewer residue-series
terms forbids such a choice. On the other hand, as is especially
clear in Fig. 4(b), the choice causes to be
poorly approximated by for . A compromise
value of was, therefore, determined to be required and
the value , suggested by the data in Table I, was
adopted after some experimentation. An important motivation
for this choice was derived from the observation that a
smooth transition between and computed from

could be effected by means of a simple linear
interpolation scheme. In this scheme, is recovered as
is decreased below 1.8, while at and above, the
reflection coefficient may be identified with as obtained
from (13) with in place of .

Amplitudes and phases of reflection coefficients computed
by various methods for and a representative
geometry are shown in Fig. 4(a) and (b). As expected, when

is computed using values of obtained from
numerical integration, close agreement is observed between

and at large negative . On the other hand,
for small negative , it does not seem to matter whether

or is employed to compute .
What is important to observe in these figures is that centered
at approximately , there is a region in which
neither nor computed from has
deviated markedly from the correct behavior, which may be
identified with computed from . The reflection
coefficient obtained via the interpolation procedure can,
therefore, be expected to provide an acceptable approximation.
The availability of this interpolation procedure dictated the
selection of as an “optimal” value for the parameter

. While a larger value could, of course, be used at added
computational expense (because the number of residue-series
terms required to achieve convergence in (12) would increase),
numerical investigations revealed that some loss in accuracy
would result from allowing to be as small as 1.0.

For convenience, Table II summarizes the foregoing discus-
sion by listing the various formulas that have been described
together with the regions to which these formulas can
be taken to apply. Observe that the-region boundaries

(a)

(b)

Fig. 4. (a) Amplitude of the reflection coefficient computed by various
means for plane wave incidence on a cylinder of radiusa = 10�. Other
parameters areq = 0:5e�j�=4 and ug = 2:0. (b) Phase of the reflection
coefficient computed by various means for plane wave incidence on a cylinder
of radiusa = 10�. Other parameters areq = 0:5e�j�=4 andug = 2:0.

and optimal value for the coated cylinder were simply
adopted from the impedance cylinder analysis. For coated-
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TABLE II
�-REGION BREAKDOWN CORRESPONDING TOp�(�; q; u = 1:25) COMPUTED FROM TEN TERMS

cylinder problems, (21a) and (21b) rather than (11) and (12)
are employed to define , while the GO reflection
coefficient is given by

(TM case)

(23a)

and

(TE case)

(23b)

where and

(24)

Finally, note that while discussion has focused on the
problematic lit region, formula switching in Table II is also
defined to occur at the shadow boundary and at .
The formula crossover at is between the lit- and
shadow-region representations of . The crossover
at is between the transition and deep-shadow
representations from Sections II and III. In the shadow region,

is employed within (9), the use of which, at
arbitrarily large , can lead to certain problems as is described
in [10]. The deep-shadow-region representations defined in
Sections II and III avoid these problems in exactly the manner
described in [10]. Numerical experimentation revealed that
at most eight terms will ever be required to converge (3)
or (19) for , even in the limit . Use
of the deep-shadow formulas (3) and (19) for is,
therefore, consistent with the ten-term limit that is desired
for the Table II representation. As is decreased below 0.5,
however, these formulas may require more than ten terms if
large. For example, in the limit, (3) becomes Keller’s
solution as the exponential factors go to
unity. While only three terms of are required for
convergence in the region , the number of terms
required for the Keller solution increases from eight to 26 as

decreases from 0.5 to 0.25 and continues to grow as the
divergence at is approached.

Fig. 5. Comparison of patterns obtained via the impedance-cylinder solution
in Table I and via the exact solution in the vicinity of a cylinder of radius
ka = 20:0 and relative surface impedanceC = 0:25j. The field is evaluated
at kr = 75:0 and is due to a line source atkr1 = 25:0 and�1 = 0�.

C. Comparisons with the Exact Solution

Predictions obtained from the formulations defined by
Table II were compared with corresponding eigenfunction
series results for numerous cases involving both line sources
and plane wave incidence. Some representative results are
shown in Fig. 5 (impedance cylinder) and Fig. 6 (coated
cylinder). A systematic attempt involving over 2000 separate
cylinder scattering problems was made to assess the accuracy
of the impedance-cylinder formulation when the amplitude
of does not exceed 100.0, while the phase offalls in
the range from 0 to —inclusive. Problem geometries
involving values of ranging from less than unity to as
large as 4.0 were considered in order to demonstrate that
the Table II formulations, which are based on
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Fig. 6. Comparison of patterns obtained via the coated-cylinder solution in
Table II and via the exact solution in the vicinity of a coated cylinder of outer
radiuskb = 20:0. The coating is 0.1 wavelengths thick with"c = 4:0"0 and
�c = �0. The field is evaluated atkr = 70:0 and is due to a magnetic line
sourcekr1 = 50:0 and �1 = 0�.

in the transition region, are applicable over a wide range of
values. While no systematic parameter-range exploration

was deemed possible in the coated-cylinder case, the overall
conclusion from these investigations was that accuracy on
a level with that observed in Figs. 5 and 6 can quite
generally be expected, except under circumstances described
below.

When the phase of is close to zero, as increases, the
root of (4) moves rapidly away from its locus

and may come to reside very close to the real axis. Similarly,
the important zeroes of (16b), which can be found nearby
to when is small or the coating is lossy, may, under
other circumstances, be found close to the real axis and far
from . Such pole-location behavior can lead to violation of
various assumptions that have been made. When a pole resides
close to the real axis, inclusion of contributions from multiple
encirclements is likely to be necessary. The formulations in
both Sections II and III rely on the Debye approximation for
Hankel functions of argument and . Difficulties can,
therefore, be expected when an important zero [of (16b)]
or when [with satisfying (4)] approaches or

. Finally, the pole-location behavior in question can lead to
a breakdown of further approximations, which are appropriate
only when can be considered to be small.

While numerical investigations revealed the importance
of the above considerations, particularly in the case of the
Section II formulation, it was observed that upon the inclu-
sion of multiple encirclements, accurate results were obtained
from the Section III formulation in cases where dominant-
mode poles resided near the real axis and far from. This

desirable result was attributed to the slow breakdown of the
approximations that lead to (19) and to the rapid growth in
the denominator of (19) as a given pole is moved away from

. Only the breakdown of the Debye approximation with the
approach of a root to or remained problematic. Fig. 6
was selected to demonstrate that the formulation in Section III
does not lose accuracy when poles recede fromand
approach the real axis. In this example,
and, it should be noted, multiple encirclements have therefore
been included.

The accuracy of the Table II formulations was also observed
to depend (to a certain degree) on. The new formulations
accurately reproduced eigenfunction series results for prob-
lems in which the condition was satisfied. For

, minor discrepancies were sometimes observed
in the interpolation region . In particular,
details of pattern-null behavior were not precisely reproduced
when such nulls coincided with the interpolation region. In
Fig. 5, the interpolation region corresponds to angular regions
in the vicinity of and . Note that there
is some slight inaccuracy in the representation of the shallow
nulls at these angular locations.

As was decreased below 1.25, the breakdown of the
-invariance property began to express itself in the form of

pattern irregularities, especially within the interpolation region.
While the new formulations are likely to be adequate for
engineering purposes for , other techniques should
be employed when this condition is not satisfied. From [10], it
is apparent that a large domain of practical interest is available.

Finally, some remarks should be made concerning the
implementation of the various formulas. The availability of
the Runge–Kutta technique permitted rapid computation of
the roots of (4), especially in cases where the required
could be found nearby to their loci. In such cases,
a ten-term evaluation of via (11) and (12)
permitted Pekeris function values to be approximated in the
interval from 2.0 to 2.0 at least five to ten times more
quickly than they could be obtained via a 122-point nu-
merical integration using the technique of [9]. (Though it
should be noted that if application of the technique in [9]
is restricted to , a sizable reduction in the re-
quired number of integration points is possible.) A more
extensive effort was required to implement the coated-cylinder
formulas. The roots of (16b) were obtained using the contour-
integral search technique of Singarajuet al. and via the
Davidenko method. Uniform asymptotic expansions [17] were
used to represent Hankel functions of argument. Cer-
tain higher order terms were included in the representa-
tion and are described in [18]. While implementation of the
coated-cylinder formulas was observed to require application
of somewhat greater computational resources than were re-
quired in the impedance-cylinder case, it should be noted
that these formulas allow for a very compact representa-
tion of coated-cylinder scattering problems. Once a set of
pole locations has been computed by one of the standard
methods noted above, arbitrary scattering problems can be
easily solved via straightforward application of the Section III
formulas.



1008 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 7, JULY 1998

V. SUMMARY

It has been shown that a uniform GTD representation of
the transition-region fields in the vicinity of an impedance
or coated cylinder is available in terms of a novel func-
tion . By means of this function, familiar UTD
transition-region formulas can be employed without recourse
to numerical integration to compute values of the Pekeris
integral. Instead, the required Pekeris-integral values can be
approximated using computed from knowledge of
a limited number of pole locations.

The justification for the new procedure resides in the fact
that within the transition region, rapidly approaches
the Pekeris function as is increased beyond unity. A

becomes more negative, however, the approach of
to occurs more slowly with increasing. Because the
number of terms required for residue-series computation of

increases with , it is desirable that the approxi-
mation of via occur for a value of as
close to unity as possible. On the other hand, larger values of

permit to mimic the behavior of further
into the lit region. The numerical results presented in this paper
were based on a ten-term computation of . The
transition region representation based on was
smoothly joined with the GO representation of the lit-region
fields and with a deep-shadow-region representation having the
form of [10]. Excellent agreement with eigenfunction series
results was observed over a large number of test cases.

The formulation described in Section II is very attractive
from a computational perspective, because roots of (4) are
readily obtained. The formulation described in Section III
requires a degree of effort in order to obtain the roots of (16b),
but imposes less restriction on the pole behavior.
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