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A Curvilinear Coordinate-Based Split-Step
Parabolic Equation Method for
Propagation Predictions over Terrain
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Abstract—Propagation of radiowaves over irregular terrain it is in such regimes that the PE method is expected to play
and in an inhomogeneous atmosphere is solved by the parabolica dominant role. Even where backscattering is important, the
equation method using the split-step Fourier algorithm on a yagits obtained via the PE method prove useful and can be

terrain-conformal mesh. A piecewise continuous coordinate sys- | ted by oth lculati E | iati
tem is generated by the specification of: 1) the terrain profile supplemented by other calculations. For exampie, varations

shape at discrete points and 2) an upper height. The resulting Of the signal strength over scales comparable to wavelength
mesh is conformal to the terrain at the lower boundary and occurring in highly built-up urban areas can be handled by

gradually flattens off at the maximum height. In addition to  statistical means via the Rayleigh fading model [3].
preserving the number of points on any vertical line between the A good introduction to the PE method and its application

terrain and the maximum height from one range step to another, ¢ di tion t th ith th mati
the coordinate transformation used in the paper produces a 0 radiowave propagation together wi € approximations

correction term in the refractive index whose gradient dimin- involved is given in [4]. The method has recently been
ishes with height. As a result, the sampling requirements over applied by several researchers to radiowave propagation in
steep terrain are relaxed when compared to the Beilis—Tappert ducting environments and over terrain [4], [6]-[12]. Of the
transformation. Formulation and results are given both for the 15 schemes available for numerically solving the parabolic
horizontal and vertical polarizations. . - .. . . .
equation, viz. the finite-difference and the split-step Fourier
Index Terms—Nonhomogeneous media, propagation. technique [5], the latter is clearly more efficient in that it allows
much larger height and range step sizes. However, it is more
straightforward to implement various boundary conditions at
. INTRODUCTION the upper heights with the former than it is with the latter. Levy
T is well known that ray bending due to atmospheric inhd7] and Marcus [8] employ the finite-difference technique,
mogeneities and diffraction due to terrain obstacles playvéile Barrios [9] employs the split-step Fourier technique.
dominant role in the design of radar or communication systeigs also possible to use a conformal mapping technique to
for frequencies in the very high frequency (VHF) range arffiansform the terrain section between successive range steps
above [1]. Although there are several techniques for predictififo a flat one and solve it numerically [11]. This approach
propagation in such environments, none seem to offer the co@s introduced by Dozier [13] who applied it to acoustic
putational advantages of the parabolic equation (PE) metHpi@pagation over a rough ocean surface. However, extremely
[2], where one approximates the elliptic operator governing tisgall range steps are needed with the conformal mapping
true wave behavior by a much simpler parabolic operator tH&ehnique making it unattractive to practical problems. In her
permits marching in range. This is especially true in situatiof®¥= model over terrain, Barrios employs the Beilis—Tappert
where path loss is desired over ranges extending up to a feansformation [10], which creates a family of coordinate lines
hundred kilometers and for receiver heights extending up #aat are vertical translations of the terrain profile. As a result,
a few hundred meters. Another advantage of the PE metH@ upper boundary is identical in shape to the terrain profile.
is its ability to accommodate range-dependent refractive indéRe consequence of this transformation is that it introduces an
variations. Of course, the penalty one pays for the Simp|ici@dditi0na| term in the modified refractive index that increases
of the PE method is that it neglects backscattering, whidhearly with height and the rate of this increase is proportional
is important in some specialized situations such as in clutfér the curvature of the terrain profile. From a computational
modeling and radiowave propagation in highly built-up areaBerspective, this terrain generated refractive index term places
However, in many propagation problems, one is concernadd upper limit on the size of the vertical increment that can
with gross variations of the signal strength over scales B€ used in the split-step Fourier technique.
length that are much larger compared to the wavelength andn this paper, we solve the standard parabolic equation
in an inhomogeneous atmosphere and over irregular terrain
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is the reduced field variable aiid ¢, ¢) are the usual spherical
coordinates with origin at the center of the earth. The range
and height variables: and » are related to the spherical
coordinates via the earth-flattening approximatians- a.6
andz = r —a., wherea,. is the radius of the earth. The source
is assumed to be located alofig= 0. The quantitiest, and

Hy are, respectively, the components of the electric and
magnetic fields. Furthermoréy = w, /o0 is the free-space
wavenumber and

m(z, z) = <n + 2 ) 3)

Qe

is the earth-flattened modified refractive index. Given the
starting field atz = 0, (1) is to be solved subject to an
Fig. 1. Propagation over irregular terrain and inhomogeneous atmosphet%pprop”ate boundary condition on the ground. For SmOOtth
varying ground having large radius of curvature relative to
range. A piecewise linear coordinate system is constructé® wavelength of operation, the behavior of the fields on the
by connecting the terrain points by means of straight linggound is approximately governed by the impedance boundary
and generating a family of coordinate lines in the verticgondition? x (7 x E) = —Z,Z,7 x H [14], whereZ, is the
direction that gradually flatten to a Cartesian system at th@rinsic impedance of free-spacg,is the unit normal on the
maximum height. Like the Beilis—Tappert transformation, thierrain surface (see Fig. 1), arif] is the normalized surface
presence of sloping terrain produces a correction term in timpedance. The normalized surface impedance is determined
modified refractive index. However, unlike the former case, tHeom a study of plane wave reflections by the interface. For
terrain generated correction term has a gradient that gradudityrizontal polarization, the reflection coefficient for plane
diminishes with height and vanishes at the upper heightaves incident at low grazing angles is close-té and it
As a consequence, the present transformation relaxes itheatisfactory to treat ground as a perfect electric conductor.
sampling requirements over steep terrain while maintaining &lbwever, a full impedance boundary condition is necessary
of the niceties of the Beilis—Tappert transformation. We presefiot the vertical polarization. The boundary conditions in terms
formulation and results both for the horizontal and verticaf the U variable are
polarizations. While not the subject matter of the present
paper, it is also felt that because the coordinate line flattefi$z, ) = 0, for horizontal polarization 4)
and the mesh degenerates into a Cartesian mesh at the top
boundary, the present transformation will more readily permjy; _ . o
incorporation of any mixed type boundary condition availablg~ +ko(Zs —sin»)U =0 for vertical polarization.  (5)
at a constant height when compared to the Beilis—Tappert
transformation.

Note that thesin 1 term appears in the impedance boundary
Il THEORY condition when expressed in terms of the reduced variable
Fig. 1 shows the geometry of the problem. Given th& but not in terms of the actual field variable. The normal-
position of the transmitter (Tx) and the receiver (Rx), thized surface impedancg, depends on the ground constants
radian frequencyw, the terrain profile, the ground constantge,,, o) and the angle of incidence of the waves with respect
(exg.0g), and the refractive index of the atmosphere, it to the normal on the terrain. In this study, we will takg
is desired to find the loss for the propagation path. The pertain to horizontally propagating plane waves incident
starting point in our formulation is the standard parabolien terrain having a slope angle In this case, the surface
equation given, for example, in [4]. Assuming an’* time impedance becomes
dependence, we consider the standard parabolic equation in a

medium with parameterée, i) P Ve — cosZ v ©)
1 2 c €rc ’
au (x,2) = 9 [2] (z,2) + ikom(x, z) — 1|U(z, 2)
O Zko 0z where ¢, is the complex dielectric constant of the ground
(1) defined as:;. = &4 + iog/we, def €rg + 10
where Equation (1), together with the boundary conditions, consti-
Vrsing e=#o® Ey(r, ) tutes an initial value problem that can be solved numerically
for horizontal polarization by marching along the range variabieto the desired range.
Uz, z) = reinf ., (2) As already indicated, we wish to solve the parabolic equation
e~ 0T Hy(r, 0) by the split-step Fourier technique [2]. For the purpose of

6 . . . . . .
for vertical polarization numerical calculations, the domain must first be made finite
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by limiting it vertically up to some maximum heigltf above

the reference level. It is assumed that the terrain profile shape
is available in a digitized form at several range points along
the propagation path. This is the most practical situation. Some E=¢
coordinate transformation is now required that transforms the :
region above the uneven terrain into a rectangular one so that
one may rigorously implement the split-step Fourier algorithm.
If one employs a Cartesian mesh over the uneven terrain,
as is suggested in [12], one has to resort to nonphysical
approximations such as artificially ignoring field points that
fall below the terrain boundary when marching over sloping
terrain. We will not pursue that approach here as our objective

is to rigorously adapt the split-step algorithm over uneven
Fig. 2. Coordinate transformation.

L L S — (x

(Xj+1 ’Zj+1)

terrain without introducing additional sources of error.

From a computational standpoint, the following features are

desirable of the coordinate transformation. Keeping all of the above features in mind, we propose the

1) One of the coordinate lines must be conformal to tHellowing transformation for; < & < &;41,0 <7 < 70!
terrain so that boundary conditions on the terrain can
be easily imposed without resorting to interpolation/  #(§,m) =z(§) = z; + Aw;(§ — &) (7
extrapolation. Ui n

2) The coordinate transformation must introduce as few & m) = <1 B %) O+ o a
cross terms as possible in the parabolic equation and the (for terrain described by = f(x)) (8)
associated boundary condition. This is so that separation n n
of variable technique could be used in the transformed = <1 - %> [z + Az (€ — &)l + - H
domain. ) ) ) (for piecewise linear terrain) (9)

3) The coordinate transformation must map uniformly
spacgd pomtg along the vertpal in the transform herez = f(z) is the equation describing the terrain. In the
_domaln to ur_uformly sp_aced po_mts along the Ver_t'c%rrain model used here, we join the discrete data between
in the physical domain. Additionally, the verticalg ;. essive ranges by means of straight lines and directly use
distribution of points in the physical domain mustremaifgy The desired coordinate system will map vertical lines into
the same at the right end of a range step and the left &igica| Jines and transform the irregular terrain into a flat
of the next range step irrespective of the slopes of thge Fig. 2 shows the domain segment between two successive
terrain in the two range steps; this is not on!y to perm}tanges(ijHl) on a sloping terrain with angle;. Note
the use of fast Fourier transforms (FFT's) with uniformpat ¢ andy are dimensionless variables. The terrain boundary
sampling, but also to avoid interpolation when using thesrresponds to the map @f = 0, while the upper boundary
field computed at one range step as the input for the_ 77t 5, = .. The left and right ends of the segment are
next range step. The conformal mapping approach génerated by = ¢; and¢ = ¢;,1, respectively. The metrics
[13], for example, suffers from this deficiency. of the transformation within each segment are

4) It is preferable to localize the mesh distortions to the
vicinity of the uneven terrain and make the overall det O n
mesh as close as possible to a Cartesian mesh in ordexrf(g’n) - 3_5(57 n) = Awg; z(&n) = <1 - %)Azj
to reduce the mesh introduced errors in the numerical
scheme. This is a well-understood requirement in the ay(&m) =05 2(&m) = P [H =z = Bz (€ = &)l
finite-difference community. With the split-step tech- (10)
nique, this will generally relax the sampling require-
ments when compared to a uniformly skewed mesh. WeNote that whilex, =, and z, are continuous across the
will demonstrate this later for the transformation adopt%nge step of = 5]._1_17 Ze is discontinuous due to the presence
here. of Az;. The transformation defined by (7) and (9) generates

5) Finally, as an added incentive, it is desirable to make family of coordinate lines) = constant, which gradually

the coordinate line at the upper end (mesh truncatid@atten off at the top with the coordinate lime= 0 being con-
point) horizontal so that one could have the potenti#grmal to the terrain. Such a transformation has the advantage
benefit of incorporating available boundary conditions &f preserving the number of points at any range step as well as
a constant height = H. The benefit of using a nonlocal enabling equidistant mesh points along any vertical line. Fig. 3
boundary condition at = H has already been illustratedshows the distribution of coordinate lines on a typical terrain
with the finite-difference technique (e.g., [8]), but is yeprofile. Notice that the distortions of the coordinate lines near
to be demonstrated with the split-step Fourier transforthe terrain diminish gradually as one approaches the upper
technigue. We will leave this for future exploration. boundary. By contrast, the Beilis—Tappert transformation over
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Because the normal derivative on the ground involves both
9/9¢ andd/dn, the boundary condition for vertical polariza-
tion would involve both of these derivatives. In deriving (17),
we made use of the parabolic equation in (15) to eliminate
ol /8¢ and substitutedn(£,n = 0) = 1 on the terrain. It is
seen that the presence of a sloping ter(ain# 0) results in an
additional termoU/dn in the parabolic equation arif U />
in the boundary condition for vertical polarization. It is to be
noted that the boundary condition in (17) is inhomogeneous
in the sense that the coefficients are functionst.ofrhis is
in contrast to the flat earth case where the coefficients are all

Height {m)

constant.
7 I Presence of the term involving the first partial derivative
201 N 9U/9n on the right-hand side of (15) will not allow a solution
‘ ‘ ‘ ‘ . ‘ . in terms of Fourier transforms. This is because functions of
% 2 4 6 8 10 12 14 16 18 the formsinAn or cos Ay are no longer the eigenfunctions
ange () of the right-hand side operator of (15). To get rid of the first
Fig. 3. Curvilinear mesh on a typical terrain. derivative term, we will employ the trick used in [10] and
define a new field variablé”
a terrain will be of the form V(&,n) =U(E,n)el/ 2oz (@ tanv(l—n/m)*
2(€,m) = An+ flz(€)] (Beilis—Tappert Transformation) §<E<Gn (18)
(11)

which differs from the original field variable through the

for some SC"_""”g c_onstanﬁ. In this case, the OIIStort'f)nsexponential factor. The argument of the exponential function
of the coordinate lines near the terrain boundary will bﬁ

. . - ) ; as been chosen so as to cancel offd@fi@n term. The PE in
carried over indefinitely without change to large heights. qurms of the new field variable will be modified to

coordinate transformation proposed here will meet all of the

. . : " 2

desirable features listed previously, whereas the Beilis—Tappert v —q e . 9 ‘2/ Tgtany +ikoze(m — 1) |V
transformation will meet only the first three. Both of the 9¢ 2koz; On 22,Mo

above transformations will introduce a correction term in the (29)
refractive index that is dependent on the terrain. However, we défQ(S, Y (20)

will see shortly that while the Beilis—Tappert transformation

produces a correction term having a constant gradient witthere Q(¢,#) is the differential operator representing the
height, the one produced by the transformation (9) diminisheght-hand side of (19). For slowly varying refractive index
with height and will vanish at the upper boundary. This wilprofiles, (20) may be solved in an operator form as

have the effect of somewhat relaxing the sampling require-

ments in the split-step Fourier technique, as we will show V(&im) = 9" V(@J’r’”) (21)
later. , , o where the superscripts and + denote values to the left of
Under the transformation (9), the various derivatives b%‘\hd to the right of, respectively, and
come [16] )
o it
U _1oU  x oU w2 Q= [ Qe de 22)
Ox  x¢ 06 zgwe On £=¢
ou 1 90U 13 is the average of the operat@) over the jth range step.
dz  z On (13) Substituting (10) into (22), the averaged operator can be
22U 1 82U obtained as (defining the height increment éat= ¢; as
T2 o 14 by = (H — z)/m0)
_ 1 o2 .
I 1 I . :" _— i —_ 1
The parabolic equation in (1) gets transformed to Q;(n) =ikoxe |:2kghjhj+1 i +m
U  z OU  xe O°U . 1 h;
— =— — 4+ — +ikoxe[m(&,m) — 1)U (15 Z J
9 == oy T 2k O oxe[m(&,m) — 1|JU (15) +5 In {hm} (23)
and the boundary conditions become where
. L ) §it1
gl(f,n = 0) = OéQU(horlzontaI polarization) (16) ™ (n) = /5 5 m(&,n) d¢ (24)
- — Ltanljj 5 L 0 Zn (ZS - Sin I/j) l[ =0 ) - . . i
an 2koz,; On cosv; is the average value of the modified refractive index over the

(atn = 0, vertical polarization) (17) jth range step. Relating the new field at the left and right
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of £ = &4 through (18), the final solution in terms of thefor a maximum propagation angle of L&nd a maximum
function V' is then terrain angle of 39 the left-hand side is approximately

N _ 0.15, which is« 2. The above condition is always satisfied
V(g )= Y gikows (M, —1) gi(zs/2koh;h;11)(97/0n")  for terrain problems that can be handled with the standard
J+1,7 B
J

parabolic equation. Making use of the relation (18) between

-V(&,m] (25) U andV, the simplified boundary condition in terms of the
Lo _ . _ o modified field variablel” is
wherem?,, is the terrain modified, effective refractive index oV
over thejth segment and is given by B + ikozy(§)Zs sec vV = 0.
2
i, =7 + Mol (tan w41 — tanv;) <1 _ ﬂ) ) The metricz, (€) present in the second term varies linearly
2g "o over the jth range stept; < & < &44. It takes a value

(26) of h; at the left end(¢ = ¢;) and h;4, at the right end

It is seen that the effect of the terrain is to: 1) introduce &+1), Which are, respectively, the he_lght Increments at
) o L . e left end and the right end. The quantity can be replaced
extra term in the modified refractive index that is dependen . . .
. o with the average height increment over tlin range step
on the difference of slopes (dimite curvature for want of .. . .
; e have = (h;+h;41)/2 provided that the difference betwegn
better terminology); this term goes to zero at the upper enéd . ave s
i ndh;4. be a small fraction oh?*®, viz.
7 = 1o and 2) a gain (loss) factor for up-slope (down-slope J
terrain. This is in contrast to the Beilis—Tappert transformation 1 Z; + zj
: J J+1
which will produce a terrain modified refractive index of (in [y = hjp1] < 2 (hj +hjy1) = H 2
our notation) (29)

> |Azj|

d* f(x) which suggests that the height of the upper boundary about
- dx? . the average terrain height must be large compared to the
(Beilis—Tappert transformation).  (27)change in terrain height over the range step. In the current

In this case, the terrain introduced refractive index terrlwplementatlons of the split-step algorithm, where no special

increases uniformly with height and the rate of increase featment at the upper boundary is made, the height is often

: : Hhosen very large—well beyond the above stipulation—so that

proportional to the curvature of the terrain. e )
It now remains to define an appropriate Fourier transforfy), due to artificial truncation at the upper end are not
pprop evere. Equation (29) is automatically satisfied most of the

to represent the exponential operator in (25) to complete tﬁr?}e. In practice, one may get by with replacing by >5.

SOIU“Q”' It may_be noted at the outset thatthe terrain _dependzf.ﬂe approximate boundary condition for vertical polarization
term in (26) will place a lower limit on the sampling rate

required to represent the field on any vertical line. subject to (28) and (29) is then
Horizontal polarization with the Dirichlet boundary condi- ov L ikohZ, sec vV = 0. (30)

tion poses no difficulty and we use the usual sine transforms. an
However, vertical polarization with the Robin-type boundary By comparing with the boundary condition over flat ter-

condition deserves special attention. Before we express pagh in [4], we see that the primary effect of sloping ter-
boundary condition in terms of th& function, we will make ain is 1o result in an effective surface impedance equal to

some approximations. _ secv; Z,. For v; = 0 and the surface impedance & =
Because it is not straightforward to incorporate the secong—— /e, Whereas fory; # 0, the effective surface
-rc -rcs 7 ’

derivative term present in the boundary condition (17) into tnﬁlpedanceZS secys — \/m/%_ At this point
split-step algorithm, we will ignore it altogether. To assess ﬂ??should be straigﬁtfo g . :
extent of errors caused by this approximation, we assume
elementary solution of the form

M, =T + An

tAhsforms put forth by Dockery and Kuttler [17] to resultin an
optimized code for vertical polarization. However, we present
a formulation based on continuous Fourier transforms in this
U = ¢~ o jiko( cos B+2sin ) paper. Using complex exponentials, the Fourier transform
relations for vertical polarization can be obtained in a manner
and compare the contribution due to the second derivative tegimilar to that presented in [4] as
to the overall contribution. The second derivative term can be

. . 1 oo [ o—ipn etPn -
ignored provided that V(€ n) =— / { + V(&,p)d
| (&) =5 A oy (&,p) dp
|sin Btanv;| < 2 4§ i (31)

which will be satisfied for V(&) = / (9 — ;)P + (p + ay)e PV (&) dn

tan || max S0 Brmax <K 2 (28) 0 (32)
where . and|v|max are the maximum propagation and the S = 2iq, /Oo Vg, n)e_mjn dn (33)
maximum absolute terrain angles, respectively. As an example, 0
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wherea; = koh3™ sec v;Z5. The above forms presented argate of change of phase is
identical mathematically to those given in [4]. We prefer to

cast the equations in the complex exponential form to enable a9 kohjy1|tanvjyq — tan vy
us to directly use complex FFT routines. The last term present AN | ave

in the inverse transform formula in (31) denotes a surface wave 1 /"0 <1_ Q) d ‘
and may be ignored for frequencies exceeding a few tens of M0 Jo Mo K
MHz [4]. Having defined the necessary Fourier transforms, kohj+1

the solution in (25) can be completed by recognizing that =T 9 | tan vy — tanv;|
/07 [gim] = ¢4 . ¢iem, This is true of each of the < ko A Zmax AN || max
individual terms in (31). def 5 pave

max-

To prevent aliasing, we require by sampling theorem that

] . i ] ] Pmax, AP¥® < 7. From the above we get
To contain the computational domain vertically in the phys-

ical space (to the maximum heiglif) and to bandlimit the Ap < Ao 1 1 (35)
signal in thep space, we use a Hanning window in the =2 Sin Fmax ba1 |1/ max

respective domains. The required Fourier transforms are véw]ere)\ is the wavelenath in free-space. Hence. for shallow
evaluated by means of aN-point complex FFT. There are v 9 pace. '

two factors that will influence sampling of the field in theterrain (small|max), field sampling in the vertical direction is
vertical direction: governed by the maximum propagation angle chosen, whereas

, ) ) over steep terrain, it is governed by the maximum terrain slope
1) ;‘L‘e rr}na?aml{[n: propagation anglé,. with respect o pnq1e A similar analysis performed on the Beilis—Tappert
e horizontal;

. . transformation reveals that
2) the maximum of the absolute terrain slope anglg,.s;

I1l. NUMERICAL RESULTS

this is a consequence of the correction introduced into Aoy < & mi { _ 1 1 }
the modified refractive index due to a variable slope -2 SN Bmax 2tan |1/ max
terrain as evidenced in (26). (Beilis—Tappert transformation)

We choose increments in the transformed coordinates t
be A¢ = 1 = Ap. The phase shift per vertical incremen%
for a plane wave traveling at an anghewith respect to the
horizontal iskyh; sin 4 and may be identified with the Fourier
transform variablev in (31) and (32). Now

0Hence, for terrain-dominated field sampling, Beilis—Tappert
ransformation requires twice as many points in the vertical
direction as the present approach. This is due to the fact that
the terrain introduced phase distortion remains the same at all
heights with Beilis—Tappert transformation in contrast to the
) def ) transformation (9).
Pmax = max {holjsin iy = koAzmaxsin fmax  (34) To better appreciate the simplicity and ease of implementing
the present algorithm, we outline the steps needed to perform
where Az,.. is the maximum vertical increment over thdield computations given the frequency of operation, the initial

entire computational domain. field, digitized terrain datdzy, 2x), &k = 1,---, K, a nominal
From (25) and (26), the additional phadg (or phase range incrementAz, the maximum heigh#, the maximum
distortion) introduced by the uneven terrain is propagation anglg....., the modified refractive index(x, z),
and the ground constants,.;, o).
Mo n 2 1) Assume straight-line interpolation between the given
©j = Koty (banvjs — tanvy) ) <1 - 77_0> : points(xy, 2, ), k = 1---, K. Generate additional points

between(zy, z;) and (zp41, 21+1) to within the range
This phase has a maximum value at the terrain and decreases resolution if the horizontal separation between them is
quadratically to zero at the upper end. It is the rate of change  significantly greater than the desired range resolution

of phase that dictates sampling in the vertical direction. The  Az. Thus, we generate the poirts;, z;),j =1,---,J
rate of change of phase is with J > K such thatr;j;, — z; = Az; = Az. The
total number of range steps equals- 1.
dd, 7 2) Computetany; = (z;41 — 2;)/Az;,5 =1,---,J =1
d_nj = kol (tanvjp, — tanv;) <1 - %) and determingan |z/|JmaX. e
3) EstimateAz,,, from (35) and determine the complex

which vanishes at the upper end= 7,. A very conservative FFT size
estimate for the sampling can be made based omgdrémum —
rate of change of phase. However, because the phase distortion N ~ QIH?X [ > J}

introduced by the transformation decrease with height and goes
to zero at the upper end, we have observed that a somewhat where~ is the nearest modulo-two integer correspond-
less conservative estimate may be made based oavéirage ing the the right-hand side. The constapt= N/2.

rate of change of phase. The absolute value of the averagd) Computeh; = (H — z;)/n,5 = 1,---, J.
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200 T T The first example we consider is that of propagation over a
{ Range Units = km Height Units =m , ] shallow terrain comprised of wedges. A horizontally polarized
Txg 60 R antenna operating at 100 MHz is located at a height of 60

m over a perfectly conducting, hilly terrain whose profile is
shown in the inset in Fig. 4. The PE solution is compared
with a higher order UTD wedge diffraction theory recently
I curvilinear PE ] put forth by Holm [18]. The maximum terrain slope angle is
100 - *  Multiple Wedge Theory . less than 1 and we have chosen to include propagation angles
I ] up to+5°. In this example Az, is limited by the maximum
I : propagation angle. Propagation factor is determined at a range
L A, of 18 km. A refractive index of unity has been chosen for
A - 18 m. Ax - 200 m |  the atmosphere and other parameters for PE marching are
indicated on the figure. An excellent agreement with the
] multiple wedge diffraction theory is seen.
T e We next choose propagation over a steep triangular hill
e e ’30 o e °  having a base angle of around°2{Fig. 5). A horizontally
polarized source is located at zero range and height of 100 m
Fig. 4. Propagation over perfectly conducting wedges. and the field is computed at a range of 15 km. The frequency
of operation is 1 GHz and the hill is about 670 wavelengths
igh. The PE results are compared with a four-ray knife-edge
transforms for horizontal polarization or (31)—(33) forI eory _[19]’ [20], WhiCh accoun_ts for reflec_tions betw_een the
vertical polarization) perform the transform of the ﬁel&ransml_tter_ a_nd hill and the hill and receiver. In_th|s case,
V(¢;,m) at the initial ranget = &;, propagate in free- Alzmax is Illmlteldhto ahvx_/a\_/elengthbby thef rather: hlfgh—terrarl]n
space ovetAz; and get the inverse transform. MultiplyS ope angle. Although it is not obvious from the figure, the

. I . maxima between the two results in the highly oscillatory,
T?/e(gsplatlna;' f:ail?hglt:ewh]rézz:jg E) getl thﬁozirrl:g tfrls,:s shadow region behind the hill differ by less than 2 dB. An
J+1 — Sj+1-

_ : . excellent agreement with the knife-edge diffraction theory is
theESr’IZ\)/\'/ r_arl‘g/e(g’ )|, obtain the propagation factor atseen for all heights up to 460 m. Although this example

6) Make phase corrections to the spatial field obtained Ryems to suggest that we are force_d .to use a §mal| vertical
step 5) by multiplying Withe—7%0325 055 ~1)_|ncrement mcrement. for I_arge_terram angles, it |s_|nterest|ng to note
; and repeat step 5) to exhaust all range steps that practically identical resglts were pptalned when the slope
J P P . g pS- . angle was reduced to 10while maintaining the height of the
Compared to propagation over flat terrain, the primagyiangylar hill constant. It may be noted that the knife-edge
computational burden presented by uneven terrain in @ action results are for a vertical knife edge which has a
split-step algo_nthm is the extra mult_lpllcatlon in step (_3) fOEIope angle of 90 The good agreement between the two is
phase correction. ,Th's extra. pperatlon, of ordeV) ,W'” due to the fact that large propagation angles are not involved in
also be present with the Beilis—Tappert transformation. Tlgﬁe above example at the range of 15 km. Hence, in regions of
computational time with uneven terrain will still be of ordeﬁow propagation angles, a shallower approximation of a steep
O(NlogN) and the overhead introduced by the terrain ig ain should be permissible in the PE modeling. Of course,
not detrimental to the efficiency of the overall algorithmy, o 45 o expect the above argument to be valid very close to

Maintaining all of the nice'_[i_es, the present approa_tch preseﬂlﬁ, knife edge where high-propagation angles will be involved.
an advantage over the Beilis—Tappert transformation in that itNext we consider propagation of a vertically polarized

requires half as many FFT points as the latter. __source over a valley (Fig. 6). The slope angle of each wall is
In what follows, we will present results for the propagation 5 » 4nq the front edge of the valley is located 30 km from
factor 1" or path loss”L for a dipole source of field moment,o 5o rce. The source operates at 100 MHz and is situated on
U,¢, wherel/, is some arbitrary constant having the samg . ground. The ground is characterized gy = 4,0, = 1
. . . . . . - g
d'mef.‘s'ons as the field yanabl@ andzl IS .the Igngth of mS/m, which pertain to very dry soil. Standard atmospheric
the dipole. The propagation factor (which is defined as ”E%ndition has been assumétl = [m — 1] x 106 = 0.118 =

excess signal strength over free-space) for a dipole withiea %herez is in meters). This example was considered by Marcus

| | [ J
6 9 121415 18

Height {m)

| Frequency = 100 MHz

50

Propagation Factor (dB)

5) Using the appropriate transform relationships (i.e., sirp

fier:q rrrom((ejn(in r:ree-spaqelthe dipo!e so_urcehproduces a f_iel ] in his finite-difference approach (IFDG equation). Path loss
V[V]'; ' ur;\ er the paraxia approximation, has a magnitu computed at the center of the valley where our mesh will be
|Ust|/v/zAo at rangex) is most sparsely spaced. In this example, we choose a maximum

PF = 10log(|U|2x\o) propagation angle of about 4Qthis is suggested by observing
the data of [8] deep within the valley) andfe,,,x = 6.4 m
and is related to path loss via ~ 2)\¢ (actually good results were obtained whan,,,, = 9
m was used as suggested by (35). We included finer sampling
PL = 20log <47r_x> _ PF. to show a smoother variation of field in the plots). The range
Ao increment is once agaithz = 200 m. It is seen the results
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Fig. 6. Path loss over a valley for vertical polarization.

compare very well with those of Marcus who us&d,, .. = 1
m andAxz = 1 m within the valley. This example also brings
out clearly the computational advantages of the split—st%;i)
algorithm over the finite-difference approach. We have also ob- : :
served, in this example, that the results obtained with and Wit:e_sults. A very good agreement with measured data is seen. At
out the surface waves in (31) were within 0.2 dB of each oth

We have also validated our numerical results with measu

results available in the literature. Meeks [21] presented adt

200

100

-40

Curvilinear PE (M = 0.057 2)
. Measured Results

< e
‘.‘A-.—ﬁ—vfr-rsf;%ﬂ.’? P |

-3¢ -20 -10 o
Propagation Factor (dB)

Fig. 8. Propagation factor versus height for Beiseker site.

e

compared at a range of 6.6 km. The comparison is shown
in Fig. 7. Knife-edge diffraction effects are clearly seen in

deep shadow region in both the computed and measured

pis rather short range of 6.6 km and low frequency of 110.6
ﬁé{ﬂ-(z, refractive index variations will have a minimal effect
9 the results. This was actually verified by settimg= 1

on VHF measurements at low altitudes over hilly foreste@dd repeating the PE computations. No noticeable change in

terrain taken in Gardner, MA. The frequency of operation wd

ge results was obtained.

110.6 MHz with a ring of horizontally polarized loop antennas We show a final comparison with measured results, this
placed one half-wavelength above a conducting ground pldfg€ at a higher frequency and a much longer range. Propa-
located 4.6 m above the local terrain. The terrain profile @ation measurements were made by Massachusetts Institute of
shown in the inset in Fig. 7. From the terrain data providedechnology (MIT) Lincoln Laboratory, Cambridge, MA, over
we compute the maximum slope angle as°7@hoosing a several sites in Canada. We show comparison of our results
maximum propagation angle of 10we obtain a maximum for the Beiseker area in Alberta, Canada. Measurements were
height increment of\ 2. = 5.8 M~ 2. A range increment carried out with a horizontally polarized transmitting antenna
of Az = 100 m (the range resolution of the digitized dat@perating at 435 MHz and located at a height of 18.3 m
was 133 m) is picked. A standard atmosphere is chosen &dyove the local terrain. The receiver was placed at a range
the environmental data. Propagation factor is calculated amid54.5 km. The terrain profile is shown in the inset in Fig. 8.
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The maximum slope angle for the terrain in this example measured results shown in Figs. 7 and 8. The author would
3.4. We cho0s€ef3,,.. = 5° to yield Az« = 3.9 m. The also like to thank H. V. Hitney of NRaD, San Diego, CA, for
range increment chosen isx = 200 m. Two computations providing encouragement in carrying out the present work.
were performed with the PE formulation: one using a standard
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