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A Curvilinear Coordinate-Based Split-Step
Parabolic Equation Method for

Propagation Predictions over Terrain
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Abstract—Propagation of radiowaves over irregular terrain
and in an inhomogeneous atmosphere is solved by the parabolic
equation method using the split-step Fourier algorithm on a
terrain-conformal mesh. A piecewise continuous coordinate sys-
tem is generated by the specification of: 1) the terrain profile
shape at discrete points and 2) an upper height. The resulting
mesh is conformal to the terrain at the lower boundary and
gradually flattens off at the maximum height. In addition to
preserving the number of points on any vertical line between the
terrain and the maximum height from one range step to another,
the coordinate transformation used in the paper produces a
correction term in the refractive index whose gradient dimin-
ishes with height. As a result, the sampling requirements over
steep terrain are relaxed when compared to the Beilis–Tappert
transformation. Formulation and results are given both for the
horizontal and vertical polarizations.

Index Terms—Nonhomogeneous media, propagation.

I. INTRODUCTION

I T is well known that ray bending due to atmospheric inho-
mogeneities and diffraction due to terrain obstacles play a

dominant role in the design of radar or communication systems
for frequencies in the very high frequency (VHF) range and
above [1]. Although there are several techniques for predicting
propagation in such environments, none seem to offer the com-
putational advantages of the parabolic equation (PE) method
[2], where one approximates the elliptic operator governing the
true wave behavior by a much simpler parabolic operator that
permits marching in range. This is especially true in situations
where path loss is desired over ranges extending up to a few
hundred kilometers and for receiver heights extending up to
a few hundred meters. Another advantage of the PE method
is its ability to accommodate range-dependent refractive index
variations. Of course, the penalty one pays for the simplicity
of the PE method is that it neglects backscattering, which
is important in some specialized situations such as in clutter
modeling and radiowave propagation in highly built-up areas.
However, in many propagation problems, one is concerned
with gross variations of the signal strength over scales of
length that are much larger compared to the wavelength and
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it is in such regimes that the PE method is expected to play
a dominant role. Even where backscattering is important, the
results obtained via the PE method prove useful and can be
supplemented by other calculations. For example, variations
of the signal strength over scales comparable to wavelength
occurring in highly built-up urban areas can be handled by
statistical means via the Rayleigh fading model [3].

A good introduction to the PE method and its application
to radiowave propagation together with the approximations
involved is given in [4]. The method has recently been
applied by several researchers to radiowave propagation in
ducting environments and over terrain [4], [6]–[12]. Of the
two schemes available for numerically solving the parabolic
equation, viz. the finite-difference and the split-step Fourier
technique [5], the latter is clearly more efficient in that it allows
much larger height and range step sizes. However, it is more
straightforward to implement various boundary conditions at
the upper heights with the former than it is with the latter. Levy
[7] and Marcus [8] employ the finite-difference technique,
while Barrios [9] employs the split-step Fourier technique.
It is also possible to use a conformal mapping technique to
transform the terrain section between successive range steps
into a flat one and solve it numerically [11]. This approach
was introduced by Dozier [13] who applied it to acoustic
propagation over a rough ocean surface. However, extremely
small range steps are needed with the conformal mapping
technique making it unattractive to practical problems. In her
PE model over terrain, Barrios employs the Beilis–Tappert
transformation [10], which creates a family of coordinate lines
that are vertical translations of the terrain profile. As a result,
the upper boundary is identical in shape to the terrain profile.
The consequence of this transformation is that it introduces an
additional term in the modified refractive index that increases
linearly with height and the rate of this increase is proportional
to the curvature of the terrain profile. From a computational
perspective, this terrain generated refractive index term places
an upper limit on the size of the vertical increment that can
be used in the split-step Fourier technique.

In this paper, we solve the standard parabolic equation
in an inhomogeneous atmosphere and over irregular terrain
by adapting the split-step Fourier technique to a numerically
generated mesh. The coordinate transformation to be employed
in this paper has previously been applied successfully with
the finite-difference technique [15]. The terrain profile data
is assumed to be given only at discrete points along the
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Fig. 1. Propagation over irregular terrain and inhomogeneous atmosphere.

range. A piecewise linear coordinate system is constructed
by connecting the terrain points by means of straight lines
and generating a family of coordinate lines in the vertical
direction that gradually flatten to a Cartesian system at the
maximum height. Like the Beilis–Tappert transformation, the
presence of sloping terrain produces a correction term in the
modified refractive index. However, unlike the former case, the
terrain generated correction term has a gradient that gradually
diminishes with height and vanishes at the upper height.
As a consequence, the present transformation relaxes the
sampling requirements over steep terrain while maintaining all
of the niceties of the Beilis–Tappert transformation. We present
formulation and results both for the horizontal and vertical
polarizations. While not the subject matter of the present
paper, it is also felt that because the coordinate line flattens
and the mesh degenerates into a Cartesian mesh at the top
boundary, the present transformation will more readily permit
incorporation of any mixed type boundary condition available
at a constant height when compared to the Beilis–Tappert
transformation.

II. THEORY

Fig. 1 shows the geometry of the problem. Given the
position of the transmitter (Tx) and the receiver (Rx), the
radian frequency , the terrain profile, the ground constants

, and the refractive index of the atmosphere, it
is desired to find the loss for the propagation path. The
starting point in our formulation is the standard parabolic
equation given, for example, in [4]. Assuming an time
dependence, we consider the standard parabolic equation in a
medium with parameters

(1)

where

for horizontal polarization

for vertical polarization

(2)

is the reduced field variable and are the usual spherical
coordinates with origin at the center of the earth. The range
and height variables and are related to the spherical
coordinates via the earth-flattening approximations
and , where is the radius of the earth. The source
is assumed to be located along . The quantities and

are, respectively, the components of the electric and
magnetic fields. Furthermore, is the free-space
wavenumber and

(3)

is the earth-flattened modified refractive index. Given the
starting field at , (1) is to be solved subject to an
appropriate boundary condition on the ground. For smoothly
varying ground having large radius of curvature relative to
the wavelength of operation, the behavior of the fields on the
ground is approximately governed by the impedance boundary
condition [14], where is the
intrinsic impedance of free-space,is the unit normal on the
terrain surface (see Fig. 1), and is the normalized surface
impedance. The normalized surface impedance is determined
from a study of plane wave reflections by the interface. For
horizontal polarization, the reflection coefficient for plane
waves incident at low grazing angles is close to1 and it
is satisfactory to treat ground as a perfect electric conductor.
However, a full impedance boundary condition is necessary
for the vertical polarization. The boundary conditions in terms
of the variable are

for horizontal polarization (4)

for vertical polarization. (5)

Note that the term appears in the impedance boundary
condition when expressed in terms of the reduced variable

but not in terms of the actual field variable. The normal-
ized surface impedance depends on the ground constants

and the angle of incidence of the waves with respect
to the normal on the terrain. In this study, we will take
to pertain to horizontally propagating plane waves incident
on terrain having a slope angle. In this case, the surface
impedance becomes

(6)

where is the complex dielectric constant of the ground

defined as .
Equation (1), together with the boundary conditions, consti-

tutes an initial value problem that can be solved numerically
by marching along the range variableto the desired range.
As already indicated, we wish to solve the parabolic equation
by the split-step Fourier technique [2]. For the purpose of
numerical calculations, the domain must first be made finite
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by limiting it vertically up to some maximum height above
the reference level. It is assumed that the terrain profile shape
is available in a digitized form at several range points along
the propagation path. This is the most practical situation. Some
coordinate transformation is now required that transforms the
region above the uneven terrain into a rectangular one so that
one may rigorously implement the split-step Fourier algorithm.
If one employs a Cartesian mesh over the uneven terrain,
as is suggested in [12], one has to resort to nonphysical
approximations such as artificially ignoring field points that
fall below the terrain boundary when marching over sloping
terrain. We will not pursue that approach here as our objective
is to rigorously adapt the split-step algorithm over uneven
terrain without introducing additional sources of error.

From a computational standpoint, the following features are
desirable of the coordinate transformation.

1) One of the coordinate lines must be conformal to the
terrain so that boundary conditions on the terrain can
be easily imposed without resorting to interpolation/
extrapolation.

2) The coordinate transformation must introduce as few
cross terms as possible in the parabolic equation and the
associated boundary condition. This is so that separation
of variable technique could be used in the transformed
domain.

3) The coordinate transformation must map uniformly
spaced points along the vertical in the transformed
domain to uniformly spaced points along the vertical
in the physical domain. Additionally, the vertical
distribution of points in the physical domain must remain
the same at the right end of a range step and the left end
of the next range step irrespective of the slopes of the
terrain in the two range steps; this is not only to permit
the use of fast Fourier transforms (FFT’s) with uniform
sampling, but also to avoid interpolation when using the
field computed at one range step as the input for the
next range step. The conformal mapping approach of
[13], for example, suffers from this deficiency.

4) It is preferable to localize the mesh distortions to the
vicinity of the uneven terrain and make the overall
mesh as close as possible to a Cartesian mesh in order
to reduce the mesh introduced errors in the numerical
scheme. This is a well-understood requirement in the
finite-difference community. With the split-step tech-
nique, this will generally relax the sampling require-
ments when compared to a uniformly skewed mesh. We
will demonstrate this later for the transformation adopted
here.

5) Finally, as an added incentive, it is desirable to make
the coordinate line at the upper end (mesh truncation
point) horizontal so that one could have the potential
benefit of incorporating available boundary conditions at
a constant height . The benefit of using a nonlocal
boundary condition at has already been illustrated
with the finite-difference technique (e.g., [8]), but is yet
to be demonstrated with the split-step Fourier transform
technique. We will leave this for future exploration.

Fig. 2. Coordinate transformation.

Keeping all of the above features in mind, we propose the
following transformation for :

(7)

(for terrain described by (8)

(for piecewise linear terrain) (9)

where is the equation describing the terrain. In the
terrain model used here, we join the discrete data between
successive ranges by means of straight lines and directly use
(9). The desired coordinate system will map vertical lines into
vertical lines and transform the irregular terrain into a flat
one. Fig. 2 shows the domain segment between two successive
ranges on a sloping terrain with angle . Note
that and are dimensionless variables. The terrain boundary
corresponds to the map of , while the upper boundary

to . The left and right ends of the segment are
generated by and , respectively. The metrics
of the transformation within each segment are

(10)

Note that while and are continuous across the
range step at , is discontinuous due to the presence
of . The transformation defined by (7) and (9) generates
a family of coordinate lines constant, which gradually
flatten off at the top with the coordinate line being con-
formal to the terrain. Such a transformation has the advantage
of preserving the number of points at any range step as well as
enabling equidistant mesh points along any vertical line. Fig. 3
shows the distribution of coordinate lines on a typical terrain
profile. Notice that the distortions of the coordinate lines near
the terrain diminish gradually as one approaches the upper
boundary. By contrast, the Beilis–Tappert transformation over
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Fig. 3. Curvilinear mesh on a typical terrain.

a terrain will be of the form

(Beilis–Tappert Transformation)
(11)

for some scaling constant . In this case, the distortions
of the coordinate lines near the terrain boundary will be
carried over indefinitely without change to large heights. The
coordinate transformation proposed here will meet all of the
desirable features listed previously, whereas the Beilis–Tappert
transformation will meet only the first three. Both of the
above transformations will introduce a correction term in the
refractive index that is dependent on the terrain. However, we
will see shortly that while the Beilis–Tappert transformation
produces a correction term having a constant gradient with
height, the one produced by the transformation (9) diminishes
with height and will vanish at the upper boundary. This will
have the effect of somewhat relaxing the sampling require-
ments in the split-step Fourier technique, as we will show
later.

Under the transformation (9), the various derivatives be-
come [16]

(12)

(13)

(14)

The parabolic equation in (1) gets transformed to

(15)

and the boundary conditions become

(horizontal polarization) (16)

at vertical polarization) (17)

Because the normal derivative on the ground involves both
and , the boundary condition for vertical polariza-

tion would involve both of these derivatives. In deriving (17),
we made use of the parabolic equation in (15) to eliminate

and substituted on the terrain. It is
seen that the presence of a sloping terrain results in an
additional term in the parabolic equation and
in the boundary condition for vertical polarization. It is to be
noted that the boundary condition in (17) is inhomogeneous
in the sense that the coefficients are functions of. This is
in contrast to the flat earth case where the coefficients are all
constant.

Presence of the term involving the first partial derivative
on the right-hand side of (15) will not allow a solution

in terms of Fourier transforms. This is because functions of
the form or are no longer the eigenfunctions
of the right-hand side operator of (15). To get rid of the first
derivative term, we will employ the trick used in [10] and
define a new field variable

(18)

which differs from the original field variable through the
exponential factor. The argument of the exponential function
has been chosen so as to cancel off the term. The PE in
terms of the new field variable will be modified to

(19)

(20)

where is the differential operator representing the
right-hand side of (19). For slowly varying refractive index
profiles, (20) may be solved in an operator form as

(21)

where the superscripts and denote values to the left of
and to the right of, respectively, and

(22)

is the average of the operator over the th range step.
Substituting (10) into (22), the averaged operator can be
obtained as (defining the height increment at as

(23)

where

(24)

is the average value of the modified refractive index over the
th range step. Relating the new field at the left and right
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of through (18), the final solution in terms of the
function is then

(25)

where is the terrain modified, effective refractive index
over the th segment and is given by

(26)

It is seen that the effect of the terrain is to: 1) introduce an
extra term in the modified refractive index that is dependent
on the difference of slopes (orfinite curvature, for want of
better terminology); this term goes to zero at the upper end

and 2) a gain (loss) factor for up-slope (down-slope)
terrain. This is in contrast to the Beilis–Tappert transformation
which will produce a terrain modified refractive index of (in
our notation)

(Beilis–Tappert transformation). (27)

In this case, the terrain introduced refractive index term
increases uniformly with height and the rate of increase is
proportional to the curvature of the terrain.

It now remains to define an appropriate Fourier transform
to represent the exponential operator in (25) to complete the
solution. It may be noted at the outset that the terrain dependent
term in (26) will place a lower limit on the sampling rate
required to represent the field on any vertical line.

Horizontal polarization with the Dirichlet boundary condi-
tion poses no difficulty and we use the usual sine transforms.
However, vertical polarization with the Robin-type boundary
condition deserves special attention. Before we express the
boundary condition in terms of the function, we will make
some approximations.

Because it is not straightforward to incorporate the second
derivative term present in the boundary condition (17) into the
split-step algorithm, we will ignore it altogether. To assess the
extent of errors caused by this approximation, we assume an
elementary solution of the form

and compare the contribution due to the second derivative term
to the overall contribution. The second derivative term can be
ignored provided that

which will be satisfied for

(28)

where and are the maximum propagation and the
maximum absolute terrain angles, respectively. As an example,

for a maximum propagation angle of 15and a maximum
terrain angle of 30, the left-hand side is approximately
0.15, which is 2. The above condition is always satisfied
for terrain problems that can be handled with the standard
parabolic equation. Making use of the relation (18) between

and , the simplified boundary condition in terms of the
modified field variable is

The metric present in the second term varies linearly
over the th range step . It takes a value
of at the left end and at the right end

, which are, respectively, the height increments at
the left end and the right end. The quantity can be replaced
with the average height increment over theth range step

provided that the difference between
and be a small fraction of , viz.

(29)

which suggests that the height of the upper boundary about
the average terrain height must be large compared to the
change in terrain height over the range step. In the current
implementations of the split-step algorithm, where no special
treatment at the upper boundary is made, the height is often
chosen very large—well beyond the above stipulation—so that
errors due to artificial truncation at the upper end are not
severe. Equation (29) is automatically satisfied most of the
time. In practice, one may get by with replacing by 5.
The approximate boundary condition for vertical polarization
subject to (28) and (29) is then

(30)

By comparing with the boundary condition over flat ter-
rain in [4], we see that the primary effect of sloping ter-
rain is to result in an effective surface impedance equal to

. For and the surface impedance is
, whereas for , the effective surface

impedance . At this point
it should be straightforward to use the discrete mixed Fourier
transforms put forth by Dockery and Kuttler [17] to result in an
optimized code for vertical polarization. However, we present
a formulation based on continuous Fourier transforms in this
paper. Using complex exponentials, the Fourier transform
relations for vertical polarization can be obtained in a manner
similar to that presented in [4] as

(31)

(32)

(33)
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where . The above forms presented are
identical mathematically to those given in [4]. We prefer to
cast the equations in the complex exponential form to enable
us to directly use complex FFT routines. The last term present
in the inverse transform formula in (31) denotes a surface wave
and may be ignored for frequencies exceeding a few tens of
MHz [4]. Having defined the necessary Fourier transforms,
the solution in (25) can be completed by recognizing that

. This is true of each of the
individual terms in (31).

III. N UMERICAL RESULTS

To contain the computational domain vertically in the phys-
ical space (to the maximum height) and to bandlimit the
signal in the space, we use a Hanning window in the
respective domains. The required Fourier transforms are all
evaluated by means of an -point complex FFT. There are
two factors that will influence sampling of the field in the
vertical direction:

1) the maximum propagation angle with respect to
the horizontal;

2) the maximum of the absolute terrain slope angle ;
this is a consequence of the correction introduced into
the modified refractive index due to a variable slope
terrain as evidenced in (26).

We choose increments in the transformed coordinates to
be . The phase shift per vertical increment
for a plane wave traveling at an anglewith respect to the
horizontal is and may be identified with the Fourier
transform variable in (31) and (32). Now

(34)

where is the maximum vertical increment over the
entire computational domain.

From (25) and (26), the additional phase (or phase
distortion) introduced by the uneven terrain is

This phase has a maximum value at the terrain and decreases
quadratically to zero at the upper end. It is the rate of change
of phase that dictates sampling in the vertical direction. The
rate of change of phase is

which vanishes at the upper end . A very conservative
estimate for the sampling can be made based on themaximum
rate of change of phase. However, because the phase distortion
introduced by the transformation decrease with height and goes
to zero at the upper end, we have observed that a somewhat
less conservative estimate may be made based on theaverage
rate of change of phase. The absolute value of the average

rate of change of phase is

To prevent aliasing, we require by sampling theorem that
. From the above we get

(35)

where is the wavelength in free-space. Hence, for shallow
terrain (small ), field sampling in the vertical direction is
governed by the maximum propagation angle chosen, whereas
over steep terrain, it is governed by the maximum terrain slope
angle. A similar analysis performed on the Beilis–Tappert
transformation reveals that

(Beilis–Tappert transformation)

Hence, for terrain-dominated field sampling, Beilis–Tappert
transformation requires twice as many points in the vertical
direction as the present approach. This is due to the fact that
the terrain introduced phase distortion remains the same at all
heights with Beilis–Tappert transformation in contrast to the
transformation (9).

To better appreciate the simplicity and ease of implementing
the present algorithm, we outline the steps needed to perform
field computations given the frequency of operation, the initial
field, digitized terrain data , a nominal
range increment , the maximum height , the maximum
propagation angle , the modified refractive index ,
and the ground constants .

1) Assume straight-line interpolation between the given
points . Generate additional points
between and to within the range
resolution if the horizontal separation between them is
significantly greater than the desired range resolution

. Thus, we generate the points
with such that . The
total number of range steps equals .

2) Compute
and determine .

3) Estimate from (35) and determine the complex
FFT size

where is the nearest modulo-two integer correspond-
ing the the right-hand side. The constant .

4) Compute .



JANASWAMY: PARABOLIC EQUATION METHOD FOR PROPAGATION PREDICTIONS OVER TERRAIN 1095

Fig. 4. Propagation over perfectly conducting wedges.

5) Using the appropriate transform relationships (i.e., sine
transforms for horizontal polarization or (31)–(33) for
vertical polarization) perform the transform of the field

at the initial range , propagate in free-
space over and get the inverse transform. Multiply
the spatial field with to get the true field

at the new range . Noting that
, obtain the propagation factor at

the new range.
6) Make phase corrections to the spatial field obtained in

step 5) by multiplying with . Increment
and repeat step 5) to exhaust all range steps.

Compared to propagation over flat terrain, the primary
computational burden presented by uneven terrain in the
split-step algorithm is the extra multiplication in step 6) for
phase correction. This extra operation, of order will
also be present with the Beilis–Tappert transformation. The
computational time with uneven terrain will still be of order

and the overhead introduced by the terrain is
not detrimental to the efficiency of the overall algorithm.
Maintaining all of the niceties, the present approach presents
an advantage over the Beilis–Tappert transformation in that it
requires half as many FFT points as the latter.

In what follows, we will present results for the propagation
factor or path loss for a dipole source of field moment

, where is some arbitrary constant having the same
dimensions as the field variable and is the length of
the dipole. The propagation factor (which is defined as the
excess signal strength over free-space) for a dipole with aunit-
field moment(in free-space the dipole source produces a field,
which, under the paraxial approximation, has a magnitude

at range ) is

and is related to path loss via

The first example we consider is that of propagation over a
shallow terrain comprised of wedges. A horizontally polarized
antenna operating at 100 MHz is located at a height of 60
m over a perfectly conducting, hilly terrain whose profile is
shown in the inset in Fig. 4. The PE solution is compared
with a higher order UTD wedge diffraction theory recently
put forth by Holm [18]. The maximum terrain slope angle is
less than 1 and we have chosen to include propagation angles
up to 5 . In this example, is limited by the maximum
propagation angle. Propagation factor is determined at a range
of 18 km. A refractive index of unity has been chosen for
the atmosphere and other parameters for PE marching are
indicated on the figure. An excellent agreement with the
multiple wedge diffraction theory is seen.

We next choose propagation over a steep triangular hill
having a base angle of around 27(Fig. 5). A horizontally
polarized source is located at zero range and height of 100 m
and the field is computed at a range of 15 km. The frequency
of operation is 1 GHz and the hill is about 670 wavelengths
high. The PE results are compared with a four-ray knife-edge
theory [19], [20], which accounts for reflections between the
transmitter and hill and the hill and receiver. In this case,

is limited to a wavelength by the rather high-terrain
slope angle. Although it is not obvious from the figure, the
maxima between the two results in the highly oscillatory,
shadow region behind the hill differ by less than 2 dB. An
excellent agreement with the knife-edge diffraction theory is
seen for all heights up to 460 m. Although this example
seems to suggest that we are forced to use a small vertical
increment for large terrain angles, it is interesting to note
that practically identical results were obtained when the slope
angle was reduced to 10, while maintaining the height of the
triangular hill constant. It may be noted that the knife-edge
diffraction results are for a vertical knife edge which has a
slope angle of 90! The good agreement between the two is
due to the fact that large propagation angles are not involved in
the above example at the range of 15 km. Hence, in regions of
low propagation angles, a shallower approximation of a steep
terrain should be permissible in the PE modeling. Of course,
we do not expect the above argument to be valid very close to
the knife edge where high-propagation angles will be involved.

Next, we consider propagation of a vertically polarized
source over a valley (Fig. 6). The slope angle of each wall is

5.7 and the front edge of the valley is located 30 km from
the source. The source operates at 100 MHz and is situated on
the ground. The ground is characterized by
mS/m, which pertain to very dry soil. Standard atmospheric
condition has been assumed ,
where is in meters). This example was considered by Marcus
[8] in his finite-difference approach (IFDG equation). Path loss
is computed at the center of the valley where our mesh will be
most sparsely spaced. In this example, we choose a maximum
propagation angle of about 10(this is suggested by observing
the data of [8] deep within the valley) and a m

(actually good results were obtained when
m was used as suggested by (35). We included finer sampling
to show a smoother variation of field in the plots). The range
increment is once again m. It is seen the results



1096 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 7, JULY 1998

Fig. 5. Propagation over a steep triangular hill.

Fig. 6. Path loss over a valley for vertical polarization.

compare very well with those of Marcus who used
m and m within the valley. This example also brings
out clearly the computational advantages of the split-step
algorithm over the finite-difference approach. We have also ob-
served, in this example, that the results obtained with and with-
out the surface waves in (31) were within 0.2 dB of each other.

We have also validated our numerical results with measured
results available in the literature. Meeks [21] presented data
on VHF measurements at low altitudes over hilly forested
terrain taken in Gardner, MA. The frequency of operation was
110.6 MHz with a ring of horizontally polarized loop antennas
placed one half-wavelength above a conducting ground plane
located 4.6 m above the local terrain. The terrain profile is
shown in the inset in Fig. 7. From the terrain data provided,
we compute the maximum slope angle as 7.4. Choosing a
maximum propagation angle of 10, we obtain a maximum
height increment of m . A range increment
of m (the range resolution of the digitized data
was 133 m) is picked. A standard atmosphere is chosen for
the environmental data. Propagation factor is calculated and

Fig. 7. Propagation factor versus height for Natty Pond site.

Fig. 8. Propagation factor versus height for Beiseker site.

compared at a range of 6.6 km. The comparison is shown
in Fig. 7. Knife-edge diffraction effects are clearly seen in
the deep shadow region in both the computed and measured
results. A very good agreement with measured data is seen. At
this rather short range of 6.6 km and low frequency of 110.6
MHz, refractive index variations will have a minimal effect
on the results. This was actually verified by setting
and repeating the PE computations. No noticeable change in
the results was obtained.

We show a final comparison with measured results, this
time at a higher frequency and a much longer range. Propa-
gation measurements were made by Massachusetts Institute of
Technology (MIT) Lincoln Laboratory, Cambridge, MA, over
several sites in Canada. We show comparison of our results
for the Beiseker area in Alberta, Canada. Measurements were
carried out with a horizontally polarized transmitting antenna
operating at 435 MHz and located at a height of 18.3 m
above the local terrain. The receiver was placed at a range
of 54.5 km. The terrain profile is shown in the inset in Fig. 8.
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The maximum slope angle for the terrain in this example is
3.4 . We choose to yield m. The
range increment chosen is m. Two computations
were performed with the PE formulation: one using a standard
atmosphere having and a second using super-
refractive atmosphere having . The propagation
factor at this long range is expected to be sensitive to the
refractive index profile. This is clearly seen in Fig. 8. The
measured results are generally in good agreement with both
of these results, although a better agreement is obtained
with the latter. The differences seen between the numerical
and measured results are attributed to the lack of proper
environmental data.

IV. CONCLUSION

The standard parabolic equation was transformed and solved
using the split-step algorithm in a curvilinear coordinate sys-
tem to permit accurate modeling over terrain. The curvilinear
mesh is very easy to generate, dictated only by the digitized
data of the terrain and a maximum height for field computation.
The coordinate lines are conformal to the terrain at the lower
boundary and gradually flatten at the upper end. The present
transformation has the advantage of preserving the number of
points on any vertical line between the terrain and a constant
upper height. It produces a correction term to the refractive
index whose gradient diminishes at the upper end. Formulation
was given both for the horizontal and vertical polarizations and
the numerical results were validated by showing comparisons
with other approaches and measured results.

It was shown that the field sampling in the vertical direction
depends not only on the maximum propagation angle, but
also on the maximum slope angle of the terrain. A higher
slope angle would, in general, require a finer mesh in the
vertical direction. However, compared to the Beilis–Tappert
transformation, a larger vertical increment can be used with the
present transformation. It is also felt that at least over regions
reachable by low propagation angles, one may approximate
a steep terrain by a reasonably shallow terrain and still get
meaningful results.

Because the curvilinear mesh degenerates into a rectangular
one at the upper end, it is felt that it would be easier to imple-
ment more sophisticated boundary conditions at the upper end
in conjunction with the split-step algorithm using the present
transformation than possible with previous transformations.
Although yet to be demonstrated, this could have the potential
of better containing the computational domain in the vertical
direction than presently possible. This will be investigated in
the future.
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