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Accurate Solution of Square Scatterer
as Benchmark for Validation of

Electromagnetic Modeling of Plate Structures
Branko M. Kolunďzija, Member, IEEE

Abstract—An infinitesimally thin-square scatterer, of size���,
excited normally by an incident plane wave, which is polarized
along a scatterer edge, is analyzed. The accurate solution of its
current distribution is found in the form of double series of basis
functions, which automatically satisfy the continuity equation at
plate edges and include the edge effect. The coefficients that
multiply basis functions are determined starting from the electric
field integral equation by using the Galerkin method. The solution
obtained for the order of approximation n = 8 is adopted
as a benchmark. The corresponding coefficients are tabulated
and graphs of such obtained current distribution are given.
The solution adopted as a benchmark is applied for comparison
of rooftop basis functions and polynomial entire-domain basis
functions. The relative error of the mean absolute value of current
deviation is used as an error metric.

Index Terms—Electromagnetic scattering, moment methods.

I. INTRODUCTION

T HEORETICALLY speaking, any plate structure (metallic
antenna, scatterer, or passive circuit) in vacuum can be

analyzed by the method of moments [1]. The efficiency of the
analysis depends very much on the complexity of the structure
on the one side and on the choice of the integral equation,
basis functions and test procedure on the other side. Depending
on these choices, many different specific methods have been
developed in the last three decades [2]–[14].

Most often, the accuracy of these methods is subjectively
discussed by comparing the theoretical and the experimental
results. In order to treat the error quantitatively two things are
needed: 1) an accurate benchmark to which we may apply
the metric and 2) a metric to measure the error. To the best
knowledge of the author, such quantitative treatment of the
error in electromagnetic modeling of plates was absent.

In this paper, current distribution over an infinitesimally
thin-square scatterer of size is chosen as a benchmark.
The scatterer is excited normally by an incident plane wave,
which is polarized along a scatterer edge. The relative error of
the mean absolute value of current deviation is chosen as an
error metric. These choices are explained in the second section.

The main problem in the paper is to find sufficiently
accurate solution for current distribution over the scatterer.
Each current component is approximated by double series
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of basis functions multiplied by unknown coefficients. Basis
functions are adopted in the special form, which automatically
satisfies the continuity equation at plate edges and includes
the edge effect. The development of basis functions applied
is presented in the third section. Unknown coefficients are
determined by the Galerkin method. The solution adopted as a
benchmark (coefficients determined and such obtained current
distribution) is given in the fourth section.

The solution adopted as a benchmark is used for comparing
rooftop basis functions and polynomial entire-domain basis
functions, as shown in the fifth section.

II. CHOICE OF PLATE-STRUCTURE

BENCHMARK AND ERROR METRIC

The main goal of electromagnetic modeling of plate struc-
tures based on the method of moments is to determine the
current distribution. When the current distribution is known, all
other quantities of interest can be easily calculated. Therefore,
the error metric should be directly connected with the current
distribution.

Most often, structures analyzed contain edges. Current dis-
tribution exhibits quasi-singular behavior in the vicinity of
edges. Such behavior is more pronounced in the vicinity of
a free plate edge than in the vicinity of an edge which is
common for two or more plates. Hence, the structure used
for comparison of analysis methods should contain free edges.
The simplest such structure is a square-plate scatterer. The
scatterer should be sufficiently large in order that accuracy
of the analysis can be investigated in the large range of
the number of unknowns. Hence, the structure used for the
comparison of analysis methods is adopted in the form of
infinitesimally thin-square scatterer of size , excited by
normally incident plane wave. The effective value of plane
wave electric field intensity is V/m.

At the first glance, it seems that the accuracy of the
solution for current distribution of square-plate scatterer can
be estimated on the base of root mean square (rms) value
of the current deviation. The corresponding relative error is
evaluated as

% (1)

where is an approximate, is an accurate value of surface
current density vector over the scatterer, andis the scatterer
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Fig. 1. Sketch of a square scatterer.

surface. However, this error metric cannot be used. Namely,
it is known that the surface current component parallel to the
free plate edge tends to infinity as a reciprocal value of the
square root of the distance from the edge [15, p. 386]. It
means that tends to infinity as a reciprocal value of
the distance from the edge. The integral of this function over
the surface, i.e., the denominator in the above expression, is
infinitely large. In a similar way it is found that the numerator
in the above expression is also infinitely large. The finite value
of the numerator and the denominator can be obtained if mean
absolute value of current deviation is used instead of its rms
value. The corresponding relative error is evaluated as

% (2)

This expression can be applied either to the total current or to
the current components.

The use of the above error metric requires a knowledge of
the accurate solution. However, there is no exact solution for
current distribution over the square-plate scatterer. Hence, only
the approximate solution, which is estimated to be sufficiently
close to the accurate solution, can be used as an accurate
solution. In this paper, such a solution is obtained by using so-
phisticated basis functions, as shown in the following section.

III. A CCURATE SOLUTION OF SQUARE SCATTERER

Let us consider an infinitesimally thin-square-plate scatterer
in a vacuum, as shown in Fig. 1. The scatterer is situated in a
local coordinate system. Note that plate edges coincide with
coordinate lines and . The scatterer is excited
by a uniform plane wave incident normally on the scatterer
surface. The wave is polarized in the direction of theaxis,
i.e., the electric field vector is in the direction of the axis
and the magnetic field vector is in the direction of the
axis. As a result, surface currents (and charges) are induced
over the scatterer.

Surface current density vector has two components, each
of them depending on two surface coordinates; that is

(3)

Note that -current component is equal to zero at edges
and -current component is equal to zero at edges

; that is

(4)

Having in mind the symmetry of the problem considered it is
easily concluded that-current component is an odd function
according to the local and -coordinate axis; that is

(5)

Similarly, it is concluded that-current component is an even
function according to the local and -coordinate axis; that is

(6)

As mentioned in the previous section, there is no exact solu-
tion for current distribution over the scatterer. The approximate
solution is found by using the method of moments. According
to this method each current component is approximated by a
double series of known basis functions multiplied by unknown
coefficients which should be determined. Very often, these
basis functions are adopted in the form of subdomain basis
functions (e.g., rooftop basis functions [7], triangle doublets
[9], etc.). However, entire-domain basis functions enable more
efficient analysis than subdomain basis functions [11]–[14].
Hence, the starting current distribution is adopted in the form
of double series of power functions

(7)

where and are unknown coefficients. Note that these
expansions do not satisfy either continuity equations (4) or
symmetry equations (5) and (6). Symmetry equations are
easily satisfied by omitting terms not satisfying the symmetry
equations from the above expansions. Continuity equations (4)
can be implemented into above expansions by applying the
technique given in [11] and [13]. After simple manipulations
above, expansions are written in the form

(8)

(9)

Symbol (2) below the summation signs means that sums
should be taken with a step of two.

Expansions (8) and (9) are very simple and flexible, but
they cannot approximate edge effect properly. As mentioned
in the previous section, the surface current component parallel
to the free plate edge tends to the infinity as a reciprocal value
of the square root of the distance from the edge. In order that
such a behavior can be handled (8) is divided by and
(9) is divided by . (Note that such edge condition
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Fig. 2. Benchmark solution for thes-current component along thep axis of
the scatterer (real and imaginary parts) obtained for different orders of current
approximation.

is successfully applied in the analysis of two-dimensional
problems, e.g., [16].) Final expansions are written in the form

(10)

(11)

Unknown coefficients in the above expansions are deter-
mined by using the Galerkin method. Special care is devoted
to the evaluation of potential, field, and impedance integrals
occurring in application of the Galerkin method.

IV. BENCHMARK SOLUTION:
COEFFICIENTS AND GRAPHS

It is obvious that the approximate solution for current
distribution over square scatterer depends on the choice of
orders of current approximations along each coordinate,

, , and . Having in mind that the scatterer length
along the -coordinate line is equal to the scatterer length
along the -coordinate line, all these orders can be adopted
to be equal, i.e., . It can be
shown that similar results are obtained if transverse orders are
adopted to be less by one than longitudinal orders, i.e.,

(12)

Such a choice is used in this paper. In what follows,will
be referred to as the order of the current approximation.
Numerical results given in this and following section show
that such choice enable good convergence of the results with
increasing the order of current approximation.

Fig. 3. Benchmark solution for thes-current component along thes axis of
the scatterer (real and imaginary parts) obtained for different orders of current
approximation.

TABLE I
COEFFICIENTS OFp-CURRENT COMPONENT GIVEN BY (10) FOR n = 8

Let us consider how the approximate solution changes
with increasing the order of current approximation. Fig. 2
shows the real and the imaginary parts of the-current
component along-coordinate line. The current is normalized
with magnetic field intensity of incident plane wave. The
results are given for and . Fig. 3 shows the same
results, but along the-coordinate line. The fast convergence
of the results with increasing the order of approximation
can be observed from the figure. Further, it is seen that the
results obtained for are very close to those obtained for

. The results obtained for and are between
the results obtained for and . The results obtained for

and coincide almost with the results obtained for
. Hence, the results obtained for and are

not shown in the figure.
The question is, “Which order of current approximation

should be chosen for the benchmark solution?” On the one
hand, the benchmark solution should be much more accurate
than the solutions obtained by standard methods. On the other
hand, the number of coefficients used in expansions (10) and
(11) should be as low as possible so that the benchmark solu-
tion can be easily evaluated. According to these requests, order
of current approximation is adopted for benchmark
solution. Tables I and II provide corresponding coefficients of
-current component [given by (10)] and-current component

[given by (11)], all multiplied by 10.
Figs. 4 and 5 show distribution of the magnitude, real part,

and imaginary part of and -current components (normalized
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TABLE II
COEFFICIENTS OFs-CURRENT COMPONENT GIVEN BY (11) FOR n = 8

Fig. 4. Benchmark solution(n = 8) for the p-current component over the
scatterer. (a) Magnitude. (b) Real part. (c) Imaginary part.

Fig. 5. Benchmark solution(n = 8) for the s-current component over the
scatterer. (a) Magnitude. (b) Real part. (c) Imaginary part.

with magnetic field intensity of incident plane wave) over the
scatterer. Since the-current component is infinite along edges

this component is shown only for .
Since the -current component is infinite along edges ,
this component is shown only for .

V. COMPARISON OF ROOFTOP AND

POLYNOMIAL BASIS FUNCTIONS

The solution adopted as a benchmark is applied for the com-
parison of polynomial entire-domain basis functions (given
by (8) and (9), but with symmetry not taken into account)
and rooftop basis functions. All results (except the benchmark
solution) are obtained by the program WIPL at IBM AT-486
on 33 MHz [14].

In the case when rooftop basis functions are used, the
scatterer is uniformly divided into patches. (The patches are
squares of equal size.) The number of patches along one
scatterer side is designated by. It is easy to show that the
number of unknowns corresponding to the order of polyno-

TABLE III
THE NUMBER OF UNKNOWNS N CORRESPONDING TO THEORDER OF

POLYNOMIAL APPROXIMATION n. (THE SAME RELATION EXISTS BETWEEN

THE NUMBER OF ROOFTOPBASIS FUNCTIONS AND THE NUMBER

OF CORRESPONDINGPATCHES ALONG THE SCATTERER SIDE)

Fig. 6. Rooftop solution(n = 8) for magnitude of (a)p-current component
and (b)s-current component over the scatterer.

Fig. 7. Rooftop and benchmark solutions(n = 8) for s-current component
along thep-axis (real and imaginary parts).

mial approximation is equal to the number of rooftop basis
functions if the number of patches along one scatterer side is
also . The relation between and is given in Table III.

Fig. 6 shows magnitude of and -current component over
the scatterer, obtained with rooftop basis functions for

. Fig. 7 shows magnitude of-component along-
coordinate axis obtained with rooftop basis functions for

. When these graphs are compared with Figs. 2, 4,
and 5 it can be concluded that rooftop basis functions cannot
easily follow fast changes of currents, which is particularly
pronounced in the transversal direction (i.e., direction normal
to the current flow). This can be explained by two facts.
First, current changes in the transversal direction are much
more pronounced than current changes in the longitudinal
direction. Second, piecewise constant approximation used in
the transversal direction is much poorer than piecewise linear
approximation used in longitudinal direction.
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Fig. 8. Polynomial and benchmark solutions(n = 8) for s-current compo-
nent along thep-axis (real and imaginary parts).

Fig. 9. Relative error of approximation fors-current component versus the
order of approximation. The relative error is evaluated for benchmark solutions
(n < 8), polynomial solutions, and rooftop solutions.

Fig. 8 shows magnitude of-component along-coordinate
axis, obtained with polynomial basis functions for

. Corresponding three-dimensional graphs for
current distribution are omitted because they are very similar
to the graphs shown in Figs. 4 and 5. Having this in mind
and comparing Fig. 8 with Fig. 2, it can be concluded that
polynomial basis functions enable very accurate approximation
of the current, except very close to the scatterer edges. Besides
that, it can be concluded that polynomial basis functions enable
more efficient approximation than rooftop basis functions. In
order to obtain quantitative measure of efficiency of these
functions, let us apply error metric given by (2).

Fig. 9 shows relative error of approximations for-current
component versus the order of approximation. The relative

Fig. 10. Relative error of approximation forp-current component versus the
order of approximation. The relative error is evaluated for benchmark solutions
(n < 8), polynomial solution, and rooftop solutions.

Fig. 11. CPU time used for polynomial and rooftop analysis versus the order
of approximation.

error is evaluated for benchmark solutions (for ), polyno-
mial solutions, and rooftop solutions. Fig. 10 shows the same
as Fig. 9 but for -current component. (Since the-current
component is much greater than the-current component,
relative error of approximation for the total current is almost
the same as the relative error of approximation for-current
component.) It can be seen from these figures that for the
same accuracy required the rooftop solution needs few times
greater order of approximation than the polynomial solution
and the polynomial solution needs few times greater order of
approximation than the benchmark solution.

Fig. 11 shows central processing unit (CPU) time used
for analysis versus the order of approximation. Only
curves for polynomial and rooftop solutions are given. It
is seen that for the same order of approximation rooftop
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TABLE IV
ORDER OF APPROXIMATION n, NUMBER OF UNKNOWNS N , AND

CPU TIME USED IN THE ANALYSIS BASED ON POLYNOMIAL

AND ROOFTOPBASIS FUNCTIONS. REQUIRED RELATIVE ERROR FOR

s-CURRENT COMPONENT IS LESSTHAN E = 20% AND E = 10%

TABLE V
ORDER OF APPROXIMATION n, NUMBER OF UNKNOWNS N AND

CPU TIME USED IN THE ANALYSIS, BASED ON POLYNOMIAL

AND ROOFTOPBASIS FUNCTIONS. REQUIRED RELATIVE ERROR FOR

p-CURRENT COMPONENT IS LESSTHAN E = 50% AND E = 30%

solution needs much more CPU time than the polynomial
solution.

Starting from Figs. 9, 10, and 11 and Table III it is possible
to determine the number of unknowns and CPU time of
analysis needed for accuracy required. Table IV gives order
of approximation , number of unknowns , and CPU time
used in the analysis if required relative error for-current
component is less than % and %. (Only data
for polynomial and rooftop solutions are given.) Table V gives
the same data as Table IV, but for-current component and the
required relative error is less than % and %.
It is seen from the table that rooftop solution needs five to
ten more unknowns and 20–500 more CPU time than the
polynomial solution for the same accuracy required.

VI. CONCLUSION

The accurate solution of current distribution over square
scatterer is found in the form of a double series of basis
functions automatically satisfying the continuity equation at
plate edges and including the edge effect. It is shown that
such a solution converges very fast with increasing the order
of approximation. The solution obtained for the order of
approximation is adopted as a benchmark. Namely,
this solution is enough accurate and consists of not too many
basis functions. (The total number of basis functions used for
both current components is 28.)

The solution adopted as a benchmark is used for comparison
of rooftop basis functions and polynomial entire-domain basis
functions. The numerical results show that in the case of square
scatterer the polynomial approximation is much more efficient
than that by rooftop basis functions. Particularly, the following
cases are considered: relative error for-current component
should be less than % and % and relative
error for -current component should be less than %
and %. In these cases, the rooftop solution needs five
to ten more unknowns and 20–500 more CPU time than the
polynomial solution. The numerical results also show that in
the case considered the efficiency of the analysis performed

by polynomial entire-domain basis functions can be further
significantly improved by inclusion the edge conditions.

Finally, it should be noted that an overall validation of
numerical methods for electromagnetic modeling of plate
structures cannot be based on one benchmark solution. Hence,
in the process of such validation, the benchmark solution given
in this paper should be combined with other benchmarks that
can be found in the open literature.
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