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Abstract—This paper presents a novel full-wave analysis of the
radio waves that are excited from a dipole antenna located in the
trunk layer and propagate inside a four-layered forest medium.
The dyadic Green’s functions for the four-layered geometry are
applied first to derive the integral expression of the electric fields.
The closed form of the electric fields is then obtained by using the
quasi-static approximation, saddle-point technique, and branch-
cut integrations in the complex plane and, hence, expressed in
terms of direct waves, multiple reflected waves, and lateral waves.
Two kinds of images, i.e., the quasi-dynamic and complex images,
are considered in the integration in the complex plane. Among
those waves excited by a dipole antenna in the four-layered
medium, it is shown theoretically and numerically that the lateral
wave along the upper-side air-canopy interface plays a role of
dominant modes. Propagation mechanism of other lateral waves
due to the air-canopy, canopy-trunk, and trunk-ground interfaces
is also discussed and analyzed so as to gain an insight into the
wave characteristics. Transmission losses of the lateral waves are
calculated numerically.

Index Terms—Antenna radiation, dyadic Green’s function, in-
homogeneous stratified media, radio propagation terrain factors,
radio wave propagation.

I. INTRODUCTION

FOREST foliage and other vegetation significantly restrict
the communication range when the radio waves propagate

through the vegetation. Quantitively detailed knowledge of the
radio wave propagation mechanism and radio transmission loss
is essential for designing the communication link. It is also
useful to assess the effects of the forest on the digital-spectrum
of radio communication systems.

To investigate the radio attenuation due to the forest envi-
ronment, a semi-infinitely extended vegetation above a semi-
infinite ground [1]–[6] and a foliage layer between a semi-
infinite free-space and semi-infinite ground [7]–[9] had been
used earlier for the sake of mathematical simplicity. Recently,
a four-layered geometry (as shown in Fig. 1) has been widely
adopted as a typical forest model and commonly used in the
analysis of the transmission loss of radio waves propagating
through the forest [10]–[14].
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Fig. 1. Geometry of the problem.

In this geometry, the first region (layer I) is the semi-infinite
free-space. The second region (layer II) represents the forest
canopy, while the third region (layer III) models the trunk
layer of the forest. The last region (layer IV) is the semi-infinite
ground plane. This model was proposed in 1983 by Cavalcante
et al. [10], analyzed by Lian [11] and by Li and Jiao [12],
both in 1986, and used by Seker and Schneider [13] in 1987
and by Seker [14] in 1989. The model has been adopted for
analyzing very high frequency (VHF) and ultrahigh frequency
(UHF) radio waves propagation through and scattering by the
forest foliage by Li [15]. In this paper, it is assumed as in
the work by Cavalcanteet al. [10] that all the layers are
isotropic and homogeneous. To solve the problem, the full-
wave theory via the spectral domain dyadic Green’s function
technique is applied because of: 1) the guaranteed accuracy
and good exponential convergence; 2) the spatial coordinate
flexibility by means of the dyadic Green’s function; and 3) an
arbitrary current distribution in the isotropic and/or anisotropic
media.

As the distance between the transmitter and the receiver is
very long, the radio wave propagation through the stratified
forest is characterized by the lateral wave that mainly prop-
agates upside along the air-canopy interface. The extensively
detailed investigation and comprehensive discussion on the
mechanism, property, and derivation of lateral waves can be
found in the specialized monograph written by King, Owens
and Wu [16]. Other investigations relevant to the lateral waves
in the planar geometry can also be found from the literature
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such as those by Wu and King, i.e., [17], [18], Pan [19], and
Dunn [20].

For the short distance, however, such a propagation is
dominated by the direct wave and modified by the several hop-
reflected waves. In this paper, the direct and reflected fields
radiated from the real dipole antenna and its images (including
the quasi-dynamic images and complex images) in the four-
layer stratified model are derived in closed form. Also, the
lateral waves propagating along the interfaces I, II, and III
are obtained and expressed in closed form. Both horizontal
and vertical polarizations of the dipole are considered. For
the communications inside the forest, the distance between
transmitter and receiver is much larger than the wavelength so
that the fields in the stratified structure are described by only
the lateral wave on the air side along the air-canopy interface.
Transmission losses of the waves are also computed by using
the field configuration developed.

II. THE INTEGRAL EQUATION

A. Solution in Vector Form

The model considered here is shown in Fig. 1. Layer 3
extending from to , represents a medium
of tree trunks that has a permittivity , a conductivity ,
and a permeability . Layer 2, extending from to

, represents a medium of tree crowns (canopy)
with dielectric parameters and . The region

(or layer 1) corresponds to semi-infinite free-space
with parameters and . The region (or layer 4)
denotes a (nonperfectly) conducting flat earth with parameters

, and .
The electric dipole with an inclination anglewith respect

to the boundary plane between layers is located in the third
layer (medium 3), as shown in Fig. 1, and the observation
point is also located in the third layer (medium 3). The
electromagnetic fields are assumed to have a time dependence
of . The parameters of medium or
) are generally expressed as, , and . Thus, the wave

number satisfies . The magnetic
permeability of each layer is assumed to be equal to the
permeability in free-space.

The current distribution of an electric dipole with an incli-
nation angle with respect to the ground plane, as shown in
Fig. 1, may be expressed as

(1)

where is the height of the dipole (subsequently we
will use to replace the source point ) and and
are the horizontal and vertical dipole moments, respectively.
Using the dyadic Green’s function published recently by Li
et al. [21] for the four-layered planar geometry, we derive
the integral solution of the radiative fields as follows for the

regions 1)

(2a)

and 2) ,

(2b)

where ( and ), the coefficients
, , and of dyadic Green’s functions for the

planar four-layered media are expressed by Liet al. [21] and
will not be given here for the sake of saving space and the
superscripts and denote the regions where
and in the layer III.

In (2a) and (b), the symmetry of the expression with respect
to the field and source points,, and has been used. Also

(3)

have been employed in the integration. The vector wave
functions in explicit form are given by

(4a)
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(4b)

B. Component of the Fields

Equation (2) represents in vector form the radiated field due
to the dipole antenna and, therefore, it consists of full com-
ponents of the electric field. However, only thecomponents
of (2a) and (b) are relatively important, not only because the
vertical receiver is frequently used in the measurement, but
also because the length of the paper is limited. Therefore, we
shall consider only the component of the fields subsequently.
The other components can be obtained and evaluated in a
similar fashion.

Substituting the coefficients of the scattering dyadic Green’s
functions in [21] into (2) and taking the component of
cylindrical vector wave functions we have

(5)

where

(6a)

(6b)

(6c)

In (6), , , and are the reflection coefficients for
vertical polarized waves given below:

(7a)

(7b)

(7c)

The integrals of components consist of two terms that are
proportional to the vertical dipole moment or the horizontal
dipole moment , respectively. Since

(8)

so the Bessel functions of and need to be
transformed to the Hankel functions and

in order to calculate conveniently the integral (5). The
components of the radiative electric field excited by the
horizontal and vertical moments can be obtained from

(9)

To derive the far-zone field in closed form, we use the
asymptotic form of the Hankel functions expressed by

(10a)

(10b)

The large argument condition is almost always satisfied in
this case under consideration. In fact, as to be discussed later
on, this integral is dominated by the values at the pole points
where (for the lateral wave along upper side of
the air-canopy interface), (for the lateral wave along upper
side of the canopy-trunk interface), (for the direct wave
and multireflected waves), and (for the lateral wave along
upper side of the trunk-ground interface). In this paper, the
frequency used here is about 100 MHz or above. Therefore,
the term or above.
As the transmitter–receiver distance is very large (at least the
thickness of the forest layer, i.e., 20 m), is about 41.88,
which is very much greater than one.

The denominator in the formulas (5) and (9) can be ex-
pressed using: 1) the Taylor expansion and 2) the binomial
expansion together with 1) in following forms:

(11)

For the sake of convenience, we separate the fieldinto
two parts and due to the contributions of horizontal
and vertical dipole moments, respectively. Using the complex
transformation , (9) can be written as

(12a)

(12b)

where

(13a)
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Fig. 2. The branch-cut (BC) integrations and the steepest descent contour
(SDC) in complex� plane. The BC’s and SDC together with the original
path�0 form a closed loop for which the residue is zero since the integrand
function is analytical within the loop.

(13b)

in (13) is the integral contour shown in [22, p. 454,
Fig. 15-4]. Equations (13a) and (b) can be integrated by means
of the saddle-point evaluation and branch-cut evaluations.

III. QUASI-DYNAMIC IMAGES: QUASI-STATIC

APPROACH AND SADDLE-POINT METHOD

In this section, we will consider the radiated fields in the
near-field region first. So the contribution of direct waves due
to the real dipole antenna and the contributions of the reflected
waves due to its images in the four-layered dielectric medium
will be found. In the near zone, the field proportional to
is the dominant wave, thus, we will conduct thesaddle-point
evaluation to obtain all the images from the integral.

To obtain the solution of the integral in (12), (13) must be
evaluated first and there is no straightforward way. Examining
the denominator in (11), we found [22] that there are three
poles corresponding to and ) because

in (5), together with (6) and (7), is
not a single-valued function of , but is. Consider the
enclosed loop in Fig. 2. Then, it is found that the residue
of the enclosed integral is zero since the integrand function
within the enclosed region is analytical. Hence, the integral in
(13) consists of contributions from the steepest descent path
and three branch cuts around the three poles.

To evaluate the integral along the steepest descent contour,
the saddle-point technique is a direct method. However, the
condition of the saddle-point technique (i.e., ) or the
condition of the Hankel functions in far zone must hold. As
shown earlier, the condition is almost always satisfied for the
case considered in the paper.

Even so, we still desire to obtain a very accurate result
by including all the contributions (although some are little)
into the solution. To improve the accuracy of the solution, the
integral evaluation should be modified by the quasi-static ap-
proximation. According to the conclusion drawn previously by
Chowet al. [23] and by Aksun and Mittra [24] for the analysis
of microstrip antennas, quasi-static approximation together
with saddle-point technique produces the quasi-dynamic (or
quasi-static) images. These quasi-dynamic images contribute
to the dominant field distribution in the near zone.

A. Quasi-Static Approximation

Quasi-static approach approximates the Sommerfeld integral
by exponential forms as . The quasi-static fields
contributed by the quasi-dynamic images are defined in the
range where the distance between receiver and transmitter
is much smaller than the free-space wavelength. Therefore,
subtraction of these quasi-static terms from the Sommerfeld
identity makes the remaining integrands decay faster. The
asymptotic terms of the reflection coefficients in (7)
then reduce to

(14a)

(14b)

(14c)

Thus, the integrals are rewritten as follows:

(15)

Since the integrals and can be obtained
from and by simply exchanging the position
of and , only one set of the formulas in (13) is rewritten
here in (15) to save space.

B. Direct and Multireflected Waves

In this paper, the direct wave due to the real dipole antenna
and the reflected waves due to its dipole images are of interest.
As shown in Fig. 2, we will first carry out the saddle-point
integral evaluation along the steepest descent paths.

It is assumed that the horizontal distanceis so large that
the saddle point can be shown as

where
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and depending upon the propagation (via reflection) paths
takes the form of one of the four definitions of , , ,
and , as given by (17). In Fig. 2, the point on the
complex plane is assumed. However, it should be pointed
out that many saddle- points have been
considered.

Generally, is nonzero for the higher order reflected
waves. Consider the integral path along , which is the
steepest descent path through (see Fig. 2 for the path). If

is large enough, can be assumed to be nearly zero. By
using the integral formula from the saddle-point method, it
is found that and are relatively smaller than

and . The asymptotic field components
and in (12) are obtained as follows:

(16a)

(16b)

where

(17a)

(17b)

Fig. 3. Consideration of iteration convergence for the direct and multire-
flected waves.

From this consideration, it is seen that both and are
real numbers and should therefore be located on the real axis
of the complex plane. Both and polarizations of the dipole
have been taken into account in (16). The field components

and can be obtained in a similar fashion. It has
exactly the same form as (A.1) in the appendix except that
the observation and source locations must be changed from

to .

C. Convergence Consideration

Numerical results demonstrate that the direct wave is still
the major contribution to the overall guided waves, i.e., the
direct and multireflected waves. However, the reflected waves
play an important role as well in the overall guided waves and
cannot definitely be neglected.

The convergence of the above iteration for direct wave and
multireflected waves is examined numerically to demonstrate
the contribution of the multireflected waves. Fig. 3 shows the
transmission loss of the direct and multireflected waves at
a frequency of 100 MHz against the horizontal distance
ranging from 0.1 to 10 km. Two cases are considered where
the iteration truncation numbers () are 40 and 50. It is seen
that to use and as truncation numbers
actually gives the same results. Therefore, in the numerical
computation, we considered the iteration up to , which
is, in fact, the minimum truncation number for the iteration
with a relative error of 0.877%. The formula of transmission
loss concerned is given later.

IV. L ATERAL WAVES: BRANCH-CUT INTEGRALS

As shown earlier in (7), there are three branch points ,
, and (as illustrated in Fig. 2) correspond-

ing to the lateral waves propagating along the air–canopy,
canopy–trunk, and ground–trunk interfaces, respectively. Let

Thus, the branch points are located, respectively, at
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Since (representing the free-space) is smaller than unity
and is larger than unity, the branch cut at plays an
important role in the evaluation of the integration while the
branch point has little effect on the radiowave propagation
in the guide structure. is sometimes larger than unity and
sometimes smaller than unity, depending upon the forest type.
If is smaller than unity, the branch cut at will contribute
significantly (otherwise, very litte) to the total far field.

A. Lateral Wave Along Air–Canopy Interface

The lateral wave comes from the integration along the
branch cuts around the point . The following integral
needs to be evaluated:

(18a)

(18b)

where

(19)

To analytically evaluate the integrals (19), we expand the
integration function about and keep the first-order
terms of both phase and amplitude functions. Since the ma-
jor contribution to the integral comes from the immediate
neighborhood of , we have

(20)

where

(21a)

(21b)

(21c)

(21d)

(21e)

(21f)

In (21), the reflection coefficients around the point
is no longer those given in (7) wherein is arbitrary. They
are the specific values corresponding to as given by

At about , we have

(22)

So (20) becomes

(23)

Since the time-dependence is utilized, we therefore let

(24)

so that we further have

(25a)

(25b)

It is noted that when the integral is evaluated fromto ,
the value of should change from to zero.

Thus, near , (23) may be approximated by

(26)

Since the exponential factor in (18) can be approximated by

(27)

we can express (18) as

(28a)
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(28b)

Using the integral

we finally get

(29a)

(29b)

Substituting (29) back to (12), we finally obtained the
expression of the lateral wave that propagates along the upper
air-canopy interface. It is given by

(30a)

(30b)

B. Lateral Wave Along Canopy–Trunk Interface

In a similar fashion, we can obtain the lateral wave ex-
pressions contributed by both the horizontal and vertical
polarization moments. They are provided as follows:

(31a)

(31b)

where

(32a)

(32b)

The reflection coefficient is given by

(33)

C. Lateral Wave Along Ground–Trunk Interface

The expressions of the lateral wave propagating along the
ground–trunk interface are derived and given below:

(34a)

(34b)

where

(35)
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Fig. 4. Consideration of iteration convergence for three-interface lateral
waves.

The reflection coefficients are correspondingly given by

(36a)

(36b)

D. Convergence Consideration

Similar to that of the direct and multireflected waves, the
convergence of the lateral waves along the three interfaces is
also examined. The lateral waves at an operating frequency
of 100 MHz are computed within the range of 0.1–10 km, as
shown in Fig. 4, where the iteration is truncated at numbers
of and , respectively. It is found that the first six
terms (i.e., ) have led to an accuracy of less than 10%
relative error. The iteration of the lateral waves converges quite
rapidly.

V. COMPLEX IMAGES: LEAST-SQUARES PRONY’S METHOD

A. Remaining Integral

Quasi-dynamic images contributed dominant field in the
near-radiating zone. However, to employ these images only to
represent the field in the near-radiating region is not accurate
enough. To improve the accuracy, the Prony’s method [25]
provides the supplementary contributions due to the complex
images.

For the fields in near zone, the lateral waves propagating
along the three interfaces can be ignored. Thus, the remaining
field in (9) after extracting the contributions due to the quasi-
dynamic images becomes

(37)

where

(38a)

(38b)

(38c)

B. Least-Squares Prony’s Method

To calculate the remaining integral, as given above, the
least-squares Prony’s method provides an efficient way [24]
although numerical evaluation is also a choice; however, its
speed is relatively slower, as discussed by [26].

The least-squares Prony’s method approximates a complex
function of real argument to a series of complex exponents
[25]. To do so, a conformal mapping given by

(39)

is normally applied. This mapping transforms the complex
variable into a real variable
in the parameter function in (39). The choice of in the
plane depends upon the behavior of the integrand in (37). It
has been tested that is usually taken as 15 although the
choice of such as five and ten is quite arbitrary [23].

Taking the least squares of the following function:

(40)

we may obtain the coefficients and where the number
of the sets of the coefficients is taken as three or larger.

Therefore, the function can be approximated to

(41)

where

(42a)

(42b)

The asymptotic field components and in (12)
due to the complex images are obtained as follows:

(43a)

(43b)

where

(44)
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TABLE I
DIELECTRIC PARAMETERS OF THETYPICAL FOUR-LAYERED FOREST MODEL

The fields in the region are obtainable by
simply interchanging the roles of and .

It is found numerically that the contribution due to the com-
plex images is very much smaller as compared with those of
the quasi-dynamic images and the lateral waves along the three
interfaces. Therefore, this contribution is not included in the
computation although the method for accounting the complex
images is provided for both understanding and possible future
usage.

VI. TRANSMISSION LOSS DUE TO FOREST

Total field due to the quasi-dynamic images and the complex
images is the sum of the following two contributions, i.e.,

(45)

where

(46a)

(46b)

Each of the terms in the right-hand side of (46) has already
been given in order by (16), (30), (31), (34), and (43),
respectively.

To illustrate the radio wave attenuation due to the forest,
we adopt the following dielectric parameters in Table I for the
canopy and trunk layers and ground. It is pointed out that these
typical parameters are employed for the convenience of future
comparison between the computed results and the existing
data published elsewhere. For various forest environments
such as average forest, dense forest, and rain forest, the
dielectric parameters differ from one set to another. Many
other parameters can also be used for the comparison [13]
once they are recorded in the realistic experiment.

The formula used in the computation of the transmission
loss is given by

(47)

where is the operating frequency in gigahertz and is the
field in the absence of the forest. To accurately compute this
field, the effects of the ground must be taken into account.
In this paper, this field is calculated from (16) where the
permittivities of the canopy and trunk layers are made equal
to those in free-space, i.e., . In the following
computations, it is assumed that the parameters tabulated

F. ig. 5. Transmission loss of direct and multireflected waves against horizon-
tal distance at frequencies of 100 MHz, 500 MHz, and 3 GHz.

Fig. 6. Transmission loss of three-interface lateral waves against horizontal
distance at frequencies of 100 MHz, 500 MHz, and 3 GHz.

in Table I are utilized and m, m, and
.

To show the effect of the canopy and trunk layers, the
transmission losses of the direct and multireflected waves are
computed within the range of 0.1–10 km at frequencies of 100
MHz, 500 MHz, and 3 GHz. The results are plotted in Fig. 5. It
is evident in Fig. 5 that the loss becomes large as the operating
frequency increases. Also, it is seen that the attenuation is
almost a linearly increasing function of horizontal distance. It
becomes too high for the receiver to receive its signal as the
transmitter and the receiver are separated at a distance of 5
km or longer.

The lateral waves along the three interfaces are also com-
puted numerically. As shown earlier in Fig. 4, the computation
converges fast and only six terms are needed to achieve a
relative error of 10 %. Fig. 6 depicts the transmission loss
variation against the horizontal distance at a frequency of
100 MHz, 500 MHz, and 3 GHz. Numerical computation
demonstrates that the lateral wave propagating along the
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upper side of the air-canopy interface dominates the overall
contributions of the three-interface lateral waves when the
horizontal distance is large. The lateral waves along the
canopy-trunk interface and the trunk-ground interface occupy
a very small percentage of the overall contribution, and
can, hence, be ignored. A conclusion similar to that of the
direct and multireflected waves can be drawn for the three-
interface lateral waves, that is, the transmission loss increases
with the operating frequency at a known distanceor with
the horizontal distance at a given frequency. A different
observation is that the transmission loss of the lateral waves
varies slower than that of the direct and reflected waves.

To gain an insight into the contributions due to individual
groups of waves to the total fields, Fig. 7 illustrates the
transmission losses of: 1) the overall waves; 2) the direct and
multireflected waves; and 2) the three-interface lateral waves
at frequencies of 100 MHz, 500 MHz, and 3 GHz. It is obvious
in Fig. 7 that the direct and multihop reflected waves dominate
the overall electric fields in the near zone where the horizontal
distance is small, say, about 3 km for the waves at 100 MHz,
about 4 km for the waves at 500 MHz, and about 5 km for
the waves at 3 GHz. However, the lateral waves, in fact, the
lateral wave along the upper side of the air–canopy interface,
plays an important role in contributing the overall waves as
the horizontal distance becomes large, for instance, larger than
3 km for the waves at 100 MHz, about 4 km for the waves at
500 MHz, and about 5 km for the waves at 3 GHz.

To demonstrate the variation of transmission loss with
respect to the operating frequency ranging from 100 MHz
to 3 GHz, Fig. 8 depicts such configurations at horizontal
distances of 0.5, 1, and 5 km, respectively. It is evident
that the transmission loss is an increasing function of the
operating frequency. Also, it is obvious that the transmission
loss of the direct and reflected waves fluctuates intensely with
the frequency; but such a fluctuation for the lateral waves
becomes faint with the frequency although existing. Generally,
the conclusion drawn from the theoretical analysis here is
almost the same as that from the experimental observations
[27]. However, the direct comparison with the experimental
data in [27] is impossible so far due to the lack of the detailed
permittivity of the canopy and trunk layers in [27]. It is known
that different types of forest have different forest densities and,
therefore, different dielectric characteristics.

VII. CONCLUDING REMARKS

In this paper, a novel analysis of the radio waves propagat-
ing along mixed paths inside a four-layered forest model is
carried out. Closed-form representation of thecomponent
of the electric fields is obtained within two regions, i.e.,

and in the layer III. Radio
wave attenuation is also calculated numerically. Contributions
of various waves along different paths are discussed and a
comparison of contributions due to various modes is made.

Analytical derivation shows that the original integral can
be replaced by four integrals—one along the steepest descent
contour and the other along three branch cuts. Corresponding
formulas are obtained, representing the direct wave and mul-

(a)

(b)

(c)

Fı.g. 7. Comparison of transmission losses of: 1) the overall waves; 2) the
direct and multireflected waves; and 3) the three-interface lateral waves at
frequencies of 100 MHz, 500 MHz, and 3 GHz.



1108 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 7, JULY 1998

Fig. 8. Transmission losses of the overall waves against operating frequency
at a horizontal distance of 0.5, 1, and 5 km.

tireflected waves and three lateral waves along three interfaces.
The conventional way to derive the direct wave and multire-
flected waves is to make use of saddle-point technique. In this
paper, a method that combines the saddle-point technique and
the quasi-static approximation is employed to obtain a series
of expressions. Of this series, the zeroth order term, i.e., the
first term for , stands for the direct wave; the other terms
denote the multiple reflected waves and the hop number is just
the summation index number. Also, it is found that accuracy is
highly improved and the validity condition of the saddle-point
technique becomes relaxed and is not strictly obeyed. The
lateral waves are obtained by evaluating the integrals along
the respective branch cuts around the poles and three lateral
waves are derived and found to be those propagating along
three interfaces. Of the three lateral waves, the dominant wave
is the one propagating along the upper side of the air-canopy
interface.

In lossless media, the direct wave due to the point source
radiation is always the major contribution. In the lossy forest
medium, it is found that this wave also plays an important
role in the near-zone field within a horizontal distance range
of about 3 km depending upon the operating frequency. The
reflected waves also contribute to the overall guided waves
considerably. Numerical computation shows that the iteration
of the direct and multihop reflected waves can be truncated
to 40 within an expected truncation error. This implies that
the multireflected waves with hop number less than 40 still
contribute to the overall guided waves. However, in the far
zone the electric field is dominated by the lateral wave along
the first interface. The guided waves play an important role
in contributing the total field in the near zone, say, with a
horizontal distance of about 3 km. However, the lateral wave
propagating along the upper side of the air-canopy interface
dominates the total field in the far zone where the horizontal
distance is larger than 3 km for the waves at 100 MHz, 4
km at 5 MHz, and 5 km at 3 GHz. Also, in the far zone,
the lateral waves along the canopy-trunk and trunk-ground
interfaces can, as compared with the lateral wave along the
air-canopy interface, be neglected.

An important observation is that all the direct and mul-
tireflected waves contributed by images and obtained from
quasi-static approximation and the saddle point evaluations
are proportional to while the lateral waves ob-
tained from the branch cut evaluations are proportional to

. Therefore, when the distancebetween transmitter
and receiver is small, the contribution of images to the
total field becomes the dominant. Besides, all the waves
also decay exponentially except for the lateral wave along
the upper side of the air-canopy interface. Since the direct
and reflected waves propagate inside thelossy canopy-trunk
dielectric waveguide and two lateral waves with the canopy-
medium and ground-medium wave numbers propagate along
the upper-side interface of canopy–trunk and the lower-side
interface of the trunk–ground, the decay of the waves due to
the images and the two lateral waves in the lossy media are
much faster than that of the lateral wave propagating along
the upper side of air–canopy interface whenbecomes large.
Therefore, such a lateral wave at a large distanceplays an
especially important role in contributing to the total field.

APPENDIX

DOMINANT WAVES DUE TO REAL

DIPOLE AND QUASI-DYNAMIC IMAGES

Physically, (16) consists of direct wave and multireflected
waves. The dominant contributions of these waves are ex-
tracted subsequently.

A. Direct Wave from the Real Source

Since the direct wave is always used to calculate the field
in the absence of the lossy canopy and trunk layers, it is an
important measure to account for the transmission loss of the
radio waves that propagate through the forest medium. When
the distance between the transmitter and the receiver is small,
the direct wave in the forest is the dominant wave. Applying
the saddle-point evaluation, we find that the integral consisting
of vanishes so that and . The
direct wave due to the real dipole antenna is then given by

(A.1)

It can be seen from this expression that the field is symmetri-
cal for the source point and observation point. Exchanging
the source and field points does not, as expected, affect the
result, which is physically reasonable.

B. One-Hop Reflected Waves Due to Quasi-Dynamic Images

There exist three different cases for the one-hop reflected
waves. The waves excited by the dipole could be reflected
directly by either the first, second, or third interface. The one-
hop reflected waves due to each of the three interfaces are
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given in the order of the interfaces by

(A.2a)

(A.2b)

(A.2c)

The physical geometries of image excitations are shown in
Fig. 9. The wave arriving at the observation point is reflected
once by the first, second or third interface. The reflection
coefficients have been used in the field expressions. The fields
in (A.2a)–(c) represent the waves excited by the images due
to the first, second, and third interfaces, respectively. Also,
a rule must be followed to derive individual contribution;
that is, when an image due to one interface is concerned,
other interfaces are considered to be transparent for wave
propagation. This is similar to the rule in the image theory
that when the wave due to an image is concerned, the perfect
conductor ground must be removed.

C. Two-Hop Reflected Waves from Quasi-Dynamic Images

In a similar fashion, the two-hop reflected fields due to the
interfaces are expressed as follows:

(A.3a)

(A.3b)

(A.3c)

(a)

(b)

(c)

Fig. 9. One-hop reflected waves from interfaces between (a) air–canopy, (b)
canopy–trunk, and (c) trunk–ground.

As can be seen from the representations of the reflected
fields, two reflection coefficients are used for different images
produced due to the corresponding interfaces.

D. Three-Hop Reflected Waves from Quasi-Dynamic Images

A single three-hop reflected mode exists in the expression
of electric field contributed by the quasi-dynamic images. This
mode is written as

(A.4)
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It can be seen from the mode expression containing three
reflection coefficients that the quasi-static image should be the
one due to first the trunk–ground interface, then the air–canopy
interface, and finally the canopy–trunk interface.

E. Images’ Characteristics and Their Geometries

As discussed earlier, the interfaces that are not concerned
can be considered to be transparent to the wave propagation.
Different orders of images can be obtained from the num-
ber of interfaces. The real source with zeroth order (nil)
image produces the direct wave propagating directly from the
transmitter to the receiver. The first-order images produce the
waves reflected once by the air-canopy, the canopy-trunk, or
the trunk-ground interface. The propagation mechanisms of the
single-reflected waves can be described by drawing directly
the propagation path between the image and the receiver, as
shown in Fig. 9.

However, the mechanisms of the double-reflected waves
cannot be completely represented by means of graphics. The
propagation path between the image due to the air-canopy
and canopy-trunk interfaces and the observation point cannot
be graphically drawn. However, separation of the reflection
coefficient at the canopy-trunk interface into unity and
the transmission coefficient can make the graphical
illustration possible. Also, it seems from the expressions of

, , and that the order of two reflection
coefficients does not matter. As a matter of fact, it does.
This can be seen from the phase expressions of the fields that
there is only a possibility for the waves being twice reflected.
The waves excited by the images cannot be included into
the expressions given by (A.3a)–(c). They are included in the
higher order modes as .

Similar phenomena to those in the second-order images
can also be found in the third order images. The three
reflection coefficients may form six different combinations,
i.e., , , , , ,
and , respectively, corresponding to different vertical
distances in phases of ,

, , , and
. The field in (A.4) represents only two of them.

The other four can be found from the higher order modes.
Besides the above, it is evident that and

denote only the path lengths of multireflected
waves along the waveguide between two interfaces: canopy-
trunk and trunk-ground. The optical path in the canopy region
is not counted in the distances and .
However, it has also been considered and expressed in terms

of the phase form: .
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