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A Generalized Reflection-Free Domain-Truncation
Method: Transparent Absorbing Boundary

Jian Peng and Constantine A. Balanis,Fellow, IEEE

Abstract— In this paper, a generalized technique is devel-
oped to truncate the computational domain without reflection.
It transforms the unbounded-space Maxwell’s equations to a
set of auxiliary equations in a closed domain. A reflection-free
amplitude-reduction scheme applied over the entire computa-
tional domain reduces the auxiliary field components outwardly
and makes them equal to zero at the closed boundary. No
additional absorbing region surrounding the domain of interest
is needed with this technique because the relationship between
the physical fields and their auxiliary counterparts is explicitly
known and the former can be found from the latter within the
computational domain.

Index Terms—Absorbing media, FDTD methods.

I. INTRODUCTION

I N order to model and simulate an electromagnetic problem
efficiently, it is necessary to minimize the computational

domain that simulates an unbounded space. A variety of
techniques, based either upon radiation mechanisms or upon
absorption concepts, has been proposed [1]–[6]. They rep-
resent the fields with some prescribed conditions either at
the exterior boundary of the computational domain or at
the interface between the subject domain and the transition
domain, as shown in Fig. 1. Ideally, a truncation technique
should not create any reflections, at the boundaries where
boundary conditions are enforced, to disturb the fields in the
domain of the subject. In addition, it should be independent
of the frequency and incident angle of the outwardly traveling
waves. Moreover, it is preferred to reduce the computational
domain as much as possible, especially by eliminating the
transition domain surrounding the domain of interest (e.g.,
absorbing domain in absorption-based methods), to improve
the computational efficiency.

The perfectly matched layer (PML) proposed by Berenger
[6] is presently the state-of-art of truncation techniques. It is
independent of frequency and incident angle and it is virtu-
ally reflection free. The PML is somewhat storage-intensive
because it not only requires storing the fields in the additional
absorbing domain, but it also splits the field components
into two sets of subcomponents, which doubles its storage
requirements. A variety of alternative approaches have since
been proposed to avoid splitting of the fields [10], [11];
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Fig. 1. A traditional computational domain.

however, none of them eliminates the absorbing domain
because they need the additional domain to attenuate the waves
traveling out of the subject domain.

The transparent absorbing boundary (TAB) [7]–[9] is a
generalized analytical approach that can be directly applied
to various finite methods such as finite difference and fi-
nite element in both time and frequency domains. Without
introducing reflections, the magnitudes of the auxiliary field
componentsinside the subject domainare forced to decrease
and become exactly zero at the exterior boundary ofthe same
domain. Consequently, the additional absorbing domain is no
longer needed and the computational domain is reduced to
the domain of interest (i.e., the subject domain in Fig. 1). In
this paper, the basics of the TAB truncation method and the
zero-reflection characteristics are detailed and its applications
in the finite-difference time-domain (FDTD) method are also
discussed.

II. TRANSPARENT ABSORBING BOUNDARY

The TAB method begins by introducing auxiliary fields that
attenuate outwardly and become zero at the boundary of the
subject domain. Constraints are imposed upon the auxiliary
fields to ensure that no artificial reflections are introduced into
the auxiliary system. Governing equations for the auxiliary
system are derived from Maxwell’s equations and are then
solved for the auxiliary fields. After that the physical fields are
found from the auxiliary ones through inverse transformation.
In this section, the basic concepts and the transformation
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between the physical and auxiliary fields of the TAB are
discussed.

A. Reflection-Free Transformation

Let and be the electric and magnetic fields
of a physical problem in an unbounded space. They satisfy
Maxwell’s equations and the boundary conditions of a physical
problem. Assume that is a scalar amplitude modulation
function. Then, a set of auxiliary fields and in
the computational domain are defined as

(1a)

(1b)

for where defines the closed truncation boundary.
For example, in Fig. 1, can be taken as the interface formed
by the subject and transition domains.

It is well-known that there will be no reflection from an
interface if the phase velocities and wave impedances on both
sides of the interface are identical. Furthermore, no artificial
reflections are introduced into a new field system if the
boundary conditions, phase velocities, and wave impedances
of the physical waves are maintained, i.e.,

(2a)

(2b)

(2c)

where the subscript denotes the original system while sub-
script indicates the auxiliary system whose field components
decrease in a way prescribed by the outwardly decaying func-
tion . The field attenuation mechanism is superimposed
upon the physical media and it creates no reflections regardless
of frequency, incident angle, and physical material properties.
In [6], it is indicated implicitly that the fields within the PML
medium satisfy these conditions, which explains mathemati-
cally why the PML is a reflection-free loss mechanism.

If in (1) is not equal to zero within the computational
domain interior to the closed boundary, the auxiliary system
has the same wave impedance as that of the physical system
in the same region, i.e.,

(3)

where represents the wave impedance of the physical
problem, not necessarily the one in free-space. Furthermore, if
the function is continuous and real, the boundary conditions
and phase terms of the auxiliary fields are the same as those
of the physical problem. The phase velocity is a part of the
phase term, hence, the two velocities are equal

(4)

Therefore, no artificial reflection is introduced by the transfor-
mation of (1) at any spatial point in the domain of the problem.
In other words, the transformation seemstransparent.

The above discussion is best illustrated by the plane wave
example in Berenger’s original paper. Within a PML medium,

each of the field components is represented by (15) in [6],
whose form is similar to (1), with

(5)

In (5), and are, respectively, the phase velocity and the inci-
dent angle in free-space, represents the free-space dielectric
constant, and are the anisotropic conductivities of the
PML medium. Equation (5) indicates that the phase velocity
of the attenuated wave in the PML is identical to that of the
physical wave in the same free-space occupied by the PML.
Meanwhile, (16) of [6] is identical to (3) in this paper; that
is, the wave impedance of the attenuated field is not changed
by the PML loss mechanism. Apparently, the PML and TAB
are closely related.

While the attenuated fields in the PML region satisfy (1), the
physical fields in the domain of interest can also be considered
as auxiliary fields with being unity. Therefore, the PML
approach to solving for the fields in the entire computational
domain is equivalent to finding the auxiliary fields of the TAB
in the same domain. The difference between the PML and TAB
is that their approaches are opposite. In the PML, (1) and
(3) are derived from zero-reflection PML absorption, while
the same equations lead to the reflection-free attenuation of
fields in the TAB. In addition, the PML is associated with
only one exponential as given by (5). However, as will
be demonstrated, the number of the amplitude modulation
functions for the TAB seems unlimited.

B. Field Attenuation

The role of the amplitude modulation functionis critical.
It relates the auxiliary fields to the physical ones without
distorting the phase and directional patterns of the physical
fields. It also serves as an attenuation factor for the auxiliary
fields. An example of the amplitude modulation function is
shown in Fig. 2, which forces the magnitudes of the auxiliary
fields to decay and eventually reduce them to zero at the
exterior boundary of the computational domain. Due to its
importance, it is necessary to set some criteria for the selection
of the amplitude modulation function. The function should be
defined over the computational domain only and it should:

1) be a single-valued, continuous, scalar real function;
2) decay as increases outwardly and become zero at the

exterior boundary;
3) be nonzero everywhere except along the exterior bound-

ary of the subject domain;
4) have continuous first-order derivatives;
5) be independent of field information, as well as time.

The first two conditions are needed to establish the TAB con-
ceptually, the next two to define the TAB mathematically, and
the last one for the convenience of the inverse transformation
from the auxiliary fields to the physical ones. The inverse
transformation is an integral part of the TAB method and
makes it possible to eliminate the additional absorbing domain.
Apparently, the amplitude modulation function of the PML [as
represented by (5)] satisfies all but the last condition. Hence,
the PML creates no reflections; but it still needs the additional
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Fig. 2. A typical modulation function for the transparent absorbing bound-
ary.

absorbing region, since the inverse transformation is generally
not known in the PML layers and the physical fields cannot
be recovered from the auxiliary fields inside the PML.

The conditions on the choice of are quite easy to satisfy.
In addition to the graphical illustration shown in Fig. 2

(6a)

and

(6b)

are two analytical examples of in Cartesian coordinates if
, , , , , and are equal to or greater than unity. The

parameters , , and are the lengths of attenuation paths
in the , , and directions, respectively; they are often taken
to be the half dimensions of a rectangular domain.

An amplitude modulation function satisfying the required
conditions stated previously establishes a unique relationship
between the physical and auxiliary fields so that the former
can be found from the latter everywhere, except at the exterior
truncation boundary where the function is equal to zero. Note
that, it is not necessary to find and exactly on the
boundary. The closed surface over which the equivalence
principle is applied to find the far-zone and can be
placed anywhere in the domain, as long as it is exterior to
the subject of study and interior to the truncation boundary.
Usually, this is chosen at one or two cells interior of the
truncation boundary. With the help of this surface, the physical
fields exterior to it can be obtained by integrating the currents
on the surface, while those interior to the surface are found by
inverting the auxiliary fields obtained with the finite methods.
Therefore, a unique solution of the physical fields can be
obtained in the entire unbounded space.

C. Governing Equations

While the physical fields are described by
Maxwell’s equations, governing equations for the auxiliary
fields in the closed domain are obtained by substituting

and of (1) into Maxwell’s equations. They are
expressed in the form of

(7a)

(7b)

(7c)

(7d)

with the boundary conditions of

(7e)

(7f)

where denotes the truncating boundary, which is the exterior
boundary for the domain of interest. It should be pointed
out that the partial differential equations (7a)–(d) are valid
in the entire closed domainexcluding the exterior truncation
boundary . At , the boundary conditions (7e) and (f),
rather than the differential equations, are enforced. Obviously,
the system has homogeneous boundary conditions because
decays and eventually becomes zero at the boundary .
The parameters, , , , , and retain their meanings
of the physical problem [12]. Since is a nonzero and
single-valued scalar real function with continuous first-order
derivatives within the closed domain, Maxwell’s equations
are uniquely transformed, along with the physical boundary
conditions, into the auxiliary system. Hence, it is equivalent
to solve the auxiliary system of (7) in the closed domain, rather
than Maxwell’s equations. For example, the attenuated fields
in the PML region, as given by (15) in [6], can be obtained
from (7) of this paper, with being (5), instead of using the
PML variations of Maxwell’s equations.

The most important difference between the curl equations
in (7) and those in Maxwell’s equations is the introduction
of the nondifferentiated terms and .
They represent losses or sources in a general hyperbolic
system [13], [14]. With the outwardly decaying, these two
terms result in field attenuation for the outward wave and the
introduction of the homogeneous boundary conditions (7e) and
(f). The combination of the field attenuation and the transparent
transformation leads to a reflection-free technique to trun-
cate the computational domain of finite methods. Therefore,
the method is referred to as the TAB, whereboundary is
used to follow standard nomenclature for the truncation of
computational domains.

III. A PPLICATIONS IN FDTD

In this section, the reflection characteristics of the TAB
method will be detailed and some issues related to its ap-
plication in the staggered Yee scheme will be discussed.
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Fig. 3. Configuration of the testing computational domain.

A. Reflection Characteristics of the TAB

To demonstrate that, by using TAB, the introduction of an
“absorbing” medium within the computational domain does
not create reflections, the local reflection errors of a two-
dimensional TM-polarized cylindrical wave were computed
using the methodology suggested by Moore [15]. This proce-
dure has been accepted and applied by many as a standard
numerical technique to compute the reflections of absorbing
boundary conditions in the time domain. Required by Moore’s
approach, the computational domain (2D2D) is subdivided
into two regions, as shown in Fig. 3. The interior region is
free space with dimensions of 4 m 4 m. It is surrounded
by an absorbing domain filled with absorbing materials. The
fields inside the computational domain are excited by an
sinusoidal source placed at the center. The Yee algorithm is
used to approximate (7a) and (b) and all computations were
made with double precision.

Using the absorbing domain when testing TAB’s reflections
is not contradictory to the earlier claim that the the TAB does
not need the additional absorbing domain. The errors under
investigation are those reflected by the TAB medium rather
than the total numerical errors. Those computed in the interior
region usually include both the reflection errors of the TAB as
well as the truncation errors of the finite-difference scheme.
If the TAB is applied in the interior region only, (7a) and (b)
instead of Maxwell’s equations govern the field solution in the
region. Consequently, Moore’s method would not be able to
cancel out the truncation errors with the solution of Maxwell’s
equations in a reference “open” domain. Therefore, it is neces-
sary to use the extra absorbing domain in order to measure the
reflections of the TAB. In practice, the total error instead of the
reflection error is of concern; thus, the TAB applies the absorb-
ing medium in the interior region only. The computational do-
main is then terminated at the boundary of the interior region.

The time duration is determined such that the measured
reflections are created only by the TAB medium in the ab-
sorbing region and propagating into the interior region. This
can be done by stopping field updating before the outgoing
waves reach the exterior truncation boundary (the one exterior

to the absorbing region in Fig. 3). The reason for doing so
is as follows. In general, the reflections into the interior
domain are the sum of two parts. One part stems from
the numerical implementation such as the perfect electric
conducting (PEC) termination used in the PML. The other
part is due to the absorbing material itself. The former is not
intrinsic to a particular analytical absorbing technique and it
varies with numerical implementations. The latter is inherent
to the absorbing mechanism itself and it is difficult to eliminate
by changing implementation methods. Because of its staggered
grids, the Yee scheme used along with the TAB presents an
implementation error source that creates strong reflections. It
has been shown that the problem is associated with staggered
grids only [8], [9]. In the investigation of TAB’s reflection
characteristics, it is necessary to filter out the reflection errors
that are not caused by the TAB media.

In the following tests, the field attenuation in the auxiliary
system is prescribed by the amplitude modulation function

if in the interior domain
otherwise

(8a)
where

if (8b)

if (8c)

where m is the half dimension of the interior domain
while is that of the entire computational domain and may
vary according to the thickness of the absorbing region used
in the tests. Keep in mind that it is required by Moore’s
methodology (rather than the TAB truncation technique) to
set the modulation function equal to unity inside
the interior domain. As a reference, the reflections of the PML
were also computed, using the split formulation over the entire
computational domain. The thickness of the PML region may
vary between the tests, but the anisotropic conductivity of the
PML is always quadratic in distribution, with .

Using square cells of , the finite-difference approximation
to (7a) and (b) of the TM-polarized wave is given as follows:

(9a)

(9b)

(9c)

where is the Courant number, is the wave

impedance in free-space, and are the
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Fig. 4. Local reflection errors as a function of the thickness of the absorbing
materials.

coefficients associated with the introduction of the anisotropic
TAB attenuation, respectively. The terms and represent
the first-order spatial derivatives of and , respectively.

First, the effect of the attenuation length (i.e., the thickness
of the absorbing domain) on the reflections are examined.
The operating frequency is 300 MHz, the cell size is 5
cm (i.e., ), and the Courant number is 0.7. The local
reflection errors are measured along dashed line shown in
Fig. 3, with m. Attenuation lengths of 0.4 m and
2.0 m (i.e., 8 and 40 cells) are used in the computations,
respectively, and the time duration is 70 steps for the former
while 100 steps are used for the latter. An eight-layer PML
is commonly used in practice; using 40 layers makes the
attenuation length equal to the distance from the source to
the boundary of the subject domain, which enables the first
reflected wavefront to get close to the center of the interior
domain before the outgoing waves reach the exterior boundary.
The results are shown in Fig. 4. With eight layers, the PML
achieves a local reflection of 10 to 10 (or about 90 dB)
while that of the TAB is about 20 dB lower ( 110 dB).
Using 40 layers makes the attenuation functions (exponential
for the PML and polynomial for the TAB) flatter along
the attenuation path, which results in better finite-difference
approximations. The smoother amplitude modulations yield
about 40-dB improvements for both the PML and TAB.

The difference between the PML and TAB results is at-
tributed to the split formulation, which is only an approximate
equivalence to Maxwell’s equations [17]. To reduce the ef-
fect of this approximated equivalence, the cell size for the
split formulation is reduced by half. Since the split formulas
are second-order approximations to the Maxwell’s equations,
the discrepancy between Maxwell’s equations and its split
counterparts is reduced by a factor of four. Meanwhile, the
truncation errors of the second-order Yee finite difference that
approximates the split formulas are also reduced by a factor
of four. Totally, the numerical errors are reduced by a factor
of 16. Fig. 5 shows the results for the case of 2.0 m (40
cells) absorbing region. Using the smaller cells reduces the
local reflection error of the PML and the reduction shows
the behavior of second-order approximations. Thus, the extra

Fig. 5. Effect of reducing cell size on the local reflection error of the split
PML.

Fig. 6. Local reflection errors that are independent of incident angles.

errors in the PML computations are introduced most likely by
the split equations instead by the loss mechanism of the PML.

Next, the dependence of the TAB on the incident angle is
investigated by collecting data along the lines m and

m, respectively. At a given position, the reflections
on the two lines are from different reflection angles. The
operating frequency is 300 MHz, the cell size is 5 cm,
and the Courant numberis 0.7. The attenuation length is 2.0
m (i.e., 40 cells), while the time duration is 100 steps. Like
the PML, the TAB has similar local reflection errors along the
two different lines, as shown in Fig. 6, which indicates that
the the loss mechanism is independent of the incident angle.

Finally, the TAB’s independence of frequency is verified in
Fig. 7. The attenuation length, cell size, Courant number

, and time duration are the same as those of Fig. 6. The
operating frequencies are 150 and 300 MHz, respectively.
Reflection errors were measured along the line m. As is
expected, the computed local reflection errors are independent
of the frequency for both the PML and TAB. Thus far, it has
been demonstrated numerically that the TAB is a reflection-
free loss mechanism like the established PML.

B. Application of the TAB to FDTD

The development of the TAB is to provide an alternative
method to truncate a computational domain without intro-
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Fig. 7. Local reflection errors that are independent of frequencies.

ducing artificial reflections. It has been shown that the TAB
successfully truncates the computational domain of the collo-
cated Lax–Wendroff finite-difference scheme [8], [9]. It also
was shown in the previous section that the TAB itself does not
create reflections. However, when used with the Yee algorithm
that is not a collocated scheme forand , the TAB presents
some challenging issues.

The Artificial Metal Wall: In the Yee scheme, the electric
and magnetic fields arestaggered, i.e., they are located a
half-cell apart. An one-dimensional (1-D) illustration of the
staggered grids is illustrated in Fig. 8. Applying Yee’s al-
gorithm to the field of the 1-D problem results in the
finite-difference equation

(10)

When , which represents the -field point next to
the truncation boundary, (10) reduces to

(11)

where is on the homogeneous truncation boundary and
it is equal to zero because . Although the next-to-
last electric field point is not on the boundary, the
coefficient associated with it is

(12)

Consequently, the spatial difference in (11) is nearly zero,
which reduces the equation to

(13)

Fig. 8. One-dimensional illustration of a staggered grid, such as Yee’s.

That is, the value of depends mainly on its previous

value . If the initial value is zero, will be
close to zero for all the time steps. Since thecomponent at
that spatial position is not subject to the near-zero condition,
the fact that is always close to zero is equivalent to a
magnetic conducting wall at the position. Similarly, an electric
conducting wall can be formed if the truncation boundary
falls on the instead of field points. These artificial elec-
tric/magnetic conducting walls reflect fields strongly, which is
not desirable for a domain truncation technique.

It should be pointed out that the artificial electric/magnetic
conducting walls are only associated withstaggeredfinite-
difference schemes (such as the Yee scheme). Incollocated
schemes, like the Lax–Wendroff, both and are subject
to identical near-zero conditions; both components are very
small near the truncation boundary due to the “absorption”
of the TAB. Therefore, there exist no such artificial walls in
collocated schemes, as is demonstrated in [9].

One way to circumvent the problem is to modify the finite-
difference scheme near the truncation boundary such that the
fields next to the truncation boundary will not be near zero all
the time. The Lax–Friedrichs scheme [19] is used to replace the
Yee scheme at the grid points half-cell interior to the truncation
boundary. The scheme uses spatially averaged values in the
time differencing. Thus, the finite-difference equation at the
last point becomes

(14)

instead of (11) and (13). In (14), is the field at the
grid that is aone-cell, instead of ahalf-cell, interior to the
truncation boundary. With this local modification, the field
variation near the half-cell point will be channeled into it
through the averaging process and the will not be close
to zero all the time. Therefore, the effects of the magnetic
conducting wall are reduced. The challenge of this local

modification is to find the appropriate value for in (14)
since it is located between two grid points. Interpolations
using the existing grids were tested.

To test the effect of the local modifications near the trun-
cation boundary, a 1-D problem is examined numerically,
using the following configuration. The computational domain
is m in length and it is discretized with
cells. A plane wave source is located in the middle of the
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Fig. 9. One-dimensional field distributionEo of a plane wave traveling
outwardly in both directions obtained using Yee’s staggered scheme.

domain and the wave propagates in both directions. The
following amplitude modulation function is used to terminate
the domain:

if (15)

The Courant number is chosen as 1; the time duration is
400 steps, which is sufficiently long for the artificial reflected
waves to bounce back and forth a few times between the
boundary points to show the effect of reflection errors on
the results (it takes 80 steps for the plane wave to travel
from the source to the boundaries and vice versa). The local
modification of (14) replaces the Yee scheme of (11) at the
last point. The second-order interpolation of

(16)

is used to find the that is collocated with .
The computed auxiliary field is converted back to ,
and compared with the exact solution. The numerical results
are shown in Fig. 9. The results represented by the dash-
dot line were obtained using Yee’s scheme without any local
modification near the exterior truncation boundary. They are
not in good agreement with the exact solution. The square
dots represent the results computed with the local modified
scheme, as represented by (14) and (16); they agree quite well
with the exact solution.

However, it was found that the effectiveness of the inter-
polation given in (16) depends on the choice of the Courant
number ; happens to be the optimal value for
the second-order interpolation. The third-order interpolation

(17)

and the fourth-order one

(18)

may provide alternatives to different values. Using the
Lax–Friedrichs scheme near the boundary is one of many
possible techniques to reduce the effects of the artificial
electric/magnetic conducting walls and others may be even
more desirable.

Fig. 10. Field distribution along the symmetry plane of a 2-D problem
obtained with an entire domainF .

The Effect of the Interpolation Schemes:As mentioned in
the previous section, the effectiveness of an interpolation
scheme, used to find the fields between regular grid points
depends on the the value of. In a 2-D problem, has
to be smaller than because of the stability condition.
In this section, the effects of the interpolation schemes on
the reduction of the reflections from the artificial magnetic
conducting walls are examined.

The 2-D Yee scheme for a TM polarized case is given in
(9). The amplitude modulation function

(19)

is defined over the entire square domain shown as
the insert in Fig. 10 with m. An sinusoidal
source is placed at the center of the domain operating at 300
MHz. The cell size is 0.025 , the Courant number is chosen
to be 0.7, and the time duration is 200 steps that is sufficiently
long to show the effects of the reflection due to the artificial
magnetic conducting wall (it takes about 60 steps for a wave
to travel from the center to the boundary or vice versa). The
results are inversely transformed and then compared with the
“open” space computations that were performed for the same
time duration in a 8 m 8 m domain discretized using the
same cell size. All the calculations were performed with single
precision.

Fig. 10 shows the distribution of the component along
the symmetry plane with different interpolation schemes. The
second-order interpolation scheme of (16) does not perform
as well as it did in the 1-D case, because is not
its optimum value. The higher order interpolations of (17)
and (18) helped to reduce the reflection and improved the
numerical results noticeably; but efforts such as finding the
optimum for the third- or fourth-order interpolations are
needed to reduce the errors even further.

The global root mean square (rms) errors

(20)
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TABLE I
GLOBAL ERRORSASSOCIATED WITH INTERPOLATION SCHEMES

as well as global fractional rms (frms) errors

(21)

for the results of Fig. 10 were also calculated. It is noted
that because the modulation function of (19) is used over the
entire computational domain, (20) and (21) calculate the total
numerical errors instead of the reflection errors. Table I lists
the computed errors and it shows that with the Lax–Friedrichs
scheme and interpolations for the local modification near
the truncation boundary, it is possible to achieve numerical
accuracy comparable to the Mur’s absorbing boundary con-
ditions [2]. Other approaches should be explored in order to
exploit the potential of the TAB with Yee’s staggered scheme.
This is presented as a challenge and further research to the
computational electromagnetics community.

IV. CONCLUSION

An analytical approach, the TAB, has been presented. The
domain truncation method focuses on the consequence of
field attenuation rather than the causes of “absorption.” The
conditions on the transparent transformation are simple and a
large family of amplitude modulation functions can be used for
domain truncation without creating reflections. In addition, the
method can be directly applied to time- and frequency-domain
finite methods without modifications to its partial differential
equations. Hence, it is a general approach to computational
domain truncation.

With the TAB method, a physical problem in an unbounded
space can be solved in a closed domain with the aid of the
auxiliary fields. Like the popular PML method, the TAB is
reflection-free, independent of frequency, and unconstrained
by the incident angle. The uniqueness of the TAB is that it
does not need the additional absorbing domain. In addition, it
is suitable to truncate comformally an arbitrary convex domain
by defining the amplitude modulation functionaccording to
the geometry of the domain.

The TAB itself does not create reflections, as demonstrated
by the examples in this paper and [9]. However, using the
TAB along with the popular Yee staggered algorithm, an
artificial electric/magnetic conducting wall is formed near the
exterior boundary. Such a problem is associated only with
staggered schemes and is presented as a future challenge.
The Lax–Friedrichs scheme was tested as a local modification
near the truncation boundary to prevent the formation of these
artificial walls. Other approaches should be explored in order
to effectively use the TAB to truncate the staggered Yee grids.
Hopefully, the strengths and challenging issues of the TAB
will stimulate new ideas and further research to improve the
computational efficiency and accuracy of finite methods.
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