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A Generalized Reflection-Free Domain-Truncation
Method: Transparent Absorbing Boundary

Jian Peng and Constantine A. Balarfigllow, IEEE

Abstract—In this paper, a generalized technique is devel-
oped to truncate the computational domain without reflection.
It transforms the unbounded-space Maxwell's equations to a
set of auxiliary equations in a closed domain. A reflection-free
amplitude-reduction scheme applied over the entire computa-
tional domain reduces the auxiliary field components outwardly
and makes them equal to zero at the closed boundary. No
additional absorbing region surrounding the domain of interest
is needed with this technique because the relationship between
the physical fields and their auxiliary counterparts is explicitly
known and the former can be found from the latter within the . . .
computational domain. Transition Domain

Index Terms—Absorbing media, FDTD methods.

| Sulsject Dpmain

Subject of Study

I. INTRODUCTION
Ahsorption-hased Radiation-hxsed

N order to model and simulate an eleCtromagnetlc prObIenlhﬂmrJ:rI& Condifions  Boundary Conditions

efficiently, it is necessary to minimize the computational
domain that simulates an unbounded space. A variety - 1. A traditional computational domain.
techniques, based either upon radiation mechanisms or upon

absorption concepts, has been proposed [1]-{6]. They repswever, none of them eliminates the absorbing domain
resent the fields with some prescribed conditions either gdcause they need the additional domain to attenuate the waves
the exterior boundary of the computational domain or ¥aveling out of the subject domain.
the interface between the subject domain and the transitionrpe transparent absorbing boundary (TAB) [7]-[9] is a
domain, as shown in Fig. 1. Ideally, a truncation techniqugsneralized analytical approach that can be directly applied
should not create any reflections, at the boundaries Whegeyarious finite methods such as finite difference and fi-
boundary conditions are enforced, to disturb the fields in thge element in both time and frequency domains. Without
domain of the subject. In addition, it should be independepfiroducing reflections, the magnitudes of the auxiliary field
of the frequency and incident angle of the outwardly ”ave"%mponentsinside the subject domaiare forced to decrease
waves. Moreover, it is preferred to reduce the computationghg become exactly zero at the exterior boundaryhaf same
domain as much as possible, especially by eliminating ta@main Consequently, the additional absorbing domain is no
transition domain surrounding the domain of interest (e-gonger needed and the computational domain is reduced to
absorbing domain in absorption-based methods), to improyf domain of interest (i.e., the subject domain in Fig. 1). In
the computational efficiency. this paper, the basics of the TAB truncation method and the
The perfectly matched layer (PML) proposed by Berengegro-reflection characteristics are detailed and its applications

[6] is presently the state-of-art of truncation techniques. It jg§ the finite-difference time-domain (FDTD) method are also
independent of frequency and incident angle and it is Virtgiscyssed.

ally reflection free. The PML is somewhat storage-intensive

because it not only requires storing the fields in the additional

absorbing domain, but it also splits the field components Il TRANSPARENT ABSORBING BOUNDARY

into two sets of subcomponents, which doubles its storageThe TAB method begins by introducing auxiliary fields that
requirements. A variety of alternative approaches have sirmgenuate outwardly and become zero at the boundary of the
been proposed to avoid splitting of the fields [10], [11]subject domain. Constraints are imposed upon the auxiliary

. . . . . fields to ensure that no artificial reflections are introduced into
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between the physical and auxiliary fields of the TAB areach of the field components is represented by (15) in [6],
discussed. whose form is similar to (1), with

A. Reflection-Free Transformation F(z,y) = exp {— T €08 d)x} exp {— Uy:tl d)y} . (5
LetE,(¢,r) andH,(¢,r) be the electric and magnetic fields ’ ’

of a physical problem in an unbounded space. They satidfy(5), c and¢ are, respectively, the phase velocity and the inci-
Maxwell’s equations and the boundary conditions of a physicd@nt angle in free-space, represents the free-space dielectric
problem. Assume thak'(r) is a scalar amplitude modulationconstant, ando, 0,,) are the anisotropic conductivities of the

function. Then, a set of auxiliary field&(t,) andH(t,) in PML medium. Equation (5) indicates that the phase velocity

the computational domain are defined as of the attenuated wave in the PML is identical to that of the
physical wave in the same free-space occupied by the PML.

E(t,r) = F(nE.(t,7) (1a) Meanwhile, (16) of [6] is identical to (3) in this paper; that
H(t,r) = F(r)H,(t,7) (1b) s, the wave impedance of the attenuated field is not changed

by the PML loss mechanism. Apparently, the PML and TAB
for r < r, wherer, defines the closed truncation boundaryare closely related.

For example, in Fig. 1;, can be taken as the interface formed While the attenuated fields in the PML region satisfy (1), the
by the subject and transition domains. physical fields in the domain of interest can also be considered
It is well-known that there will be no reflection from anas auxiliary fields with# being unity. Therefore, the PML
interface if the phase velocities and wave impedances on baffproach to solving for the fields in the entire computational

sides of the interface are identical. Furthermore, no artificidbmain is equivalent to finding the auxiliary fields of the TAB
reflections are introduced into a new field system if thiathe same domain. The difference between the PML and TAB
boundary conditions, phase velocities, and wave impedangeshat their approaches are opposite. In the PML, (1) and

of the physical waves are maintained, i.e., (3) are derived from zero-reflection PML absorption, while
the same equations lead to the reflection-free attenuation of
[BCL. = [BC], (22) fields in the TAB. In addition, the PML is associated with
Vg = Vo (2b) only one exponential’ as given by (5). However, as will
Na = 7o (2c) be demonstrated, the number of the amplitude modulation

functions F'(r) for the TAB seems unlimited.
where the subscript denotes the original system while sub-
scripta indicates the auxiliary system whose field componengs Field Attenuation
decrease in a way prescribed by the outwardly decaying func- . . o
tion F(r). The field attenuation mechanism is superimposeitdI(;gtgetﬁ;tgi;ﬂ;ﬁmuf?; dr:ot(gult?]téon r:urs]?ctghclniggtl\?v?tlﬁout
upon the physical media and it creates no reflections regardl S% ting the oh y d directional P t%/ f the phvsical
of frequency, incident angle, and physical material propertie&'ﬁdor |?g | € phase and directiona pa:c ernsfo he P y_?lca
in [6], it is indicated implicitly that the fields within the PML ° & /f\aso sorves as an atte?fi‘;'o” agt‘l”t.or tf e adiery
medium satisfy these conditions, which explains mathemalic o> /AN éxampie of the amplitude modulation function 1S
cally why the PML is a reflection-free loss mechanism. shown in Fig. 2, which forces the magnitudes of the auxiliary
If F() in (1) is not equal to zero within the computationaf'elds to decay and eventually reduce them to zero at the

domain interior to the closed boundary, the auxiliary systeﬁ%(tenor bou_nc_iary of the computational _dor_naln. Due to |t_s
ortance, it is necessary to set some criteria for the selection

. . m
has the same wave impedance as that of the physical syst%rfhe amplitude modulation function. The function should be

in the same region, i.e., : ) . .
g defined over the computational domain only and it should:
_EG] _ B )l _ () 3) 1) be a single-valued, continuous, scalar real function;
[H(,7)|  |Hy(t, 7)) ‘ 2) decay ag increases outwardly and become zero at the

) . exterior boundary;
where,(r) represents the wave impedance of the physical 3y 1o nonzero everywhere except along the exterior bound-
problem, not necessarily the one in free-space. Furthermore, if ary of the subject domain;

the functionf” is continuous and real, the boundary conditions 4y nave continuous first-order derivatives:
and phase terms of the auxiliary fields are the same as thosg be independent of field information as, well as time

of the physical problem. The phase velocity is a part of thﬁqe first two conditions are needed to establish the TAB con-

phase term, hence, the two velocities are equal ceptually, the next two to define the TAB mathematically, and
va(r) = vo (7). (4) the last one for the convenience of the inverse transformation

from the auxiliary fields to the physical ones. The inverse

Therefore, no artificial reflection is introduced by the transfotransformation is an integral part of the TAB method and
mation of (1) at any spatial point in the domain of the problenmakes it possible to eliminate the additional absorbing domain.

In other words, the transformation seetresnsparent Apparently, the amplitude modulation function of the PML [as
The above discussion is best illustrated by the plane warepresented by (5)] satisfies all but the last condition. Hence,
example in Berenger’s original paper. Within a PML mediunthe PML creates no reflections; but it still needs the additional

(")
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— C. Governing Equations

While the physical fields(E,,H,) are described by
Maxwell's equations, governing equations for the auxiliary
fields (E, H) in the closed domain are obtained by substituting

E, and H, of (1) into Maxwell's equations. They are
expressed in the form of
JE 1 1 o F
— == H- —-VFxH)-—-E—-—j 7
ot 6<VX FV % ) € e‘h (72)
oH 1 1 * F
1 o (UxE-VFxE)-ZH-"m (7b)
ot 5 F 5 5
1
V-E:Fp+FVF-E (7¢)
Z:g):]/ 2. A typical modulation function for the transparent absorbing bound- V.-H=Fp"+ %VF ‘H (7d)

with the boundary conditions of

absorbing region, since the inverse transformation is generally E = F(r,)E, = 0 (7€)

not known in the PML layers and the physical fields cannot

be recovered from the auxiliary fields inside the PML. H=F(r;)H, =0 (7)

The conditions on the choice df are quite easy to satisfy. yherer, denotes the truncating boundary, which is the exterior

In addition to the graphical illustration shown in Fig. 2 boundary for the domain of interest. It should be pointed
out that the partial differential equations (7a)—(d) are valid
in the entire closed domaiexcluding the exterior truncation

man q
F(z,y,2) = [1 _ <M) } [1 _ <M)p} boundaryr,. At » = r,, the boundary conditions (7e) and (f),
Ly Ly rather than the differential equations, are enforced. Obviously,
1zI\“1" the system has homogeneous boundary conditions bedause
% [1 - <]Z> } (6a) decays and eventually becomes zero at the boundasyr,.
and The parameters, o*, j;, m;, p, andp* retain their meanings
NEVA A 7 |yl \? of the physical problem [12]. Sincé’ is a nonzero and
F(z,y, z) = cos [5 <L_> } Cosp{g <L_) } single-valued scalar real function with continuous first-order
N Y derivatives within the closed domain, Maxwell’'s equations
X cos® F <m> } (6b) are uniquely transformed, along with the physical boundary
2\ L. conditions, into the auxiliary system. Hence, it is equivalent

to solve the auxiliary system of (7) in the closed domain, rather
: : . . . than Maxwell's equations. For example, the attenuated fields
re two analytical exampl in Cartesian rdin if . . ) L .
are two analytical examples df in Cartesian coordinates n the PML region, as given by (15) in [6], can be obtained

m, n, p, q, v, andv are equal to or greater than unity. Th . . : . .
parameterd.., L,, andL. are the lengths of attenuation path rOMT gazri:\ft itc?rzss 2??3;)("\/‘\’/';“2 Z elzgﬂ(gr)],slnstead of using the
in the.r, y, andx directions, respectively; they are often take The most important differenge betwéen the curl equations
to be the half dimensions of a rectangular domain. i . . : . . .

An amplitude modulation function satisfying the requireHq g]) and (‘;hf(r)se '? l:/I?jX\évells @unatlo]gs IS dtqevllr;trodllictlon
conditions stated previously establishes a unique relationsg(ﬁeye rggpesle?]:e?o;as:s oerm;%urcesxin aangeﬁeral >r<1ypérbolic

between the physical and auxiliary fields so that the form . ;
can be found from the latter everywhere, except at the exterFé’rStem [13], .[14]' With the qutwardly decayirig, these two
rms result in field attenuation for the outward wave and the

truncation boundary where the function is equal to zero. No&% . .
that, it is not necessary to fin®, and H, exactly on the introduction of the homogeneous boundary conditions (7e) and

boundary The closed surface over which the equivaIenct%n-l;rf'gr(rfgg:?a}gggsftt:e;'fﬂlzgfgﬁ_?:fg ?gcdh;he t;ar:ip?rrenrit
principle is applied to find the far-zonE, and H, can be : ! Iqu u

placed anywhere in the domain, as long as it is exterior ?f?;e;]r:hggnzsu::;;?:é c:gmai,mtr?; f_'l_rxtg Tvitgn%dusﬁ dg:sirsfore’

the subject of study and interior to the truncation boundarg. d to follow standard nomenclature for the truncation of
Usually, this is chosen at one or two cells interior of th sed fo Tollow standa omenclature for the truncation o

truncation boundary. With the help of this surface, the physic%l(l)rnlf)ljt""t'()r1al domains.

fields exterior to it can be obtained by integrating the currents
on the surface, while those interior to the surface are found by
inverting the auxiliary fields obtained with the finite methods. In this section, the reflection characteristics of the TAB
Therefore, a unique solution of the physical fields can beethod will be detailed and some issues related to its ap-
obtained in the entire unbounded space. plication in the staggered Yee scheme will be discussed.

I1l. APPLICATIONS IN FDTD
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to the absorbing region in Fig. 3). The reason for doing so
is as follows. In general, the reflections into the interior
domain are the sum of two parts. One part stems from
the numerical implementation such as the perfect electric
conducting (PEC) termination used in the PML. The other
part is due to the absorbing material itself. The former is not
oLt intrinsic to a particular analytical absorbing technique and it
4 m . varies with numerical implementations. The latter is inherent
to the absorbing mechanism itself and it is difficult to eliminate
by changing implementation methods. Because of its staggered
grids, the Yee scheme used along with the TAB presents an
implementation error source that creates strong reflections. It
| has been shown that the problem is associated with staggered
dm grids only [8], [9]. In the investigation of TAB’s reflection
characteristics, it is necessary to filter out the reflection errors

Absorhing Region

Imteriar Hegion . Line
SO

7 - .
2D that are not caused by the TAB media.
Fig. 3. Configuration of the testing computational domain. In the following tests, the field attenuation in the auxiliary
system is prescribed by the amplitude modulation function
A. Reflection Characteristics of the TAB Flae,y) =14 if (x,y) in the interior domain
. : . T f(x)g(y), otherwise
To demonstrate that, by using TAB, the introduction of an (8a)

“absorbing” medium within the computational domain doegnere

not create reflections, the local reflection errors of a two- lz| — L\* )

dimensional TM-polarized cylindrical wave were computed fl@)=1- <D — L) ;o df 2> L (8b)
using the methodology suggested by Moore [15]. This proce- 4

dure has been accepted and applied by many as a standard gy) =1— <|y| — L) 7 if [y| > L (8c)
numerical technique to compute the reflections of absorbing D—L

boundary conditions in the time domain. Required by Moorewhere L = 2 m is the half dimension of the interior domain
approach, the computational domain (202D) is subdivided while D is that of the entire computational domain and may
into two regions, as shown in Fig. 3. The interior region igary according to the thickness of the absorbing region used
free space with dimensions of 4 m 4 m. It is surrounded in the tests. Keep in mind that it is required by Moore’s
by an absorbing domain filled with absorbing materials. Theethodology (rather than the TAB truncation technique) to
fields inside the computational domain are excited byFan set the modulation function equal to unji(x,y) = 1] inside
sinusoidal source placed at the center. The Yee algorithmtlie interior domain. As a reference, the reflections of the PML
used to approximate (7a) and (b) and all computations wewmere also computed, using the split formulation over the entire
made with double precision. computational domain. The thickness of the PML region may
Using the absorbing domain when testing TAB's reflectiongary between the tests, but the anisotropic conductivity of the
is not contradictory to the earlier claim that the the TAB doeRBML is always quadratic in distribution, witR(0) = 10712
not need the additional absorbing domain. The errors undeiJsing square cells af, the finite-difference approximation
investigation are those reflected by the TAB medium rath&y (7a) and (b) of the TM-polarized wave is given as follows:
than the total numerical errors. Those computed in the mten?!r n—|—2
region usually include both the reflection errors of the TAB as”
well as the truncation errors of the finite-difference scheme. B; B; .
If the TAB is applied in the interior region only, (7a) and (b) ) [( )E |z1+1 <1 + )E | } (92)
instead of Maxwell's equations govern the field solution in the +1 o1
region. Consequently, Moore’s method would not be able fuli; 2 =Hyli;® +77—
cancel out the truncation errors with the solution of Maxwell's o
equations in a reference “open” domain. Therefore, it is neces- [( )E |z+ . ( + 3)Ezl?_%,j] (9b)
sary to use the extra absorbing domain in order to measure the y il
reflections of the TAB. In practice, the total error instead of thé&= ;' i E.|; ;T ’W?o{ [( 2/)Hy|i+§7j
reflection error is of concern; thus, the TAB applies the absorb- 3, X
ing medium in the interior region only. The computational do- - ( )H |"_+_2 } - [(1 - —’)fo’f’i
L . . . . i—5.J 2 hits
main is then terminated at the boundary of the interior region.
The time duration is determined such that the measured _< /3 )H |n+ ” (9c)
reflections are created only by the TAB medium in the ab- i3
sorbing region and propagating into the interior region. Thighere~ = <t s the Courant number, = /:o is the wave
can be done by stopping field updating before the outgoin . A ’
waves reach the exterior truncation boundary (the one exterjiripedance in free-space, and; = f B =

) are the
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— TAB (A=5.0cm)
— - PML(A=5.0 cm}
PML {A= 2.5 cm)

_ PML (40 layers)
i !
. |

A LA A SUNTINSSNA S
VA A ATV v PAVIRS
R VN

Local Reflection Error
Local Reflection Error
=

2 1 0 1 2 2 1 0 1 2
x {(m)

Fig. 4. Local reflection errors as a function of the thickness of the absorbifig. 5. Effect of reducing cell size on the local reflection error of the split
materials. PML.

— TAB(s=1.0m)
—- PML{s=1.0m)}
--- TAB(s=15m)

-+ PML{s=15m)

coefficients associated with the introduction of the anisotropic
TAB attenuation, respectively. The ternfs and ¢’ represent
the first-order spatial derivatives ¢gfand g, respectively.
First, the effect of the attenuation length (i.e., the thicknessg
of the absorbing domain) on the reflections are examinecg

TOT

The operating frequency is 300 MHz, the cell sizeis 5 §
cm (i.e., %), and the Courant numbey is 0.7. The local E 10°
reflection errors are measured along dashed line shown da

Fig. 3, with s = 1 m. Attenuation lengths of 0.4 m and § 10
2.0 m (i.e.,, 8 and 40 cells) are used in the computations,1 o
respectively, and the time duration is 70 steps for the former

while 100 steps are used for the latter. An eight-layer PML ,u
is commonly used in practice; using 40 layers makes the
attenuation length equal to the distance from the source l_llo
the boundary of the subject domain, which enables the first

reerc’Fed wavefront to g_et close to the center of. the interi@¢rors in the PML computations are introduced most likely by
domain before the outgoing waves reach the exterior boundagya split equations instead by the loss mechanism of the PML.
The results are shown in Fig. 4. With'eight layers, the PML Next, the dependence of the TAB on the incident angle is
achieves a local reflection of 16 to 10~> (or about—90 dB) investigated by collecting data along the lines= 1 m and
while that of the TAB is about 20 dB lower<(~110 dB). ; _ 1 5 m, respectively. At a given position, the reflections
Using 40 layers makes the attenuation functions (exponenig® the two lines are from different reflection angles. The
for the PML and polynomial for the TAB) flatter alongoperating frequency is 300 MHz, the cell sizeis 5 cm,
the attenuation path, which results in better finite-differenggq the Courant numberis 0.7. The attenuation length is 2.0
approximations. The smoother amplitude modulations yielf (j.e., 40 cells), while the time duration is 100 steps. Like
about 40-dB improvements for both the PML and TAB.  the PML, the TAB has similar local reflection errors along the
The difference between the PML and TAB results is atwo different lines, as shown in Fig. 6, which indicates that
tributed to the split formulation, which is only an approximatéhe the loss mechanism is independent of the incident angle.
equivalence to Maxwell's equations [17]. To reduce the ef- Finally, the TAB'’s independence of frequency is verified in
fect of this approximated equivalence, the cell size for thEg. 7. The attenuation length, cell size, Courant number
split formulation is reduced by half. Since the split formulag, and time duration are the same as those of Fig. 6. The
are second-order approximations to the Maxwell's equationsperating frequencies are 150 and 300 MHz, respectively.
the discrepancy between Maxwell's equations and its spieflection errors were measured along the knre 1 m. As is
counterparts is reduced by a factor of four. Meanwhile, thexpected, the computed local reflection errors are independent
truncation errors of the second-order Yee finite difference thef the frequency for both the PML and TAB. Thus far, it has
approximates the split formulas are also reduced by a factsgen demonstrated numerically that the TAB is a reflection-
of four. Totally, the numerical errors are reduced by a factéee loss mechanism like the established PML.
of 16. Fig. 5 shows the results for the case of 2.0 m (40 o
cells) absorbing region. Using the smaller cells reduces tRe APPlication of the TAB to FDTD
local reflection error of the PML and the reduction shows The development of the TAB is to provide an alternative
the behavior of second-order approximations. Thus, the extreethod to truncate a computational domain without intro-

6. Local reflection errors that are independent of incident angles.
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— TAB (300 MHz)
— - PML (300 MHz)
- =+ TAB (150 MHz)
107 | ) PML (16) MHz)
N
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Local Reflection Error
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-11

10

x {m)

Fig. 7. Local reflection errors that are independent of frequencies.

ducing artificial reflections. It has been shown that the TA
successfully truncates the computational domain of the coll

cated Lax—Wendroff finite-difference scheme [8], [9]. It als

some challenging issues.

The Atrtificial Metal Wall: In the Yee scheme, the electric

and magnetic fields arstaggered i.e., they are located a
half-cell apart. An one-dimensional (1-D) illustration of th

gorithm to the H field of the 1-D problem results in the
finite-difference equation
i n
(- 252)er.

“it3 \ ppn
—~ <1+T>E|Z}. (10)

When¢ = N — 1, which represents thé&l-field point next to
the truncation boundary, (10) reduces to

gl it

Mo

n+i_ n—1 ¥ C)é]\r7; "
i = - 2 (1o 2
Qp_1
- (15 e
where £

it is equal to zero becausgy
last electric field point®

= 0. Although the next-to-
is not on the boundary, the

n
N-1

coefficient associated with it is
Af!
Qpr_ L r_ 1
1+ N 2 :1+ N 2
2 2fn_1
fN—l + éflf_l r
_INvmE e INey I g )
fN—% fN—%

Consequently, the spatial difference in (11) is
which reduces the equation to

2
F_1-
N—3

n—l—% NHn—

1 —
N—3

H

(13)

e
staggered grids is illustrated in Fig. 8. Applying Yee's ala
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[0}

E N-3 E N-2

Fig. 8. One-dimensional illustration of a staggered grid, such as Yee’'s.

1
2

That is, the value off T

depends mainly on its previous

1

2
valueHXfi. If the initial value is zero,H|y_1 will be
close to zero for all the time steps. Since tlecomponent at
that spatial position is not subject to the near-zero condition,
the fact thatHN_% is always close to zero is equivalent to a
magnetic conducting wall at the position. Similarly, an electric
conducting wall can be formed if the truncation boundary
falls on theH instead ofFE field points. These artificial elec-
ric/magnetic conducting walls reflect fields strongly, which is
ot desirable for a domain truncation technique.
9"t should be pointed out that the artificial electric/magnetic

to identical near-zero conditions; both components are very
small near the truncation boundary due to the “absorption”
of the TAB. Therefore, there exist no such artificial walls in
collocated schemes, as is demonstrated in [9].

One way to circumvent the problem is to modify the finite-
ifference scheme near the truncation boundary such that the
fields next to the truncation boundary will not be near zero all
the time. The Lax—Friedrichs scheme [19] is used to replace the
Yee scheme at the grid points half-cell interior to the truncation
boundary. The scheme uses spatially averaged values in the
time differencing. Thus, the finite-difference equation at the
last H point becomes

ntl 1 no1i n_1
HNf% = §(H N—21 +HN 2)
Qp_ 1 Qp_ 1
R i G
1 n-i an_1 n 1 . n-t1
:QHArl‘i—a(]."— 2 2>EAY—1:§H]V1
(14)

" is on the homogeneous truncation boundary afgstead of (11) and (13). In (14)iy_, is the field at the

grid that is aonecell, instead of ahalf-cell, interior to the
truncation boundary. With this local modification, the field
variation near the half-cell point will be channeled into it
through the averaging process and ﬂﬁg_% will not be close
to zero all the time. Therefore, the effects of the magnetic
conducting wall are reduced. The challenge c1>f this local
modification is to find the appropriate value f&iy 3 in (14)
since it is located between twH grid points. Interpolations
using the existingd grids were tested.

To test the effect of the local modifications near the trun-

nearly 2€"xtion boundary, a 1-D problem is examined numerically,

using the following configuration. The computational domain
is 2. = 4 m in length and it is discretized with = 0.025\
cells. A plane wave source is located in the middle of the



PENG AND BALANIS: GENERALIZED REFLECTION-FREE DOMAIN-TRUNCATION METHOD 1021

— Exact
FDTD (moditied)
N ~ — - FDTD (Yee)

1.0

i
W

Wave Distribution
IS =
Yt o

-1.0

Wave Distribution in Symmetery Plone

]'O_z ] 0 1 9 B i il i LA
x (m) xim)
Fig. 9. One-dimensional field distributioff, of a plane wave traveling Fig- 10. Field distribution along the symmetry plane of a 2-D problem
outwardly in both directions obtained using Yee's staggered scheme.  Obtained with an entire domaify.

domain and the wave propagates in both directions. TheThe Effect of the Interpolation Scheme&s mentioned in
following amplitude modulation function is used to terminatéhe previous section, the effectiveness of an interpolation

the domain: scheme, used to find the fields between regular grid points
|z| 4 _ depends on the the value ef In a 2-D problem,y has
flz)=1- <f) . fjz| < L (15) to be smaller thanZ- because of the stability condition.

In this section, the effects of the interpolation schemes on

The Courant number is chosen as 1; the time duration g requction of the reflections from the artificial magnetic
400 steps, which is sufficiently long for the artificial reflectegonducting walls are examined.

waves to bounce back and forth a few times between therne 2.0 Yee scheme for a TM polarized case is given in
boundary points to show the effect of reflection errors O®). The amplitude modulation function
the results (it takes 80 steps for the plane wave to travel) .
|y
1— (=
(2

from the source to the boundaries and vice versa). The Ioca}?( )= f(a)gly) = |1 - || *
modification of (14) replaces the Yee scheme of (11) at the LY = I = L,

. is defined over the entireL, x 2L, square domain shown as
N2s) (16) the insert in Fig. 10 withL, = L, = 1 m. An E, sinusoidal

last H point. The second-order interpolation of

) ) ) ) source is placed at the center of the domain operating at 300
is used to find theHy_, that is collocated WIthEx_i. \pz The cell size is 0.025, the Courant number is chosen
The computed auxiliary®' field is converted back 1%, 5 pe 0.7, and the time duration is 200 steps that is sufficiently
and compared with the exact solution. The numerical resuffz,q 15 show the effects of the reflection due to the artificial
are shown in Fig. 9. The results represented by the daghsgnetic conducting wall (it takes about 60 steps for a wave
dot line were obtained using Yee's scheme without any locg] {raye| from the center to the boundary or vice versa). The
modification near the exterior truncation boundary. They afgqts are inversely transformed and then compared with the
not in good agreement with the exact solution. The squaig,q space computations that were performed for the same
dots represent the results computed with the local modifigthe quration in a 8 mx 8 m domain discretized using the

scheme, as represented by (14) and (16); they agree quite Wglhe cell size. All the calculations were performed with single
with the exact solution. precision.

However, it was found that the effectiveness of the inter- Fig. 10 shows the distribution of thE. component along

polation given in (16) depends on the choice of the Courafife symmetry plane with different interpolation schemes. The

_ cbt. _ 1 . .
numbery = < v = 1 happens to be the optimal value forsecong.-order interpolation scheme of (16) does not perform
the second-order interpolation. The third-order interpolation ¢ \vell as it did in the 1-D case because= 0.7 is not

(19)

n—1l
H NG+ H

n—1l 1
ol

n

-1 n—1 its optimum value. The higher order interpolations of (17)
N1 =H N-15 (17)

and (18) helped to reduce the reflection and improved the
and the fourth-order one numerical results noticeably; but efforts such as finding the
1 a1 optimum ~ for the third- or fourth-order interpolations are

n—1 — L
Ne135— %H N—25 (18) needed to reduce the errors even further.

may provide alternatives to different values. Using the The global root mean square (rms) errors
Lax—Friedrichs scheme near the boundary is one of many N.,N,

possible techniques to reduce the effects of the artificial g — Z |E.|;,j(closed) — E.|; ;(open)|?
electric/magnetic conducting walls and others may be even 2Ny i=lj=1

more desirable. (20)

H

n—1 1
o4 g
N—-0.5 + 3

n—t 3 __n-

1 1
H N—1 = ZH N—0.5 + §H
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TABLE |
GLOBAL ERRORS ASSOCIATED WITH INTERPOLATION SCHEMES

3rd
1.23 x 1074
0.0821

(1]

4th
89x 10°°
0.0594

2nd
2.13x 1074
0.1426

RSM
FRSM

(2]

[3]
as well as global fractional rms (frms) errors

NN
2oict Ly |Ezli 5(closed) — E.|; j(open)|?
NN
Zi:l,jil |E-;,j(open)|?

for the results of Fig. 10 were also calculated. It is noteds]
that because the modulation function of (19) is used over the
entire computational domain, (20) and (21) calculate the tota},
numerical errors instead of the reflection errors. Table | lists
the computed errors and it shows that with the Lax—Friedrich ]
scheme and interpolations for the local modification neaf8
the truncation boundary, it is possible to achieve numerical
accuracy comparable to the Mur’'s absorbing boundary co 5
ditions [2]. Other approaches should be explored in order to
exploit the potential of the TAB with Yee's staggered scheme.
This is presented as a challenge and further research to
computational electromagnetics community.

(4]
(5]

frms =

(21)

[11]
IV. CONCLUSION

An analytical approach, the TAB, has been presented. THé!
domain truncation method focuses on the consequence [13f
field attenuation rather than the causes of “absorption.” The4
conditions on the transparent transformation are simple an(jj1 e%
large family of amplitude modulation functions can be used for
domain truncation without creating reflections. In addition, thﬁs]
method can be directly applied to time- and frequency-domain
finite methods without modifications to its partial differential
equations. Hence, it is a general approach to computatio
domain truncation.

With the TAB method, a physical problem in an unboundeld?]
space can be solved in a closed domain with the aid of the
auxiliary fields. Like the popular PML method, the TAB is[1g]
reflection-free, independent of frequency, and unconstrain[ﬁg]
by the incident angle. The uniqueness of the TAB is that it
does not need the additional absorbing domain. In addition, it
is suitable to truncate comformally an arbitrary convex domain
by defining the amplitude modulation functidnaccording to
the geometry of the domain.

The TAB itself does not create reflections, as demonstrat
by the examples in this paper and [9]. However, using t
TAB along with the popular Yee staggered algorithm, a*
artificial electric/magnetic conducting wall is formed near th
exterior boundary. Such a problem is associated only w
staggered schemes and is presented as a future challe
The Lax—Friedrichs scheme was tested as a local modificat®®
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