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A Multiresolution Study of Effective Properties
of Complex Electromagnetic Systems

Ben Zion SteinbergMember, IEEE and John J. McCoy

Abstract—A systematic study of the across scale coupling one characterized by a microscale heterogeneity that extends
phenomenology in electromagnetic (EM) scattering problems is gver physical domains measured on the macroscale. This het-
addressed using the theory of multiresolution decomposition erogeneity—nonstationary when observed over the macroscale

and orthogonal wavelets. By projecting an integral equation di . . f dt “ | tt " The t
formulation of the scattering problem onto a set of subspaces that IMensions—iIs referred o as a “complex scatlerer. € tra-

constitutes a multiresolution decomposition ofL,(R), one can ditional scattering formulations govern the complete response
derive two coupled formulations. The first governs the macroscale of the body and require a complete description of the system
response, and the second governs the microscale response. Byeterogeneity (by “complete” here is meant the incorporation
substituting the formal solution of the latter in the former, 4t he entire range of length scales.) The inherent completeness

a new self-consistentformulation that governs the macroscale . f t difficulties for the followi
response component is obtained. This formulation is written on IS a source of great diificuities for the toflowing reasons.

a macroscale grid, where the effects of the microscale hetero- 1) A computational approach for the solution of such
geneity are expressed via an across scale coupling operator. This scattering problems requires a numerical grid sufficiently

operator can also be interpreted as representing theeffective ; ; L
propertiesof the microstructure. We study the properties of this I".irge to cover the entl.re heterogeneity, yet sufficiently
fine to capture the microscale component of the het-

operator versus the characteristics of the Green function and

the microstructure for various electromagnetic problems, using erogeneity—the numerical dimension of which may

general asymptotic considerations. A specific numerical example become too large to handle.

of TM scattering from a laminated complex structure is provided. 2) Any change made in either the micro or the macrostruc-
Index Terms—Electromagnetic scattering, wavelet transforms. ture formally introduces a completely new prob-

lem—one defined again on a microscale grid of
macroscale outer dimensions; that is, there is no
reduction in the required computations occasioned by a
fundamentally difficult problem in wave theory is the lack of change of either the micro or the macrostructure.

prediction of the response field when an excitation is A step in the direction of resolving some of these difficulties
applied to a structure that is described over a wide rangeigfthe recognition that “fine details” of the bodgsponse
length scales. Coupling across scales is the genesis of thgseociated with heterogeneity possessing the complexity ar-
difficulties. From the mathematical point of view it stems fromiculated above, reside essentially in the evanescent spectrum
the essentially nonlinear dependence of a system responsei@fain, thus generating a vanishingly small contribution to
the coefficients of the governing equations. This nonlinearifie radiation far field. A formulation of the scattering problem
exists even if the governing formulation is linear, as is thgssociated with complex scatterer, that d@spriori tuned
case in many problems of interest. to adequately describe the response component measured
When a time-harmonic excitation is applied to such @n the A scale (but not smaller) is, therefore, suggestive.
system, it is convenient to use the wavelengtas a discrim- This formulation is termed here as tfiermulation smooth
inator of the various length scales pertaining to the problemhe governed response—a smoothed version of the com-
Although not precisely defined yet, this wavelength woulgiete response—is termed here as thacroscale response
usually be that associated with the response field of a cow, it is intuitively acceptable that a numerical scheme
responding “background” or homogeneous problem. We shglkcretization based on a macroscale grid would not yield
refer to the scales in the order of and above as the predictions of the macroscale response of satisfactory accuracy
macroscaleand to the range of scales much smaller thgpn no further precautions designed to capture the effects of
A (say, A/50) as themicroscale A complexity frequently the microscale heterogeneity on the macroscale response are
encountered in electromagnetic or acoustic scattering is #@ercised. It is further recognized that the coupling between
the microscale heterogeneity and the macroscale response is
essentially a nonlinear process. Thus, in general, the latter
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The above observations have motivated our study. The Il. THE SMOOTH FORMULATION
purpose of the present work is twofold. As a first objective,
we shall be concerned with a self-consistent derivation af The Mathematical Framework
the formulation smooth That is, a new formulation of the
scattering problem that is written onraacroscale gridand
governs the macroscale component of the response field

The theory of multiresolution decomposition (MRD) and
rthogonal wavelets [7]-[9] provides a natural framework for

L study of interscale coupling processes. There is a rapidly

? qomlp) I?;}( stctatter?fr. -trh? ttherm 'self—colns;]sttent hergt|s met EWing literature on the application of wavelet transforma-
0 Imply that the efiect ot Ine microscale heterogeneity on tig, q 1, operators. Examples are found in [10]-[13]. However,

macroscale. response is expressed via a prgcisgly defined a4 ain concern in [10]-[13] is purely computational in its
scale couplmg opqrator. The new formqlatmn IS t(.) be appl ture: to reduce the number of operations required for the
to nonstationary microscale heterogeneity as manifested by ersion of certain classes of operators by applying wavelet

'comple>.< scattgrer definition. The motivation for this Objectivﬁansformations and reducing a densely populated matrix to a
IS gglaxmtgr]] dm'f.“'?’ tl)d above;[ d ibes the effects of arse one. While this approach may resolve difficulty 1) in
~ihce the articlated operalor describes the elects of 198 qq, | for scatterers possessgamoothheterogeneity, it will
microstructure on the macro?c"?"e response, it Is mterpreteok_@ reduce the number of unknowns for the complex scatterer
an eﬁ_ectwe prqperhes description of the complex scatterer&gse_ Furthermore, the more crucial difficulty 2) is not relaxed
eff_lefﬁnv(ej.frfrj atﬁ.”al' ; ved. h i th . at all. We note that multiresolution analysis and wavelets have
ne dificuties are not resolved, NOWever, It the preciSfae, jseq recently in [14] for numerical homogenization, i.e.,
definition or derivation of the across scales coupling operatpy, generating an equation with slowly varying coefficients
itself requires detailed description of the structure heteroge%ose solution has the same large-scale behavior as that of

ity or massive computations. Unf_ortl_mat_ely, this i_s usually tr}ﬁe original equation. Relation of this type has been pointed
case. Therefore, the second objective is “effective propertigs, -4 detailed also in 5] and [6]. The work in [14] is

StUdyd In this dconr';ext, t.WO ffu;:dan_]ental (lqutra]stlons can voted mainly to a sophisticated “decimation” process in
posed as regar S tiieotprint of the microscale ete‘fogene'tywhich efficient numerical algorithm for estimating the large-
in the macrosc?ale response. The first question is: Wha’,{ ty le response component is developed. It does not directly
of heterogeneity have a footprint?” For the heterogeneity fgyasq any of the fundamental questions articulated in the

which a footprint exists, one might expect that only limiteg o \ction to this work. The problem presented in this paper
information of the heterogeneity is required to estimate if3 jires a different viewpoint and, subsequently, a different
footprlqt in ,th? macrogcale response. The segond quesuondﬁélysis. Below, we briefly summarize the MRD theory in a
“What is this _mfolrmatlon.?" General asymptotic study of _th?‘nanner tailored to the class of problems discussed here.
new formulation is prov!ded and we show how the articu- | o {V;} be a nested sequence of linear spaces that consti-
lated fundamental questions can be addressed. This MesSAlfs MRD of Lo(R). Let ¢(x) and v(x) be the associated
demonstrating the potential of the new approach and W€y ing function and wavelet, respectively, and defing, ()
details of this demonstration, are the main conclusions Qf o transiated and dilated versionddfs) via ¢ (z) =

the study. Regarding the first question, we show the degrge,: (2mz — n), with m,n integers. A similar definition

to which a microscale heterogeneity effects the macroscﬂglds fore The sets{¢. }, and {t;. }.. are orthonormal
. . o mn: Yainfn L Yanfn

response depends on the singularity of the kernel assqgiq ofV; and of the orthogonal complement &f; in

ated with the integral equation formulation of the problerrv,ﬂ

. . . L , respectively. ThusV; = span{¢;,} and V;;; =
Regarding the second question, an investigation as to t{);’e@ span, {4, }. An appr:)ximation of ; functioni(a:) at

degree to which the effective properties operator or some é’]fresolutionk can be written as the sum of two mutually

its components are invariant under classes of variations &Ehogonal functions, namely a smogi®) and a detai(u?)
the macro or microstructures of a complex scatterer and ponents. We have

characterization of these classes is provided. The motivation

of this objective is relaxing (partially, at least) difficulty 2) u(z) ~u(x) + u(x) @
above.
Traditional effective properties formulations are commonlyhere
used in composite materials mechanics for estimating the
. . . =P; = n®Pin s n — , Pin la
macroscale response of a material specimens, which have gx) sule) Enjs Gin(x);  sn = (Us din) (1a)

random heterogeneity [1]-[4]. It is instructive to contrast these b1
applications with the one suggested in this paper. The reagey,.y — Dty (r) = Arran (2, e = (1 P )-
is referred to [5] for a discussion of this issue. (&) jule) g:%zn: Vo) (t: Yrmn)

The structure of the paper is as follows. In Section II, we (1b)
briefly review the tools of multiresolution theory needed for
subsequent derivations and develop the smooth formulatidine asymptotic equality in (1) becomes exact in the liknit:
In Section I, we study the properties of the new formulatiornso. Here, (-, -) denotes the inner product éf,(R) andj < %
essentially via a study of the effective properties operator. i& some reference resolution—a judicious choice of which
numerical example is provided in Section IV and concludindgepends on the physics of the problem. The scaling functions
remarks in Section V. and wavelets satisfy the orthonormality relati@gs,,, ¢,...} =
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6nn’| <"‘/)rnn7 "‘/)rn’n’> = 6rnrn’ 6nn’! and <¢jn’7 r‘/)rnn> =0 \V/J S 15 T
m. Thus, P; and D§ in (1a)—(1b) are projection operators
satisfyingD4P;, = P; D} = 0Vj > 5. ¢ andy are either
of compact support or fast decreasing and centered more or 't
less about the origin. They can be interpreted, respectively,
as defining a local low-pass and a local band-pass filters.
Examples are shown in Fig. 1. From the dilation translation °°
relations articulated above, it follows that the termg,, in X
(1b) are situated, respectively, around the points A

T =027, (2)

The functionsu?®(z) and u?(z) in (1) can be interpreted as
a locally smoothed or averaged, descriptionugf) on the
length scale2—/, and a signal describing the finer details cov-
ering length scales ranging fronT2+% to 2-*, respectively.
Here and henceforth we refer to the number™2and the s - - -2 0 2 4 6 8
indexm as a length scale and the resolution associated with
it, respectively. A wavelet hasd/ vanishing moments

/xmz/)(x)dx:(), m=0,1,---,M — 1. 3)

For the Haar wavelet™ = 1; for the cubic-spline Bat- 1+ ,
tle—Lemarie wavelet\l = 4 [7], [8]. This parameter can be
related to the regularity of the multiresolution system and to
the support of the associated wavelets and scaling functionsost
(see [9] for details and examples).

1) Asymptotic Expressions for the Inner Product&hen
the function f(z) in the neighborhood of: = z,,, varies 0
slowly compared to the lengthscale? and possessey first
derivatives (see (3) fak?), it is possible to derive approximate
expressions for the inner productg, ¢,..) and {f, ¥mn). -osf ]
More specifically, it can be shown that for the cubic-spline U
Battle—Lemarie system shown in Fig. 1 (see [5])

—
x
>

<f, ¢mn> — 2_m/2f(37mn) _ a2—m(2]\4+1/2)0(f21w) (4a) -8 -6 4 -2 ;)( 2 4 6 8
<f7 z/}nln> = /32—771(]\4-1—1/2) f]\l(xnm + 2—771—1) (b)
+/32_"’(M+5/2)O(fM+2) (4b) Fig. 1. The cubic-spline Battle—Lemarie multiresolution system. (a) The

scaling functioné(xz). (b) The wavelet)(z).
where fy;(z) is defined as

d\M singularity [6]. Wavelet coefficients in the presence of an
fu(z) = 0’<L%> f(z) (4c) irregularity have been studied in the general framework of

Holder regularity condition anélolder spaces [9], [12]. Here
whereo = 1, —i for M even, odda and /3 are constants given we shall sacrifice generality and address the issue via a
by a = 2(’;—]&), and 3 = 2—’”[%]1/2. By is the simple example. Ley(z) be a function withrth derivative
Mth Bernoulli number and,,,,, is a point in the wavelet grid discontinuity atr = ' (r = 0 corresponds to a discontinuity
defined by (2). Note that for the cubic-spline Battle—Lemaria g(x) itself). Assume further thag(z) is bounded and can
system one hadf = 4, Byy = 1/30, so«, 8 < 1. Thus, be expressed as
the remaining terms in the right side of (4a) and (4b) are .
small. Furthermore, iffy; = O(1) we get|(f, V)| < 1 for 9(z) = f(z) + h(z) ©)
m > 1;in the limitm — oo the inner product with the waveletwhere f(z) is a smooth functionf(z) € C™ and h(z)
is vanishingly small if the functiorf is smooth. Similar results contains the irregularity ofy(z) in the form

can be derived for other multiresolution systems. _ P ,
{a (=2, forz<z

2) Local Irregularity and WaveletsThe manner in which h{z) = otz — o), forz>

the irregularity of a function reflects on its wavelet coefficients
plays a role in the multiresolution study of scattering effecia a domain defined byz — 2/| < O(1). The rth order
[15]. It is also a central issue in the study of effectiveliscontinuity magnitude across = z’ is given by (at —
properties of complex scatterers, as the effective materiat)r!. The wavelet coefficients gf(x) can now be expressed
operator strongly depends on the nature of the Green funct@® (g, ¢',n) = (f, ¥mn) + (A, ¥mn). Thus, if 277" is small

(6)
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compare to the typical length scale ffz) the first term can smoothed on a reference lengthscafe 2nd the remaining
be approximated by (4b). It can be shown that if the wavelBbe details.s,, andd,,,, are yet to be determined coefficients,
irregularity order is higher than that éfz), the second term representing the smooth and detail parts of the response. With
is bounded by [9], [12] a standard Galerkin procedure one can cast (8) in a matrix
il form, written for the sets of unknown coefficienfs,,} and
m(r+1/2) _ LS |
|<haz/}mn>| S 02 ’ C - O(l) (7) {dmn}_ the result iS [5]

where the constanf’ depends on the specific multiresolution I-% -C e g
system. This bound is valid for ath. < & I- ‘I,> <J’) = <E) (10)

B. A Multiresolution Study of the Scattering Problem where 5 andd are the (unknown) smooth and detail column

The procedure that will be described here can be appli¥8ctors, representing the smooth and detail components of the
to a general linear operator equation. However, to rend&sponsel is an identity matrix,c and £ are the excitation
general ideas more specific and to allow for a straightforwafiinooth and detail column vectors whose elements are the
application to scattering problems we shall refer throughout kgspective (known) coefficients afy(x) and ug(z). @, ¥,

the Fredholm integral equation of the second kind C, and C are matrix operators whose elements are given,
respectively, by

(I)n’,n = <PjLPj(/)jn7 ¢jn’> = <L¢jn7 ¢jn’>
\Ijrn’n’,rnn = <D§LD§¢nln7 z/}nl’n’> = <Lz/}nln7 z/}nl’n’>
b )
Lu= / K(z,z'")u(z") do’ (8a) O mn = <PJLD§¢mnv Pin') = Lpmn, Pjn)

Cm’n’,n = <D§ij¢jnvz/}m’n’> = <L¢jnvz/}m’n’>~ (11)
and whereuo(z) is a forcing term,u(z) is the response to ] .
be determined, ané (z,z’) is a known kernel. This equation Equatlon (11) show the four matrices to actu_ally b_e representa-
occurs widely in diverse areas of mathematical physics and &i@ns of the same operatdr each representation distinguished
gineering. The formulation is said to lsempletein the sense by the subspaces of, on which the operator is to act
that it contains the entire range of length scales associated v@iflfl 0n which the resuits of the action are to be projected.
the problem. In cases where the scatterer is flat and the systeis: for & and C the action is applied to elements in
heterogeneity is characterized by the material properties (e Y., Whereas for® and C the action is applied to elements
local constitutive relations) the scattering formulation can B8 the complement of’;. Further, for® and C the result
written as (8) and (8a) with the following simplifications [5]:°f the action is to be projected o¥; whereas for® and
C the projection is on the complement &f. One further
K(z,2") = G(z — 2")h(2'). (92) noteworthy feature for understandidey ¥, C, andC is that
gase functions for spanning thé space form a one-parameter

Here, G(x) is the Green function of an appropriately define . . . L
) ... Set and one can interpret the representations associated with it
background problem, usually that modeled by a linear differ-

ential equation with constant coefficients, an@) represents as physical-space representations; the base functions spanning

; Lo o . the complement o#/; form a two-parameter set and one can
a material heterogeneity with variations occurring on both the . : o

. interpret the representations associated with it as phase-space
microscale and macroscale—the complex scatterer. In th?seresentations Thu®, ¥, C, andC can be interpreted as
cases, the operatidi can be represented as the backgroung b X o P

operatorL, associated with7(x), operating on the function 4 physical space, phase-space, and mixed-domain operators,

w(x)=uo(z)+Lu a<z<h (8)

whereL is the integral operator defined as

b respectively.
Equation (10) provides the starting point for a multires-
Lu =L, (hu) (9b) olution study of the scattering problem [5], [15] and for a
where self-consistent development of the formulation smooth. From

the lower half of (10),J can be expressed in terms &fand
Lof = | Glo — &) f(z') da’ (9c) . en this is substituted into the upper half o we get
_ E. When this i bstituted i h half of (10
b a formulation governing—the formulation smooth

and, by definition of the complex scatterer, the integration 1_ & — C(I- ¥)"!Cls=¢+CI- ¥)'E. (12
limits in (8a) are affected by:.

With the MRD theory, the integral equation formulatiorit has been shown thaP can be interpreted as a “smoothed
(8) can be decomposed into a pair of coupled formulationgrsion” of the operatoll. (see [5], [6], and [16]); a repre-
governing a length-scale resolved response. We express ghetation of the latter by a straightforward discretization on a
response field:(z) as a sum of two components; the smootreference grid separatid. Thus,C(I — ¥)~!C has been
component.®(xz)—macroscale response and a component thaterpreted as an effective properties operator; an operator
describes the fine detaits!(x)—microscale response. If2 describing the coupling across scales due to the presence
is a lower bound on the lengthscales pertaining to the probleaf,a microstructure. The dependence of this operator on the
thenu(z) ~ Pyu(z), and one can invoke (1) and (1b) wheréeterogeneityh(z) is nonlinear. This fact is the genesis of
»® and u¢ are obtained, respectively, by the response fiettifficulty 2) listed in Section I.
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Ill. PROPERTIES OF THEFORMULATION SMOOTH smooth component and the microscale variation is the detalil

The manner in which the microstructure effects the effectiR®@mponent. We write

material operato€(I-®)~1C in (12) have been investigated
in [5], [6], and [16] for the case of a heterogeneity with a
widely separated micro and macroscales, pertaining to acoudhere,
scattering from a thin, linearly elastic, fluid-loaded plate. Since h*(z) = Z Uy Py () (16a)
these results play a pivotal role in the present theory, we n
shall briefly summarize them in the following subsections . . . .

s expressible as a synthesis of scaling functions and
and develop new results more relevant to electromagnetic
scattering. We assume that the integral operator kernel can diy
be expressed as in (9a). Then, wit}, the adjoint operator of W) = zn: butfmi—1n(@). (160)
L; in (9b), the elements can be rewritten as ’

h(z) = h*(x) + h*(z) (16)

. f as a synthesis of wavelets. The indexin both these equa-
P = (hjn, Ly djnr) = <h‘7)jm‘7)g’n'> (13a) tions, span a region with a physical dimensions described

U mn = P L) = <h¢mm¢7{l,n,> (13b) on hthe me:crozcr;le. Note thadf(x) Iand hd(x)dalre mutuallyd )
. orthogonal and the associated scales are widely separated. The
Crtimn = (Wb Ly i) = (Wb 67, (13¢) synthesis in (16a) and (16b) identifies the spatial averages
Conrnr = (AP jns Lithmns) = <h</)jn,z/;7{l,n,> (13d) of h(z) over neighborhoods in the order of the macroscale
) 2—™e with h® and further implies that spatial averages of
where the “fields"¢/,, and+);,,, can be expressed as the detail componem = h — h* vanish if performed over
neighborhoods larger than the microscale™2. Denoting
¢ (y) = /%’n(ﬂ?)G(w —y)dz = (¢jn,G(-—y)) (14) | .|| the Ly norm, we shall assume throughout the rest of

this work that
and a similar expression holds faf/,, (y). The overline

denotes a complex conjugate. These expressions will be used [p4(2)]|l2 = O(||R*(@)|2) = O(1). 17)

in Section lI-B to study the effective material operator. ) ] )
In other words, the energy associated with the microstructure

is of the order of that associated with the macrostructure and

) . both are beyond the perturbative regime.
Two type lengthscales are defined by the physical system.

The first applies to the variation off(z), induced by the
dynamics of the system. We refer to this as the Waveleng[
(A) scale and to the associated resolutionras The possible
irregularity of G(z) at the origin may introduce additional An interesting general relation between the smooth and
variability over a relatively wide range of lengthscales. Thidetail components of the response field can be derived from
irregularity has an essential role in the theory and it wilhe set (10). The integral equation excitation te#grs nothing

be discussed further. The second type lengthscales is @yé the background system response. In most applications, the
to the System heterogeneity and app“es to the Variatioﬁéter varies on the scale of—the macroscale. Thus, with

of i(x). These variations can range from tieacroscale (4b)., (4c), and (15) we obtain that the detail component of
(>)) to the microscale(<\). The former and the latter arethe excitation term in (10), namel§, becomes vanishingly
associated with the resolutions, andm;, respectively, such small [see discussion after (4c)]. In this case, the lower half
that 2™« > A and 2™ < \. Finally, the reference, or Of (10) vields

smoothing, scale should be carefully selected. Details of scale >

A must be adequately described, whereas microscale details (I-®)d=Cs (18)

gg;l:: ;F\)/;E:g_ed' The following hierarchy of resolutions ar\]/vqwich states that when the excitation is described only on

the macroscale, the relation between the smooth (macroscale)
My Sy K JKm; <2 M and detail (microscale) components of the response field is
> 27 A > 270 > 2 (15) independent of _the_excitation. This relation will be useful in
subsequent derivations.

Essential to the present study is the concept of a “scattererBelow we derive some results pertaining to the effect of the
as a localized region ofmicroscale heterogeneity that is microstructure on the macroscale response—the microstruc-
confined to a domain in space measured onrtteeroscale ture signature—and relate it to the nature(ef
Also essential is the existence of a “gap” in the scales1) SmoothF(z): We assume the integral equation kernel
for observing heterogeneity. Specifically, the system heterfonction G(z) is regular at the origin (that is, it varies on the
geneity is not to posses any component in the range sifale of) for all ). Then, an estimate of the matrix elements
scales (2=™«~1 27mi+1) We term this case a two-scalein (11) can be obtained by invoking (4a)—(4c), (13a)—(14),
(macro/micro) variation. When referred to thescale; i.e., and the scale hierarchy characterization (15). These estimates
the chosen smoothing scale, the macroscale variation is ttee be used to obtain bounds on the matrix norms. Such

A. System Characterization and Scales Hierarchy

. The Response Componenfs «¢, and
e Microstructure Signature
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a procedure was first undertaken in [5]. A more systematic2) SingularG(z): In cases where the integral equation
derivation is given in the appendix of [16]. The results are background kerneal?(z) is singular at the origin, the regularity
assumptions leading to (19a)—(c) cannot be used. Thus, the
|®| < B (19a) inequality [[C(I — ¥)~1C|| < 1 does not hold in general.
= The immediate consequence is that a microstructure can have
ICl < B (aob) o T :
a significant effect on the macroscale response. This has
ICll < 01) (19¢) peen investigated and demonstrated in [6] for the problem
of a fluid loaded thin elastic plate with a one-dimensional
where|| - || denotes the matrix norm induced by the Euclideafd-D) stiffness heterogeneity subjected to a time-harmonic
vector norm, and the bounB is given by forcing. In this case, the kernel functio(x) possesses a
delta function singularity at the origin. The work in [16] uses
B? — [32)\(1 _ 2721\4)71()\27%)71()\2j)72M < 1. (19d the formulation smooth to develop a 1-D effective constitutive
relation pertaining to the plate stiffness heterogeneity.

More relevant to the electromagnetic scattering problems is

The;e estimates are deriveq in [16]. With (1??),_((:1)' Offie case in which the kernél(x) possesses a first derivative
obtains for the gffectwe material operaff©(I - ¥) C” < discontinuity at the origin, as suggested by the exponent
1. The conclusion that under the smoothness conditiolZon ijz—+'| |ndeed. an important special case that is of concern

the macroscale response practically bares no footprint of tﬁethe kernel

microscale heterogeneity follows directly from this last result.

Furthermore, this result establishes that a new formulation G(z) = i gi2mcoslz| (24)
governing the macroscale response compong&ft) is readily cos ¢

obtained from (8)—(9c): The lengthscale on which this kernel varies away from the
origin—the wavelength—is. = 1/ cos 6. With this kernel and
w’(x) = uo(z) + Lph’u® (20) the scales hierarchy (15), the fielqﬂﬁn, i . of (13a) and (14)

can still be approximated by (4a) and (b) for points sufficiently
whereL, is the background operator defined in (9g)(x) is far from the irregularity. Thgse approximate expressioqs dp not
the excitation term (assumed here to vary on the macrosc@RP!y for ally. However, sinc& possesses a first derivative
only) andh*(z) is the locally averaged (smooth componenfjiscontinuity at the origin, we can apply (7) with= 1 to
of the system heterogeneity [see (16)—(16b) and discussfain the general bound
thereafter]. Equation (20) identifieg’(x) as a local effective
property (}f thi systen(1 h)eterogene/lt(yr)). In these cases, the |¢’{m(y)| < c2mme, (25)

formulation smooth and the smoothed formulation are identical 7 .
a P (): 95, (y) themselves possess a second derivative

(a general comment on this issue is made in the introductio . - .
The inequalities in (19a)—(c) can be used to derive an es scontinuity at the origin, we can repeatedly use (7) to obtain

mate on the relation betweeri and«?. From the multiscale |<¢ 7¢f >
resolved formulation (10) mn 2 gt
| <z/}"’"” Zz/}r‘};,’n’>

where z is any bounded function that possesses at least
. . . two derivatives. With these bounds, one may attempt to
Using (19a), and subsequently applying the triangle and opgfudy the operator elements (13a)—(d) and what heterogeneity

ncew;

< o275m/? (26a)
< 022—5771/2—3771’/2 (26b)

(I-®)d=Cs5+E. (21)

ator norm inequalities, we get component dominates each.
We start with the elements oP. With the heterogeneity
Il < ICSI -+ 1LE]| (22) elementsh® and h* of (16) we can write
s =B, + P (27)

where||«|| denotes the Euclidean vector normuifis a vector

or the matrix norm induced by the Euclidean vector norm if
is a matrix. In cases where the excitation texmis described

on the macroscale only (i.g|E]|| = 0, so (18) holds) we get ‘Pf&dn = <hsyd¢jm ¢]fn,> = <hszd’ d)jn¢fn/>- (28)
[with (19b)] . ’ ’

where

The second equality holds singeis real. Using now (16b),
ld]] < 131 (23a) (17), and (26a), we get
(I)d, 2 < 02—5(7717-71) C = O(1). 29
or, denoting|| - || the L, norm (taken over the support of the | " "| - ’ 1) (29)
heterogeneity) A similar derivation givest;, . = O(1). Thus

[lu]l2 < [fu”]]2- (23b) 12| < [[@°]]- (30)
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In other words, the operatdr is dominated by the macroscale Strong
component of the heterogeneity. Reversing the steps, one [ l
achieves with no further approximation _ Weak

By (Loh® by, bime)- (31) H Hﬂ H-.H H H

The operator® can be written as in (13b) or a& feal) 277" 27 277 27m*? 2 lengthscale
Vo mn = (Pmns hiﬁ,{l,n,). Using (26b) yields Fig. 2. A schematization of the cascading process.
|\Ijrn’n’,rnn| < 022—3771’/2—5771/2' (32)

the heterogeneity. To see this, let us rewrite the oper@tor
This bound on the matrix element can be used to deriveaa follows:
bound on the norm of’. The result is (see Appendix) C=C 1+C% O = Lk, ) (36)

2 —65 _
I#[" = 0027 < 1. (33) and a similar decomposition written fo€. Thus, if only

The second inequality follows from the hierarchy in (15), witihe macroscale (or only the microscale) structure has been
A = O(1), and with the condition that the scatterer outeéthanged, one has flo [e(j:ompute only the operaitirsC* (or
dimension is on the order of the wavelength. This inequali§nly the operator€, C*). In any case, no inversion of small
suggests a Neumann series expansiofl to®)~1. Then, the Scale or mixed data operator is needed to get the effective

effective material operator can be expressed as the series Material operator. Even though the expresso@ for the
effective material operator is approximate, we shall see that it

CI-¥)'C= Z R, = Z ce"C (34a) yields an accurate prediction of the macroscale response.
n n Another interesting and useful implication of the inequality
where the norms of the expansion terRs are bounded by in (33) concerns the relation bgtween the smooth and the detalil
- - ' B components of the response field. From (18) we now have
IRall = |C® € < Sl @|"€] < 2 * T o an
(34b) -
which means that once we predict the macroscale response
One should be careful in interpreting this inequality. Thehe prediction of the microscale response does not require any
relations between the norm bounds do not necessarily transigtgsrsion of operator that incorporates small scale data and,
to the norms themselves. The norm boundsRof decrease fyrther, this relation is independent of the forcing.
monotonically (and rapidly) witm. Nevertheless, in general 3) Remark: The results obtained in this section, especially
one may encounter a situation where the norm itself dogsSection I11-B, hold also for scatterers that possess macro and
not decrease monotonically. An example is the case wheffcrostructures ¢ more general then those specified in (16a)
CC = 0 for which we have0 = |Ro|| < [[Rx|| for all and (b). For example, one can have more scales in the wavelet
n > 0. However, ifCC # 0 we can always find: such that synthesis of:® (16b), but the large gap between the micro and

IRol| > [|R..|| for all m > k. Furthermore, ifj is sufficiently macroscales, as well as the “finite energy” conditions (17),
large [see (33)], this can hold right &t= 0 (that is, for all muyst be maintained.

m > 0).
Let us assume that this indeed is the case. Then we can IV. AN APPLICATION
approximate the effective material operator §C plus a

small reminder We shall be concerned with the response fieldf a planar

wave velocity inhomogeneity in a two-dimensional (2-D)
CI-¥)"'C=CC+R, |R|<|CC|. (35) (z,z) space, illuminated by a plane wave, of a unit
amplitude and a unit wavelength= 1. The layers are parallel
The accumulation of near-field interactions taking place ong the » axis and the incident plane wave propagates with an
given small scale, say 2" («27), can couple to the large- gngle ¢ relative to the negative: direction. With no loss of
scale response either directly, or by successively cascadijitherality, we assume that the wave velocity inhomogeneity
upward from 2™ to 27™+1, then to 272, etc. The last j5 5 manifestation of variations in the material dielectric
result states that when the conditions leading to (35) @goperties. Its outer dimensions in the ordenofsay, 2-3),
satisfied, the former route is dominant (see discussion afighereas the inner variations are measured on lengthscales
(11) for an interpretation of the operators). This is schematizggl,ch smaller thar\. The system configuration is shown in
in Fig. 2. Conversely, ifCC = 0, the across-scale couplingrig. 3. This problem can be used, for example, as a basic
mechanism is manifestednly by an energy that cascadesyogel for the study of the effective electromagnetic properties
upward in a series of successive small steps. of composite material laminates.
The expression in (35) suggests the approximation of thethe system response is governed by the generic wave

effective material operator bC. This approximation is very equation (assuming a unit vacuum wavelengths 1)
appealing as it relaxes difficulty 2) listed in the introduction.

2
This is because the effective material operator can now be d_2 + 4n? cos? 6 4 47’ h(z) |u(z) = S(z).  (38)
factorized into two operators, each is linear with respect to dx
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N —— Fig. 4. Square of the refraction index of (41).

a fraction of a wavelength. The corresponding heterogeneity
Fig. 3. A schematization of the system configuration. function h(x) have been computed for the TM case via
(39). The result is shown in Fig. 5. Fig. 5(a) shows the
complete heterogeneity functidrix). It is certainly consistent
with our definition of a complex scatterer. Fig. 5(b) and (c)
show its macroscaléh?(z)) and microscaléh?(x)) compo-
nents, respectively, separated according to the discussion in
Section IlI-A (see also a remark at the end of Section IlI).

The electromagnetic field solutions are obtained fra(e)
via E,(z,z) = wu(z)e’?™=*n¢ for the TE case and via
Hy(z,z) = n(z)u(z) ¢?7=m? for the TM case. Herep(z)
is the refraction indexi(x) is the heterogeneity function

n?(z) -1 for TE A TM scattering problem withw(z) given in (41) (that is,
h(z) = {n2($) + ["_(T) _gn” (m)} —1 forT™ the heterogeneity functiofa(«:) is the one shown in Fig. 5) and
L@ () (39) Plane wave incidence angle= 30° is chosen for a test case.

and S(z) is any source term that generates the incidefP generate a reference solutio_n, the corresponding integral
field. The generic wave (38) can be rewritten with the tenfduation was solved by a straightforward moment method
472h(z)u(z) in the right-hand side. Then, one can reprélpproach based_onagnd s_ufﬁmently fine to capture thg details
sent the solution as a convolution of the 1-D homogeneo@/“(x) (the point separation was chosen to hé4, which
medium Green function with the extended source tém)—  corresponds to the resolution; = 6). Then, using a reference
472h(x)u(z). The result is the integral equation formulatiorfésolution; = 3 [see (15)], the resulting complete solution was
(8)-(9c), whereZ(z) andh(z) are given by (24) and by (39), separated to its macroscale and ml_cros_cale compomé_hts
respectively, andi(z) is determined by the unit amplitude@d u“(z). The results are shown in Fig. 6. To examine the
incident electromagnetic plan wave in the absence of tgtgnificance of the microstructure!, we have solved the same

heterogeneity(n(z) = 1) problem with onlyh® present [Fig. 5(b)]. The result is shown
‘ in Fig. 7. Clearly, the resulting:® is completely different
uo(x) = e2rEees?, (40) from the one that corresponds to the heterogenkity) =

: h*(z) + h%(z), shown in Fig. 6. Hence, as expected, the
Thus:, for complex heterogeneityr(z), the results of microscale component of the heterogeneity has a significant
Section 11I-B.2 directly apply.

We turn now to demonstrate the results of Section I11-B ffect on the macroscale response. We have repeated this
Ve turn now fo demonstrate the Tesults ot section TH-b. xperiment with’ that corresponds ta(z) the same as that
via numerical simulations. Of particular interest is the T

. o o In (41), but withd = 0 (no microstructure on the level of
case, since terms of the form’™()/[n(z)ko]” with 7_1(35) n(z)). Again, the resulting:® deviated significantly from the
that varies on length scales much smaller thaoontribute

N ! . macroscale response in the presence of the microstructure.
a very significant microscale component/t), even if the Finally, we turn to examine the smooth formulation (12)

_mlcroscale_comporjent of the ref_ract_lon index is small. T@ — 0), where® is computed with* only [see (27)~(31)],
illustrate this, consider the refraction index . . .
and the effective material operator construction suggested after
n(z) =1+ ¢ /?[a+ beos(2mz/L)] (41) (395)

with @ = —0.5, b = 0.05, and L = 1/12. The functionn?(x) C(I-¥)'C~cCC. (42)

is plotted in Fig. 4. Clearly it possesses a macrostructure of

outer dimension in the order of several wavelengths andThe operatorsC and C have been evaluated via (36). An
small magnitude microstructure that varies on a lengthscaleagfproximate prediction of the macroscale response was then
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Fig. 5. The heterogeneity function that correspondsnfa’) of (41) for a TM problem. (a)k(x). (b) The macroscale componehf(x). (c) The
microscale componenk?(x).

obtained by solving the approximate smooth formulation coupling operator. The latter can also be interpreted as an
s o s ey o effective material operato(EMO) description of the hetero-
[L— @ - (C"+ CHC + O = 2. (43) geneity. The EMO norm is predominantly determined by the
Note that this formulation does not require any inversiogingularity at the origin of the associated integral equation
of small scale or mixed-scale data. Its solution requires &grnel. The more singular the kernel the higher the norm and
inversion of an operator written completely on a macroscadilee stronger is the effect of the microscale heterogeneity on
grid. The approximated macroscale response solutigp(x) the macroscale response. Since the articulated kernel is usually
obtained from the approximated coefficients vecig, is nothing but the Green function associated with the corre-
compared in Fig. 8 to the exact macroscale solution compongpbnding “background” problem, it follows that the effects of
of Fig. 6. TheZ; norm of the normalized deviation betweernhe microscale heterogeneity’ on the macroscale response

the lines within the domain shown is about 3%. «® are predominantly determined by timear-field behavior
of the corresponding background system. This conclusion is
V. CONCLUSION intuitively appealing; the microscale structure can be viewed

Multiresolution technique has been used to develop a ti@s @ collection of point scatterers separated by distances
ory for effective properties of complex scatterers. A newiuch smaller then the wavelength. Then, their effect on the
formulation that governs the macroscale component of tReacroscale response is interpreted as the result of accumulated
scattered field is obtained—tfsenooth formulatior(12). This multiple near-field interactions.
formulation is written on amacroscalegrid, whereas the The EMO properties have been studied for cases in which
effects of the microscale heterogeneity on the macrosc#e associated integral equation kernel possesses a second-
response are expressed via a precisely defined across saalgsr singularity. It has been shown that it can be approx-
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Fig. 6. Magnitude of TM solution and its components fafz) shown in
Fig. 5(a). Solid and dotted lines (- - - - - -): macroscalg(«®) and
microscale(u?) components. Dashed line (- - -): the complete solution.
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Fig. 7. The same as Fig. 6, but f6f only [shown in Fig. 5(b)].
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Fig. 8. Magnitudes of:* for A shown in Fig. 5(a). Solid line.(__): exact

mAcro-scale response — exact _
mAcro-scale respanse — approximated formulation smooth -

u®. Dotted line (- - -):«® obtained via the approximated smooth formulation

(43).
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imately factorized into two parts, each dependiivgearly

on the heterogeneity. Thus, in its approximated form, no
inversion of small-scale information is needed. This fact has
far-reaching ramifications. It means, for example, that when
changes are introduced into eithkt or h¢, one need not
solve a completely new problem or invert a new operator
written entirely on a superfine grid. Use can be made of
previous knowledge of the heterogeneity and its representing
operatorsC and C—the only component that depends on the
altered part ofh has to be re-evaluated and, in any case,
this evaluation does not require operator inversion. These
results, obtained via general asymptotic considerations, are
demonstrated numerically for the case of 2-D scattering of
TM wave from a laminated complex structure.

APPENDIX
THE BOUND ESTIMATE IN (33)

With the Euclidean matrix norm inequalityj®||> <
Dot ntmm |V, mn|? @nd (32), one has

||‘I’||2 < 04 Z 273m'7ém'

m’.n ,mmn

(A1)

The summation oven andn’ depends onan andm’, respec-
tively, as the number of grid points associated with resolution
m scales likeNy2™, where Ny = 27™=(O(1) is the number

of points at resolutiord. Thus

’ 4 .
||‘I’||2 S 042—2nla Z 2—2771 —4m — 6_042—2771&2—6].
45
m/ m=j

(A.2)

The result in (33) now follows from the condition that the scat-
terer outer dimension 2"« is on the order of the wavelength
A, A = 0(1), andC = O(1).
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