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A Multiresolution Study of Effective Properties
of Complex Electromagnetic Systems

Ben Zion Steinberg,Member, IEEE, and John J. McCoy

Abstract—A systematic study of the across scale coupling
phenomenology in electromagnetic (EM) scattering problems is
addressed using the theory of multiresolution decomposition
and orthogonal wavelets. By projecting an integral equation
formulation of the scattering problem onto a set of subspaces that
constitutes a multiresolution decomposition ofL2(R), one can
derive two coupled formulations. The first governs the macroscale
response, and the second governs the microscale response. By
substituting the formal solution of the latter in the former,
a new self-consistentformulation that governs the macroscale
response component is obtained. This formulation is written on
a macroscale grid, where the effects of the microscale hetero-
geneity are expressed via an across scale coupling operator. This
operator can also be interpreted as representing theeffective
propertiesof the microstructure. We study the properties of this
operator versus the characteristics of the Green function and
the microstructure for various electromagnetic problems, using
general asymptotic considerations. A specific numerical example
of TM scattering from a laminated complex structure is provided.

Index Terms—Electromagnetic scattering, wavelet transforms.

I. INTRODUCTION

A fundamentally difficult problem in wave theory is the
prediction of the response field when an excitation is

applied to a structure that is described over a wide range of
length scales. Coupling across scales is the genesis of these
difficulties. From the mathematical point of view it stems from
the essentially nonlinear dependence of a system response on
the coefficients of the governing equations. This nonlinearity
exists even if the governing formulation is linear, as is the
case in many problems of interest.

When a time-harmonic excitation is applied to such a
system, it is convenient to use the wavelengthas a discrim-
inator of the various length scales pertaining to the problem.
Although not precisely defined yet, this wavelength would
usually be that associated with the response field of a cor-
responding “background” or homogeneous problem. We shall
refer to the scales in the order of and above as the
macroscaleand to the range of scales much smaller than

(say, ) as the microscale. A complexity frequently
encountered in electromagnetic or acoustic scattering is the
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one characterized by a microscale heterogeneity that extends
over physical domains measured on the macroscale. This het-
erogeneity—nonstationary when observed over the macroscale
dimensions—is referred to as a “complex scatterer.” The tra-
ditional scattering formulations govern the complete response
of the body and require a complete description of the system
heterogeneity (by “complete” here is meant the incorporation
of the entire range of length scales.) The inherent completeness
is a source of great difficulties for the following reasons.

1) A computational approach for the solution of such
scattering problems requires a numerical grid sufficiently
large to cover the entire heterogeneity, yet sufficiently
fine to capture the microscale component of the het-
erogeneity—the numerical dimension of which may
become too large to handle.

2) Any change made in either the micro or the macrostruc-
ture formally introduces a completely new prob-
lem—one defined again on a microscale grid of
macroscale outer dimensions; that is, there is no
reduction in the required computations occasioned by a
lack of change of either the micro or the macrostructure.

A step in the direction of resolving some of these difficulties
is the recognition that “fine details” of the bodyresponse
associated with heterogeneity possessing the complexity ar-
ticulated above, reside essentially in the evanescent spectrum
domain, thus generating a vanishingly small contribution to
the radiation far field. A formulation of the scattering problem
associated with complex scatterer, that isa priori tuned
to adequately describe the response component measured
on the scale (but not smaller) is, therefore, suggestive.
This formulation is termed here as theformulation smooth.
The governed response—a smoothed version of the com-
plete response—is termed here as themacroscale response.
Now, it is intuitively acceptable that a numerical scheme
discretization based on a macroscale grid would not yield
predictions of the macroscale response of satisfactory accuracy
if no further precautions designed to capture the effects of
the microscale heterogeneity on the macroscale response are
exercised. It is further recognized that the coupling between
the microscale heterogeneity and the macroscale response is
essentially a nonlinear process. Thus, in general, the latter
cannot be characterized as a response governed by the same
scattering formulation with the heterogeneity simply made
smooth. (Hence, the terminology; a smooth formulation is
that obtained by the heterogeneity made smooth while the
formulation smoothis the formulation governing the smoothed
response. They are not the same.)
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The above observations have motivated our study. The
purpose of the present work is twofold. As a first objective,
we shall be concerned with a self-consistent derivation of
the formulation smooth. That is, a new formulation of the
scattering problem that is written on amacroscale gridand
governs the macroscale component of the response field for
a complex scatterer. The term “self-consistent” here is meant
to imply that the effect of the microscale heterogeneity on the
macroscale response is expressed via a precisely defined across
scale coupling operator. The new formulation is to be applied
to nonstationary microscale heterogeneity as manifested by the
complex scatterer definition. The motivation for this objective
is relaxing difficulty 1), above.

Since the articulated operator describes the effects of the
microstructure on the macroscale response, it is interpreted as
an effective properties description of the complex scatterer or
effective material.

The difficulties are not resolved, however, if the precise
definition or derivation of the across scales coupling operator
itself requires detailed description of the structure heterogene-
ity or massive computations. Unfortunately, this is usually the
case. Therefore, the second objective is “effective properties
study.” In this context, two fundamental questions can be
posed as regards thefootprint of the microscale heterogeneity
in the macroscale response. The first question is: “What types
of heterogeneity have a footprint?” For the heterogeneity for
which a footprint exists, one might expect that only limited
information of the heterogeneity is required to estimate its
footprint in the macroscale response. The second question is:
“What is this information?” General asymptotic study of the
new formulation is provided and we show how the articu-
lated fundamental questions can be addressed. This message,
demonstrating the potential of the new approach and the
details of this demonstration, are the main conclusions of
the study. Regarding the first question, we show the degree
to which a microscale heterogeneity effects the macroscale
response depends on the singularity of the kernel associ-
ated with the integral equation formulation of the problem.
Regarding the second question, an investigation as to the
degree to which the effective properties operator or some of
its components are invariant under classes of variations of
the macro or microstructures of a complex scatterer and the
characterization of these classes is provided. The motivation
of this objective is relaxing (partially, at least) difficulty 2)
above.

Traditional effective properties formulations are commonly
used in composite materials mechanics for estimating the
macroscale response of a material specimens, which have a
random heterogeneity [1]–[4]. It is instructive to contrast these
applications with the one suggested in this paper. The reader
is referred to [5] for a discussion of this issue.

The structure of the paper is as follows. In Section II, we
briefly review the tools of multiresolution theory needed for
subsequent derivations and develop the smooth formulation.
In Section III, we study the properties of the new formulation,
essentially via a study of the effective properties operator. A
numerical example is provided in Section IV and concluding
remarks in Section V.

II. THE SMOOTH FORMULATION

A. The Mathematical Framework

The theory of multiresolution decomposition (MRD) and
orthogonal wavelets [7]–[9] provides a natural framework for
the study of interscale coupling processes. There is a rapidly
growing literature on the application of wavelet transforma-
tions to operators. Examples are found in [10]–[13]. However,
the main concern in [10]–[13] is purely computational in its
nature: to reduce the number of operations required for the
inversion of certain classes of operators by applying wavelet
transformations and reducing a densely populated matrix to a
sparse one. While this approach may resolve difficulty 1) in
Section I for scatterers possessingsmoothheterogeneity, it will
not reduce the number of unknowns for the complex scatterer
case. Furthermore, the more crucial difficulty 2) is not relaxed
at all. We note that multiresolution analysis and wavelets have
been used recently in [14] for numerical homogenization, i.e.,
for generating an equation with slowly varying coefficients
whose solution has the same large-scale behavior as that of
the original equation. Relation of this type has been pointed
out and detailed also in [5] and [6]. The work in [14] is
devoted mainly to a sophisticated “decimation” process in
which efficient numerical algorithm for estimating the large-
scale response component is developed. It does not directly
address any of the fundamental questions articulated in the
introduction to this work. The problem presented in this paper
requires a different viewpoint and, subsequently, a different
analysis. Below, we briefly summarize the MRD theory in a
manner tailored to the class of problems discussed here.

Let be a nested sequence of linear spaces that consti-
tutes MRD of . Let and be the associated
scaling function and wavelet, respectively, and define
as the translated and dilated version of via

, with integers. A similar definition
holds for . The sets and are orthonormal
bases of and of the orthogonal complement of in

, respectively. Thus, span and
span . An approximation of a function at

a resolution can be written as the sum of two mutually
orthogonal functions, namely a smooth and a detail
components. We have

(1)

where

(1a)

(1b)

The asymptotic equality in (1) becomes exact in the limit
. Here, denotes the inner product of and

is some reference resolution—a judicious choice of which
depends on the physics of the problem. The scaling functions
and wavelets satisfy the orthonormality relations
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, , and
. Thus, and in (1a)–(1b) are projection operators

satisfying . and are either
of compact support or fast decreasing and centered more or
less about the origin. They can be interpreted, respectively,
as defining a local low-pass and a local band-pass filters.
Examples are shown in Fig. 1. From the dilation translation
relations articulated above, it follows that the terms in
(1b) are situated, respectively, around the points

(2)

The functions and in (1) can be interpreted as
a locally smoothed or averaged, description of on the
length scale , and a signal describing the finer details cov-
ering length scales ranging from 2 to 2 , respectively.
Here and henceforth we refer to the number 2and the
index as a length scale and the resolution associated with
it, respectively. A wavelet has vanishing moments

(3)

For the Haar wavelet ; for the cubic-spline Bat-
tle–Lemarie wavelet [7], [8]. This parameter can be
related to the regularity of the multiresolution system and to
the support of the associated wavelets and scaling functions
(see [9] for details and examples).

1) Asymptotic Expressions for the Inner Products:When
the function in the neighborhood of varies
slowly compared to the lengthscale 2 and possesses first
derivatives (see (3) for ), it is possible to derive approximate
expressions for the inner products and .
More specifically, it can be shown that for the cubic-spline
Battle–Lemarie system shown in Fig. 1 (see [5])

(4a)

(4b)

where is defined as

(4c)

where , for even, odd. and are constants given
by and . is the

th Bernoulli number and is a point in the wavelet grid
defined by (2). Note that for the cubic-spline Battle–Lemarie
system one has , , so . Thus,
the remaining terms in the right side of (4a) and (4b) are
small. Furthermore, if we get for

; in the limit the inner product with the wavelet
is vanishingly small if the function is smooth. Similar results
can be derived for other multiresolution systems.

2) Local Irregularity and Wavelets:The manner in which
the irregularity of a function reflects on its wavelet coefficients
plays a role in the multiresolution study of scattering effects
[15]. It is also a central issue in the study of effective
properties of complex scatterers, as the effective material
operator strongly depends on the nature of the Green function

(a)

(b)

Fig. 1. The cubic-spline Battle–Lemarie multiresolution system. (a) The
scaling function�(x). (b) The wavelet (x).

singularity [6]. Wavelet coefficients in the presence of an
irregularity have been studied in the general framework of
Ḧolder regularity condition and̈Holder spaces [9], [12]. Here
we shall sacrifice generality and address the issue via a
simple example. Let be a function with th derivative
discontinuity at ( corresponds to a discontinuity
in itself). Assume further that is bounded and can
be expressed as

(5)

where is a smooth function and
contains the irregularity of in the form

for
for

(6)

in a domain defined by . The th order
discontinuity magnitude across is given by

. The wavelet coefficients of can now be expressed
as . Thus, if 2 is small
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compare to the typical length scale of the first term can
be approximated by (4b). It can be shown that if the wavelet
irregularity order is higher than that of , the second term
is bounded by [9], [12]

(7)

where the constant depends on the specific multiresolution
system. This bound is valid for all .

B. A Multiresolution Study of the Scattering Problem

The procedure that will be described here can be applied
to a general linear operator equation. However, to render
general ideas more specific and to allow for a straightforward
application to scattering problems we shall refer throughout to
the Fredholm integral equation of the second kind

(8)

where is the integral operator defined as

(8a)

and where is a forcing term, is the response to
be determined, and is a known kernel. This equation
occurs widely in diverse areas of mathematical physics and en-
gineering. The formulation is said to becompletein the sense
that it contains the entire range of length scales associated with
the problem. In cases where the scatterer is flat and the system
heterogeneity is characterized by the material properties (e.g.,
local constitutive relations) the scattering formulation can be
written as (8) and (8a) with the following simplifications [5]:

(9a)

Here, is the Green function of an appropriately defined
background problem, usually that modeled by a linear differ-
ential equation with constant coefficients, and represents
a material heterogeneity with variations occurring on both the
microscale and macroscale—the complex scatterer. In these
cases, the operation can be represented as the background
operator associated with , operating on the function

(9b)

where

(9c)

and, by definition of the complex scatterer, the integration
limits in (8a) are affected by .

With the MRD theory, the integral equation formulation
(8) can be decomposed into a pair of coupled formulations
governing a length-scale resolved response. We express the
response field as a sum of two components; the smooth
component —macroscale response and a component that
describes the fine details —microscale response. If 2
is a lower bound on the lengthscales pertaining to the problem,
then , and one can invoke (1) and (1b) where

and are obtained, respectively, by the response field

smoothed on a reference lengthscale 2and the remaining
fine details. and are yet to be determined coefficients,
representing the smooth and detail parts of the response. With
a standard Galerkin procedure one can cast (8) in a matrix
form, written for the sets of unknown coefficients and

. the result is [5]

(10)

where and are the (unknown) smooth and detail column
vectors, representing the smooth and detail components of the
response. is an identity matrix, and are the excitation
smooth and detail column vectors whose elements are the
respective (known) coefficients of and . , ,

, and are matrix operators whose elements are given,
respectively, by

(11)

Equation (11) show the four matrices to actually be representa-
tions of the same operator each representation distinguished
by the subspaces of on which the operator is to act
and on which the results of the action are to be projected.
Thus, for and the action is applied to elements in

whereas for and the action is applied to elements
in the complement of . Further, for and the result
of the action is to be projected on whereas for and

the projection is on the complement of . One further
noteworthy feature for understanding, , , and is that
base functions for spanning the space form a one-parameter
set and one can interpret the representations associated with it
as physical-space representations; the base functions spanning
the complement of form a two-parameter set and one can
interpret the representations associated with it as phase-space
representations. Thus,, , , and can be interpreted as
a physical space, phase-space, and mixed-domain operators,
respectively.

Equation (10) provides the starting point for a multires-
olution study of the scattering problem [5], [15] and for a
self-consistent development of the formulation smooth. From
the lower half of (10), can be expressed in terms ofand

. When this is substituted into the upper half of (10) we get
a formulation governing —the formulation smooth

(12)

It has been shown that can be interpreted as a “smoothed
version” of the operator (see [5], [6], and [16]); a repre-
sentation of the latter by a straightforward discretization on a
reference grid separation . Thus, has been
interpreted as an effective properties operator; an operator
describing the coupling across scales due to the presence
of a microstructure. The dependence of this operator on the
heterogeneity is nonlinear. This fact is the genesis of
difficulty 2) listed in Section I.
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III. PROPERTIES OF THEFORMULATION SMOOTH

The manner in which the microstructure effects the effective
material operator in (12) have been investigated
in [5], [6], and [16] for the case of a heterogeneity with a
widely separated micro and macroscales, pertaining to acoustic
scattering from a thin, linearly elastic, fluid-loaded plate. Since
these results play a pivotal role in the present theory, we
shall briefly summarize them in the following subsections
and develop new results more relevant to electromagnetic
scattering. We assume that the integral operator kernel can
be expressed as in (9a). Then, with, the adjoint operator of

in (9b), the elements can be rewritten as

(13a)

(13b)

(13c)

(13d)

where the “fields” and can be expressed as

(14)

and a similar expression holds for . The overline
denotes a complex conjugate. These expressions will be used
in Section III-B to study the effective material operator.

A. System Characterization and Scales Hierarchy

Two type lengthscales are defined by the physical system.
The first applies to the variation of , induced by the
dynamics of the system. We refer to this as the wavelength

scale and to the associated resolution as. The possible
irregularity of at the origin may introduce additional
variability over a relatively wide range of lengthscales. This
irregularity has an essential role in the theory and it will
be discussed further. The second type lengthscales is due
to the system heterogeneity and applies to the variations
of . These variations can range from themacroscale

to the microscale . The former and the latter are
associated with the resolutions and , respectively, such
that 2 and 2 . Finally, the reference, or
smoothing, scale should be carefully selected. Details of scale

must be adequately described, whereas microscale details
can be averaged. The following hierarchy of resolutions and
scales applies:

(15)

Essential to the present study is the concept of a “scatterer”
as a localized region ofmicroscale heterogeneity that is
confined to a domain in space measured on themacroscale.
Also essential is the existence of a “gap” in the scales
for observing heterogeneity. Specifically, the system hetero-
geneity is not to posses any component in the range of
scales . We term this case a two-scale
(macro/micro) variation. When referred to thescale; i.e.,
the chosen smoothing scale, the macroscale variation is the

smooth component and the microscale variation is the detail
component. We write

(16)

where,

(16a)

is expressible as a synthesis of scaling functions and

(16b)

as a synthesis of wavelets. The index, in both these equa-
tions, span a region with a physical dimensions described
on the macroscale. Note that and are mutually
orthogonal and the associated scales are widely separated. The
synthesis in (16a) and (16b) identifies the spatial averages
of over neighborhoods in the order of the macroscale
2 with and further implies that spatial averages of
the detail component vanish if performed over
neighborhoods larger than the microscale 2. Denoting

the norm, we shall assume throughout the rest of
this work that

(17)

In other words, the energy associated with the microstructure
is of the order of that associated with the macrostructure and
both are beyond the perturbative regime.

B. The Response Components, , and
the Microstructure Signature

An interesting general relation between the smooth and
detail components of the response field can be derived from
the set (10). The integral equation excitation termis nothing
but the background system response. In most applications, the
latter varies on the scale of—the macroscale. Thus, with
(4b), (4c), and (15) we obtain that the detail component of
the excitation term in (10), namely , becomes vanishingly
small [see discussion after (4c)]. In this case, the lower half
of (10) yields

(18)

which states that when the excitation is described only on
the macroscale, the relation between the smooth (macroscale)
and detail (microscale) components of the response field is
independent of the excitation. This relation will be useful in
subsequent derivations.

Below we derive some results pertaining to the effect of the
microstructure on the macroscale response—the microstruc-
ture signature—and relate it to the nature of.

1) Smooth : We assume the integral equation kernel
function is regular at the origin (that is, it varies on the
scale of for all ). Then, an estimate of the matrix elements
in (11) can be obtained by invoking (4a)–(4c), (13a)–(14),
and the scale hierarchy characterization (15). These estimates
can be used to obtain bounds on the matrix norms. Such
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a procedure was first undertaken in [5]. A more systematic
derivation is given in the appendix of [16]. The results are

(19a)

(19b)

(19c)

where denotes the matrix norm induced by the Euclidean
vector norm, and the bound is given by

(19d)

These estimates are derived in [16]. With (19a)–(d), one
obtains for the effective material operator
. The conclusion that under the smoothness condition on

the macroscale response practically bares no footprint of the
microscale heterogeneity follows directly from this last result.
Furthermore, this result establishes that a new formulation
governing the macroscale response component is readily
obtained from (8)–(9c):

(20)

where is the background operator defined in (9c), is
the excitation term (assumed here to vary on the macroscale
only) and is the locally averaged (smooth component)
of the system heterogeneity [see (16)–(16b) and discussion
thereafter]. Equation (20) identifies as a local effective
property of the system heterogeneity . In these cases, the
formulation smooth and the smoothed formulation are identical
(a general comment on this issue is made in the introduction).

The inequalities in (19a)–(c) can be used to derive an esti-
mate on the relation between and . From the multiscale
resolved formulation (10)

(21)

Using (19a), and subsequently applying the triangle and oper-
ator norm inequalities, we get

(22)

where denotes the Euclidean vector norm ifis a vector
or the matrix norm induced by the Euclidean vector norm if
is a matrix. In cases where the excitation termis described
on the macroscale only (i.e., , so (18) holds) we get
[with (19b)]

(23a)

or, denoting the norm (taken over the support of the
heterogeneity)

(23b)

2) Singular : In cases where the integral equation
background kernel is singular at the origin, the regularity
assumptions leading to (19a)–(c) cannot be used. Thus, the
inequality does not hold in general.
The immediate consequence is that a microstructure can have
a significant effect on the macroscale response. This has
been investigated and demonstrated in [6] for the problem
of a fluid loaded thin elastic plate with a one-dimensional
(1-D) stiffness heterogeneity subjected to a time-harmonic
forcing. In this case, the kernel function possesses a
delta function singularity at the origin. The work in [16] uses
the formulation smooth to develop a 1-D effective constitutive
relation pertaining to the plate stiffness heterogeneity.

More relevant to the electromagnetic scattering problems is
the case in which the kernel possesses a first derivative
discontinuity at the origin, as suggested by the exponent

. Indeed, an important special case that is of concern
is the kernel

(24)

The lengthscale on which this kernel varies away from the
origin—the wavelength—is . With this kernel and
the scales hierarchy (15), the fields of (13a) and (14)
can still be approximated by (4a) and (b) for points sufficiently
far from the irregularity. These approximate expressions do not
apply for all . However, since possesses a first derivative
discontinuity at the origin, we can apply (7) with to
obtain the general bound

(25)

Since themselves possess a second derivative
discontinuity at the origin, we can repeatedly use (7) to obtain

(26a)

(26b)

where is any bounded function that possesses at least
two derivatives. With these bounds, one may attempt to
study the operator elements (13a)–(d) and what heterogeneity
component dominates each.

We start with the elements of . With the heterogeneity
elements and of (16) we can write

(27)

where

(28)

The second equality holds sinceis real. Using now (16b),
(17), and (26a), we get

(29)

A similar derivation gives . Thus

(30)
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In other words, the operator is dominated by the macroscale
component of the heterogeneity. Reversing the steps, one
achieves with no further approximation

(31)

The operator can be written as in (13b) or as (real)
. Using (26b) yields

(32)

This bound on the matrix element can be used to derive a
bound on the norm of . The result is (see Appendix)

(33)

The second inequality follows from the hierarchy in (15), with
, and with the condition that the scatterer outer

dimension is on the order of the wavelength. This inequality
suggests a Neumann series expansion to . Then, the
effective material operator can be expressed as the series

(34a)

where the norms of the expansion terms are bounded by

(34b)

One should be careful in interpreting this inequality. The
relations between the norm bounds do not necessarily translate
to the norms themselves. The norm bounds of decrease
monotonically (and rapidly) with . Nevertheless, in general
one may encounter a situation where the norm itself does
not decrease monotonically. An example is the case where

for which we have for all
. However, if we can always find such that

for all . Furthermore, if is sufficiently
large [see (33)], this can hold right at (that is, for all

).
Let us assume that this indeed is the case. Then we can

approximate the effective material operator by plus a
small reminder

(35)

The accumulation of near-field interactions taking place on a
given small scale, say 2 , can couple to the large-
scale response either directly, or by successively cascading
upward from 2 to 2 , then to 2 , etc. The last
result states that when the conditions leading to (35) are
satisfied, the former route is dominant (see discussion after
(11) for an interpretation of the operators). This is schematized
in Fig. 2. Conversely, if , the across-scale coupling
mechanism is manifestedonly by an energy that cascades
upward in a series of successive small steps.

The expression in (35) suggests the approximation of the
effective material operator by . This approximation is very
appealing as it relaxes difficulty 2) listed in the introduction.
This is because the effective material operator can now be
factorized into two operators, each is linear with respect to

Fig. 2. A schematization of the cascading process.

the heterogeneity. To see this, let us rewrite the operator
as follows:

(36)

and a similar decomposition written for . Thus, if only
the macroscale (or only the microscale) structure has been
changed, one has to recompute only the operators, (or
only the operators , ). In any case, no inversion of small
scale or mixed data operator is needed to get the effective
material operator. Even though the expression for the
effective material operator is approximate, we shall see that it
yields an accurate prediction of the macroscale response.

Another interesting and useful implication of the inequality
in (33) concerns the relation between the smooth and the detail
components of the response field. From (18) we now have

(37)

which means that once we predict the macroscale response
the prediction of the microscale response does not require any
inversion of operator that incorporates small scale data and,
further, this relation is independent of the forcing.

3) Remark: The results obtained in this section, especially
in Section III-B, hold also for scatterers that possess macro and
microstructures more general then those specified in (16a)
and (b). For example, one can have more scales in the wavelet
synthesis of (16b), but the large gap between the micro and
macroscales, as well as the “finite energy” conditions (17),
must be maintained.

IV. A N APPLICATION

We shall be concerned with the response fieldof a planar
wave velocity inhomogeneity in a two-dimensional (2-D)

space, illuminated by a plane wave of a unit
amplitude and a unit wavelength . The layers are parallel
to the axis and the incident plane wave propagates with an
angle relative to the negative direction. With no loss of
generality, we assume that the wave velocity inhomogeneity
is a manifestation of variations in the material dielectric
properties. Its outer dimensions in the order of(say, 2–3 ),
whereas the inner variations are measured on lengthscales
much smaller than . The system configuration is shown in
Fig. 3. This problem can be used, for example, as a basic
model for the study of the effective electromagnetic properties
of composite material laminates.

The system response is governed by the generic wave
equation (assuming a unit vacuum wavelength; )

(38)
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Fig. 3. A schematization of the system configuration.

The electromagnetic field solutions are obtained from
via for the TE case and via

for the TM case. Here,
is the refraction index, is the heterogeneity function

for TE

for TM
(39)

and is any source term that generates the incident
field. The generic wave (38) can be rewritten with the term
4 in the right-hand side. Then, one can repre-
sent the solution as a convolution of the 1-D homogeneous
medium Green function with the extended source term

. The result is the integral equation formulation
(8)–(9c), where and are given by (24) and by (39),
respectively, and is determined by the unit amplitude
incident electromagnetic plan wave in the absence of the
heterogeneity

(40)

Thus, for complex heterogeneity , the results of
Section III-B.2 directly apply.

We turn now to demonstrate the results of Section III-B.2
via numerical simulations. Of particular interest is the TM
case, since terms of the form with
that varies on length scales much smaller thancontribute
a very significant microscale component to , even if the
microscale component of the refraction index is small. To
illustrate this, consider the refraction index

(41)

with , , and . The function
is plotted in Fig. 4. Clearly it possesses a macrostructure of
outer dimension in the order of several wavelengths and a
small magnitude microstructure that varies on a lengthscale of

Fig. 4. Square of the refraction index of (41).

a fraction of a wavelength. The corresponding heterogeneity
function have been computed for the TM case via
(39). The result is shown in Fig. 5. Fig. 5(a) shows the
complete heterogeneity function . It is certainly consistent
with our definition of a complex scatterer. Fig. 5(b) and (c)
show its macroscale and microscale compo-
nents, respectively, separated according to the discussion in
Section III-A (see also a remark at the end of Section III).

A TM scattering problem with given in (41) (that is,
the heterogeneity function is the one shown in Fig. 5) and
plane wave incidence angle is chosen for a test case.
To generate a reference solution, the corresponding integral
equation was solved by a straightforward moment method
approach based on a grid sufficiently fine to capture the details
of (the point separation was chosen to be , which
corresponds to the resolution ). Then, using a reference
resolution [see (15)], the resulting complete solution was
separated to its macroscale and microscale components
and . The results are shown in Fig. 6. To examine the
significance of the microstructure , we have solved the same
problem with only present [Fig. 5(b)]. The result is shown
in Fig. 7. Clearly, the resulting is completely different
from the one that corresponds to the heterogeneity

, shown in Fig. 6. Hence, as expected, the
microscale component of the heterogeneity has a significant
effect on the macroscale response. We have repeated this
experiment with that corresponds to the same as that
in (41), but with (no microstructure on the level of

). Again, the resulting deviated significantly from the
macroscale response in the presence of the microstructure.

Finally, we turn to examine the smooth formulation (12)
, where is computed with only [see (27)–(31)],

and the effective material operator construction suggested after
(35)

(42)

The operators and have been evaluated via (36). An
approximate prediction of the macroscale response was then
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(a) (b)

(c)

Fig. 5. The heterogeneity function that corresponds ton(x) of (41) for a TM problem. (a)h(x). (b) The macroscale componenths(x). (c) The
microscale componenthd(x).

obtained by solving the approximate smooth formulation

(43)

Note that this formulation does not require any inversion
of small scale or mixed-scale data. Its solution requires an
inversion of an operator written completely on a macroscale
grid. The approximated macroscale response solution
obtained from the approximated coefficients vector is
compared in Fig. 8 to the exact macroscale solution component
of Fig. 6. The norm of the normalized deviation between
the lines within the domain shown is about 3%.

V. CONCLUSION

Multiresolution technique has been used to develop a the-
ory for effective properties of complex scatterers. A new
formulation that governs the macroscale component of the
scattered field is obtained—thesmooth formulation(12). This
formulation is written on amacroscalegrid, whereas the
effects of the microscale heterogeneity on the macroscale
response are expressed via a precisely defined across scales

coupling operator. The latter can also be interpreted as an
effective material operator(EMO) description of the hetero-
geneity. The EMO norm is predominantly determined by the
singularity at the origin of the associated integral equation
kernel. The more singular the kernel the higher the norm and
the stronger is the effect of the microscale heterogeneity on
the macroscale response. Since the articulated kernel is usually
nothing but the Green function associated with the corre-
sponding “background” problem, it follows that the effects of
the microscale heterogeneity on the macroscale response

are predominantly determined by thenear-field behavior
of the corresponding background system. This conclusion is
intuitively appealing; the microscale structure can be viewed
as a collection of point scatterers separated by distances
much smaller then the wavelength. Then, their effect on the
macroscale response is interpreted as the result of accumulated
multiple near-field interactions.

The EMO properties have been studied for cases in which
the associated integral equation kernel possesses a second-
order singularity. It has been shown that it can be approx-
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Fig. 6. Magnitude of TM solution and its components forh(x) shown in
Fig. 5(a). Solid and dotted lines (- - - - - -): macroscale(us) and
microscale(ud) components. Dashed line (- - -): the complete solution.

Fig. 7. The same as Fig. 6, but forhs only [shown in Fig. 5(b)].

Fig. 8. Magnitudes ofus for h shown in Fig. 5(a). Solid line ( ): exact
u
s. Dotted line (- - -):us obtained via the approximated smooth formulation

(43).

imately factorized into two parts, each dependinglinearly
on the heterogeneity . Thus, in its approximated form, no
inversion of small-scale information is needed. This fact has
far-reaching ramifications. It means, for example, that when
changes are introduced into either or , one need not
solve a completely new problem or invert a new operator
written entirely on a superfine grid. Use can be made of
previous knowledge of the heterogeneity and its representing
operators and —the only component that depends on the
altered part of has to be re-evaluated and, in any case,
this evaluation does not require operator inversion. These
results, obtained via general asymptotic considerations, are
demonstrated numerically for the case of 2-D scattering of
TM wave from a laminated complex structure.

APPENDIX

THE BOUND ESTIMATE IN (33)

With the Euclidean matrix norm inequality
and (32), one has

(A.1)

The summation over and depends on and , respec-
tively, as the number of grid points associated with resolution

scales like , where is the number
of points at resolution . Thus

(A.2)

The result in (33) now follows from the condition that the scat-
terer outer dimension 2 is on the order of the wavelength

, , and .
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