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Diffraction of Plane Waves by a Strip in an
Unbounded Gyrotropic or Biisotropic Space:

Oblique Incidence
J. L. Tsalamengas,Member, IEEE

Abstract—Diffraction of plane waves obliquely incident on a
perfectly conducting strip of infinite length, which is embedded
in an unbounded gyrotropic or bi-isotropic space, is studied. To
this end, a system of two singular integral-integrodifferential
equations of the first kind is derived following two different
methods. This system is efficiently discretized independently using
two recently developed direct singular integral equation tech-
niques. Analytical expressions are presented for the far- and
near-scattered fields, along with typical numerical results.

Index Terms—Electromagnetic scattering.

I. INTRODUCTION

A NISOTROPIC media are widely used in a variety of ap-
plications such as ionospheric research, crystal physics,

integrated optics, geophysical exploration, reciprocal and non-
reciprocal microwave and millimeter wave devices, etc. Bi-
isotropic media are also potentially useful in a broad field
of applications. Examples are radar cross-section reduction
and control, design of high-efficiency microstrip antennas and
arrays, design of radomes, guiding devices and couplers, and
development of microwave and photonic lenses (refer to [1],
[2] for extensive lists of pertinent works).

Connected with unbounded anisotropic or biisotropic
spaces, this paper studies diffraction of plane waves obliquely
incident on embedded vanishingly thin perfectly conducting
strips of infinite length. The strong similarities, physical as
well as mathematical, that exist between these two problems
enable their treatment along parallel lines as outlined in
Sections II and III.

For the analysis a system of two singular integral-
integrodifferential equations (SIE-SIDE) of the first kind
is derived using independently two different approaches
(a spectral-domain technique and a space-domain Green’s
function method). This system, having the induced surface
current densities as the unknowns, is efficiently discretized
following two different moment-method oriented direct SIE
techniques recently developed in [3]. Analytical expressions
are derived both for the far- and near-scattered fields and
numerical results are presented for several cases.
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Fig. 1. Geometry of the problem.

II. SCATTERING BY A STRIP IN AN ANISOTROPICSPACE

Fig. 1 shows a vanishingly thin perfectly conducting strip
at , in an unbounded
lossless homogeneous gyrotropic space . The strip- and
anisotropy-axes are taken to coincide, i.e.,

(1)

-lossless condition; , refer
to free-space].

Assume an obliquely incident plane wave impinging on the
strip. The induced surface current density gives
rise to the scattered field. Thedependence of all these field
quantities is where is specified by the incident wave
as outlined in Section II-B below.

In the limiting case of a perfectly conducting half-plane
and for several orientations of the anisotropy axis, this
diffraction problem has been treated in [4] and [5] using the
Wiener–Hopf–Hilbert method. The present finite strip problem
will be formulated in terms of a system of two SIE-SIDE as
follows.

A. Basic Equations

Solutions of the source-free Maxwell’s equations
, that vary as (such as the

incident and scattered waves, for instance) can be expressed in
terms of their longitudinal components and . The latter
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satisfy coupled second-order differential equations

(2)

(3)

where , . In terms
of and , which play the role of scalar potentials, the
transverse components are given by

(4)

(5)

B. Incident Field

Let be the incident
plane wave propagating in the direction of

(6)

where is determined from (8) below, whereas and
are constant (i.e., independent) vectors. In connection with
this field, (2) yield the homogeneous algebraic system

(7)

. From (7), one gets the following
bi-quadratic with respect to dispersion equation:

(8)

where
,

, .
For a given value of , (8) specifies two values for

denoted by and , implying the two modeness
of wave propagation in a gyrotropic space. In the sequel,
we shall refer to the ()-incident mode, characterized by the
wavenumber . To assure that both modes are nonevanescent
the conditions and must
be imposed. In view of (8), these two conditions imply the
constrains and , which restrict the band of the
allowable operating frequencies.

Knowledge of via (8) suffices to completely determine
both and, via (4), the field of the incident () mode.

C. Formulation of the Boundary-Value Problem

Let us work in the Fourier transform domain defined
by ,

. Then, with respect to the scattered
field (2) recast as

(9)

, . From (9), we get the decoupled
equations

(10)

whose general solution at points of regions 1 and 2
can be written as

(11a)

(11b)

for (upper sign), 2 (lower sign). Here ,
are expansion constants to be determined and

(12)

(13)

For , any of its branches may be selected (being fixed
thereafter). The proper branches of the double-valued functions

, on the other hand, have to be selected in
accordance with the radiation condition . (For
a detailed examination of the analytical properties of
on the complex plane refer to [4] and [5]). Finally, for the
quantities introduced in (11b) one
obtains

(14)

As seen, and depend on the physical parameters solely,
being independent of the spectral variable.

In terms of and the expressions of and
may be derived with the help of (4).

From the boundary conditions for , , , at
one gets

(15)
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where

(16)

D. Formulation of the SIE-SIDE of the Problem

With the help of (15), one can express and
in terms of and . The result of a very lengthy
algebraic procedure is then

(17)

where for

(18)

To get (17) the first of the identities in Appendix A was
repeatedly used.

In the space domain, (17), after dividing both sides by
and using the third identity of Appendix A, take the

following compact form:

(19a)

(19b)

, where

(20)

(21)

To get (19), the boundary condition ,
, was also used along with the relations

; ,
; . [The Hankel

function is of the second kind; is determined from
(13)].

An Alternative Formulation Technique:An independent
space-domain Green’s function approach, which again yields
system (19), thus providing a test of its correctness, is outlined
in Appendix B.

E. Solution of (19)

To determine and from (19) we shall independently
use two of the algorithms developed in [3] as follows.

Method A: We set , , and
use the expansions

(22)

where and are the Chebyshev polynomials of the first
and of the second kind. Insert (22) into (19). Multiply (19a) by

, (19b) by ,
and integrate from to . The final result is the
linear algebraic system of

(23)

where

(24)

(25a)

(25b)

with denoting the Bessel function of order . ,
, are given in [3], whereas corresponding to the

incident mode

(26a)

(26b)

Method B: This technique based on rather different prin-
ciples [3], ends up with a linear algebraic system with the
values , ; [see (22)] as
the unknowns. Here and

are zeros of and , respectively,
while the integer is as high as needed to ensure convergence
of (30) below. Leaving aside all intermediate derivations the
final result is

(27)
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, where

(28)

(29)

with given in [3].
In terms of and , and are given by [3]

(30a)

(30b)

, , . Equation (22) and for sufficiently
large values of , (30) should yield coinciding results thus
providing a validity test for both algorithms.

F. Far- and Near-Scattered Fields

The components of the scattered field are the inverse
Fourier transforms of (11). At points
far from the strip the stationary phase asymptotic
integration technique [6] yields

(31)

where , ,
. and , the Fourier transforms of

and , are given by

(32)

in terms of either or , . The second
part of each of (32) has been based on Lobatto’s integration
formulas [7].

The other components of this field can be found from (4)
using (31).

Remarks:

1) As seen, the far-scattered field is composed of two waves
(labeled as a and b) with “radiation patterns” and

, respectively.
2) Equations (31) can alternatively be deduced from (B.7)

and (B.10) as follows: setting
and replacing in (B.8)

by its large argument asymptotic expression yields

. Substituting into each of (B.7)
and (B.10), setting

, evaluating the indicated derivatives,
and retaining only terms whose amplitude varies as

, we again arrive at (31).

For the far-scattered power, carrying out the integration

we get the relation
with

and given by (25b). ( denotes the conjugate of a complex
number).

Analytical expressions may be derived for the scattered field
near the strip as well. Thus, in order to evaluate
and , one simply has to set

(33)

(34)

in each of (B.7) and (B.10). The quantities and are
given either by , in the
context of method B or by ,

;
, in the context of method A.
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[In the former case, in (33) and (34) is specified from the
beginning; in the latter case, may assume any convenient
value irrespective of the truncation size use for system (23)].
Results (33) and (34) were based on Lobatto’s integration
formulas; in (34) denotes the derivative with respect
to argument.

III. SCATTERING BY A STRIP IN A BI-ISOTROPICSPACE

Let the strip in Fig. 1 be now embedded in the unbounded
lossless biisotropic space described by the consti-
tutive relations , ;

. According to the lossless condition,
, where the dimensionless parameters

(Pasteur) and (Tellegen) serve as measures of the degree of
chirality and nonreciprocity of the medium, respectively. Just
like and , is an even function of frequency, whereasis
an odd one. The practical case of a chiral
medium results in as a special case.

Assume a plane wave obliquely incident on the strip. The
induced current density gives rise to the
scattered field. All these field quantities vary as where
is specified by the incident wave as outlined in Section III-B
below.

This quasi two-dimensional problem may be formulated in
terms of a system of coupled SIE-SIDE along the lines outlined
in the preceding section. This possibility is based on (and also
reflects) the strong similarities that exist between these two
problems.

A. Basic Equations

Solutions to the source-free Maxwell’s equations
, that vary as can be expressed

in terms of their longitudinal components and satisfying
the equations analogous to (2)

(35)

(36)

In terms of and the transverse components are given
by

(37)

B. Incident Field

Let be the incident
plane wave, propagating in the direction of [see
(6)] with determined via (39) below. With respect to this field

the equations analogous to (7) and (8) read as

(38)

(39)

Equation (39) specifies two values for, denoted by
and , thus implying the two modeness of wave propa-
gation in a bi-isotropic space. In the sequel, we shall refer to
the incident mode characterized by the wavenumber.
To assure that both modes are nonevanescent the conditions

and must be imposed.
In view of (39), these two conditions imply the constrain

, which restricts the band of
the allowable operating frequencies.

Knowledge of via (39) suffices to determine both
and the field of the incident () mode.

C. Formulation of the Boundary-Value Problem

In the Fourier transform domain the following equations
analogous to (9) and (10) may be written for the scattered
field ,

(40)

(41)

where . The general solu-
tion of (41) at points of regions 1 and 2
take the form of (11a) and, in place of (11b),

where now

upper sign lower sign (42)

(43)

with

(44)

For either of its branches may be used in (43) and (44)
(fixed thereafter). The proper branches of the double-valued
functions are selected according to the
condition .

D. Formulation of the SIE-SIDE of the Problem

Applying the boundary conditions at and working as
in Section II-D the following system analogous to (19) results
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in:

(45a)

(45b)

where has been defined in (20). Here the notation

(46)

has been used, being shorthand symbols
for or .

An Alternative Formulation Technique:An independent
approach, based on space-domain Green’s functions com-
bined with the modified reciprocity theorem is applicable,
yielding again the system of SIE-SIDE (45). The medium
complementary to is now described by the scalars

[9]. The equations analogous to (B.7) and
(B.10) in this case read as

(47)

(48)

with , , defined in Appendix C and ,
; .

From (47) and (48), one can reproduce both of (45) fol-
lowing step by step the procedure outlined in Appendix B
with respect to the preceding gyrotropic problem. This task is
facilitated by the set of identities listed in Appendix C.

E. Solution of (45)

From (45) via (22) working in the context of methods A
and B, one arrives again at systems (23) and (27) where now

is given by the first of (46) whereas

(49)

(50)

with defined in (46). On evaluating the right sides in (23)
and (27), we now use

(51)

F. Far- and Near-Scattered Fields

The components of the far-scattered field are given by

(52)

, with and given by
(32). The other components of this field can be found from
(37). As seen the far-scattered field is composed of two waves
with “radiation patterns” and , respectively, in
complete analogy with the preceding gyrotropic case.

Analytical expressions for the scattered field near the strip
may also be found after substituting and

in (47) and (48) from (33) and (34).

IV. NUMERICAL EXAMPLES

Figs. 2–4 refer to a strip embedded in a lossless ferrite
medium that becomes anisotropic by means of a superimposed
dc (bias) field . This medium is described by
a scalar dielectric permittivity in addition to a
tensorial magnetic permeability given by the second of (1)
where , ,
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Fig. 2. Z0jJxj andZ0jJz j versusx=w for a strip in an anisotropic ferrite
(2w = �0, fr = 30 GHz, �0 = #0 = 45�, �r = 16, !0=!m = 0:1124)
illuminated by the+ incident mode whenHdc = ẑHdc (curves labeled “f”)
or Hdc = �ẑHdc (curves labeled “r”).

. Here, , ,
C/Kg being the magnetomechanical ratio and the intensity
of the saturation magnetization. We note that reversal in the
direction of results in a change of the sign of . In all
these examples, the operating frequency was taken to be 30
GHz, while Wb/m , , ,

( free-space wavelength), .
Fig. 2 shows and as a function of

in the case of ( ) incident mode primary excitation. The
curves labeled as “” and “ ,” corresponding to the cases

and , bring to light the effect of
nonreciprocity.

Fig. 3, on the other hand, shows the radiation patterns of the
far-scattered field. The waves labeled as and
or , excited by the incident mode, correspond to

and , respectively, given by (31). Finally, for the
same parameter values, Fig. 4 shows along the

axis both for ( )mode (dashed curve) and
( ) mode (solid curve) primary excitations.

We note that as a partial test of the correctness of the numer-
ical codes, all results presented in Figs. 2–4 were reproduced
by methods A and B independently.

The convergence characteristics of the algorithms are illus-
trated in Table I where for the incident mode, ,
and are shown along with elapsed CPU time for
several values of (the number of basis functions used
in each of (22); method A) or (see (27); method B).
Here, , , and , the other
parameter values being the same as in Figs. 2–4. The most
important feature of Algorithm A is its exponential very
stable convergence. For , for instance, the
computed values are correct to within (5, 10, 16) significant
decimals for both current densities. Method B, on the other
hand, yields numerical values which, for increasing values

of , monotonically and asymptotically approach those of
method A. (For a detailed comparison between these two
methods refer to [3]).

The results presented in Figs. 5 and 6 refer to a strip in a
chiral medium characterized by , ,
for , . Fig. 5 shows the radiation
patterns of the far scattered waves. These waves labeled as

and or and excited by the incident
-mode, respectively, correspond to and given

by (52). Finally, Fig. 6 shows along the axis.
In this case, the () and ( ) incident mode excitations yield
coinciding results.

V. CONCLUSION

SIE techniques have been applied to study scattering by
a conducting strip embedded in unbounded gyrotropic or bi-
isotropic spaces. The governing SIE-SIDE were derived and
discretized by two independent to one another methods. The
present analysis may be used as a basis for treating more
complicated strip-loaded bi-isotropic/anisotropic structures.

APPENDIX A
USEFUL IDENTIFIES FOR THEGYROTROPIC CASE

For ; ; and we have

All symbols involved here refer to quantities defined in
Section II.

APPENDIX B
GREEN’S FUNCTION-BASED

ALTERNATIVE FORMULATION TECHNIQUE

Let , , and ,
be the response at due to the

unit phased-line sources ( A) and
( V), respectively, impressed

at inside the transposed (complementary) medium
. Then [8]

(B.1)

(B.2)

(B.3)
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Fig. 3. Radiation patterns of the(++), (+�), (�+), and (��) waves when the strip is embedded in an anisotropic ferrite for the same parameter
values as in Fig. 2.

Fig. 4. Near-fieldjEtot

z
(0; y; 0)j versusk0y for the same parameter values

as in Fig. 2.

with , and
0 have been

defined in Sections II-B and C).
The modified reciprocity theorem [9] ,

yields for the components of the
scattered field the
relations

(B.4)

(B.5)

TABLE I
CONVERGENCE OF THEALGORITHMS

Fig. 5. Radiation patterns of the(++), (+�), (�+), and (��) waves
when the strip is embedded in a chiral medium(2w = �0, fr = 30 GHz,
�0 = #0 = 45�, � = 4, � = 1:5, � = � = 0:3).
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Fig. 6. Near fieldjEtot

z
(0; y; 0)j versusk0y for the same parameter values

as in Fig. 5.

where using (4) and taking into account the depen-
dence

(B.6)

Using (B.1)–(B.3) and (B.6), (B.4) yields

(B.7)

(B.8)

Letting in (B.7) and using the relation

(B.9)

we again arrive at (19a) with the help of Appendix A equa-
tions.

From (B.5) we obtain the following equation analogous to
(B.7):

(B.10)

Note: Letting , successively in (B.10),
subtracting the resulting equations, and applying the boundary
condition , , results
in the identity ; that is, (B.10) cannot be
used directly to derive a second linearly independent integral
equation.

Using (4) to express in terms of and
yields via (B.7), (B.10) the relation

(B.11)

The algebraic manipulations in deriving (B.11) were simplified
by using the set of identities given in Appendix A. Finally,
setting in (B.11) leads via (B.9) to (19b).

APPENDIX C
USEFUL IDENTIFIES FOR THEBI-ISOTROPICCASE

(C.1)

(C.2)

where , , , , the duals of , , , , are given by

(C.3)

All symbols involved here refer to quantities defined in
Section III.

REFERENCES

[1] J. Electromagn. Waves Applicat.—Special Issue Wave Interactions Chiral
Complex Media, vol. 6, no. 5/6, 1992.

[2] A. Sihvola, Ed., in Proc. Bi-Isotropics Workshop Novel Microwave
Materials, Helsinki Univ. Technol., Finland, Feb. 1993.

[3] J. L. Tsalamengas, “Direct singular integral equation methods in scat-
tering and propagation in strip or slot loaded structures,”IEEE Trans.
Antennas Propagat., to be published.

[4] S. Przezdziecki and R. A. Hurd, “Diffraction by a half plane per-
pendicular to the distinguished axis of a gyrotropic medium (oblique
incidence),”Can. J. Phys., vol. 59, pp. 403–424, 1981.

[5] R. A. Hurd and S. Przezdziecki, “Half-plane diffraction in a gyrotropic
medium,” IEEE Trans. Antennas Propagat., vol. AP-33, pp. 813–822,
Aug. 1985.

[6] R. E Collin and F. J. Zucker,Antenna Theory. New York: McGraw-
Hill, 1969.

[7] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions.
New York: Dover, 1972.

[8] N. Okamoto, “Scattering of obliquely incident plane waves from a finite
periodic structure of ferrite cylinders,”IEEE Trans. Antennas Propagat.,
vol. AP-27, pp. 317–323, May 1979.

[9] J. A. Kong,Electromagnetic Wave Theory. New York: Wiley, 1986.
[10] J. C. Monzon, “Radiation and scattering in homogeneous general

biisotropic regions,” IEEE Trans. Antennas Propagat., vol. 38, pp.
227–235, Feb. 1990.

J. L. Tsalamengas(S’76–M’87), photograph and biography not available at
the time of publication.


