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Diffraction of Plane Waves by a Strip in an
Unbounded Gyrotropic or Biisotropic Space:
Oblique Incidence

J. L. Tsalamengasyiember, IEEE

Abstract—Diffraction of plane waves obliquely incident on a z
perfectly conducting strip of infinite length, which is embedded = =
in an unbounded gyrotropic or bi-isotropic space, is studied. To (8 ’ ll) /f
this end, a system of two singular integral-integrodifferential or /
equations of the first kind is derived following two different
methods. This system is efficiently discretized independently using (a,u,c,g) 0 K inc
two recently developed direct singular integral equation tech- ~o
niques. Analytical expressions are presented for the far- and 7 ‘
near-scattered fields, along with typical numerical results. PN ‘ Y
Index Terms—Electromagnetic scattering. P 1 ™ N
x/ 2w

I. INTRODUCTION

NISOTROPIC media are widely used in a variety of ap-
Aplications such as ionospheric research, crystal physics,
integrated optics, geophysical exploration, reciprocal and nafig. 1. Geometry of the problem.
reciprocal microwave and millimeter wave devices, etc. Bi-
isotropic media are also potentially useful in a broad field .
of applications. Examples are radar cross-section reduction o ) ] )
and control, design of high-efficiency microstrip antennas andFig- 1 shows a vanishingly thin perfectly conducting strip
arrays, design of radomes, guiding devices and couplers, &d = 0 [¢] < w,—0<z< 4 o0 in an unbounded
development of microwave and photonic lenses (refer to [1§SSIess homogeneous gyrotropic spacg:). The strip- and
[2] for extensive lists of pertinent works). anisotropy-axes are taken to coincide, i.e.,

Connect_ed with un_boun_ded _anisotropic or biisotropic € =eoler (22 + 40) — jea (2 — §2) + €324]
spaces, this paper studies diffraction of plane waves obliquely T = o[ (82 + 99) — jua(29 — 92) + psi?] (1)
incident on embedded vanishingly thin perfectly conducting f=Holi Y9) m Ik sy Y Hazz
strips of infinite length. The strong similarities, physical ag; € R, u; € R (i = 1,2, 3)-lossless condition¢g, 1o refer
well as mathematical, that exist between these two probletosfree-space].
enable their treatment along parallel lines as outlined in Assume an obliquely incident plane wave impinging on the
Sections Il and IlI. strip. The induced surface current density= 2./, +2.J. gives
For the analysis a system of two singular integrakise to the scattered field. Thedependence of all these field
integrodifferential equations (SIE-SIDE) of the first kindquantities ise=%* whereg is specified by the incident wave
is derived using independently two different approaches outlined in Section 11-B below.
(a spectral-domain technique and a space-domain Green’'tn the limiting case of a perfectly conducting half-plane
function method). This system, having the induced surfaeed for several orientations of the anisotropy axis, this
current densities as the unknowns, is efficiently discretizeliffraction problem has been treated in [4] and [5] using the
following two different moment-method oriented direct SIBNiener—Hopf—Hilbert method. The present finite strip problem
techniques recently developed in [3]. Analytical expressiongll be formulated in terms of a system of two SIE-SIDE as
are derived both for the far- and near-scattered fields afadlows.
numerical results are presented for several cases.

SCATTERING BY A STRIP IN AN ANISOTROPIC SPACE

A. Basic Equations

Solutions of the source-free Maxwell’'s equatiovisx £ =
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satisfy coupled second-order differential equations C. Formulation of the Boundary-Value Problem

Let us work in the Fourier transform domain defined

2 .2 - _ X
(Vi +kSE. = — jwpopsvH, by F(u y) = (1/2n) [, F(z,y)e?™ dz, F(z,y) =

2 2 .
(Vi + k) = jueoeavE, (2) 12 F(u,y)e”* du. Then, with respect to the scattered
field (E°°%°, H**") = [E(x,y), H(x,y)]e™7%* (2) recast as
_—32—+k o k2= 2R k2, &2 . -
f 50 €31 w = —f 1 ‘o3¢ <d_y2 +k2>E (u,y) = — jwpopsH. (u, 1)
_Pl P2 _ _ H2 2
ce=—=(p=e,p), v=p—+—7 3 d - . =
P b1 (p I“L) [ <61 Nl) ( ) <d_y2 + k7271>HZ(uay) IjCU(:()(:gl/EZ(U/, y) (9)
where V, = &(J/dx) + §(0/0y), kg = wcopo. In terms k2 = k2 —u2, k2 = k2 —u2. From (9), we get the decoupled
of £, and H_, which play the role of scalar potentials, the equatlons Tom " '
transverse components are given by
d? d? ~ ~
Et (v U -t <dy +/€><ﬁ+k2)GZ:k363u31/2Gz (G=E H)
(10)
\Y p
ZX Ve +J (h2/p1) Ve weoey whose general solution at points of regiongzl> 0) and 2
- v, 5 XV + j(ese1)V (y < 0) can be written as
Hor H_i(u,y) = Ai exp(FiTay) + Bi exp(Fimy) = HY + HY,;
< (4) (11a)
[(weoes), & = k2 J(whiops). 5)  Beilw,y) =jZeAiexp(£jTay) + j 2B exp(Finy)
=E% + E; (11b)

B. Incident Field
I_im _Iim e for ¢ = 1 (upper sign), 2 (lower sign). Herd,, B; (i = 1,2)
Let (™, H™) = (Eo, Ho) exp(jk™ - 7) be the incident are expansion constants to be determined and
plane wave propagating in the direction of

o= k24 kL, 4+ 8) =k, -’

k" (k, Do, ¢o) = klﬁc + kyg) — B%;  ky = ksindg cos oo, Tb2 _ %(k,Q + k2 —8) = kf 2 (12)
ky =ksindgsingg, [ =—kcosdg (6) 5 =[(k2 ) + 4k063u31/2]1/2
where is determined from (8) below, where@®, and H, ki = 1(/%2 +h+06), k=30 +k;-6). (13)

are constant (i.ez independent) vectors. In connection with

For 6, any of its branches may be selected (being fixed
this field, (2) yield the homogeneous algebraic system
L @)y g us &g e thereafter). The proper branches of the double-valued functions

(—ki + k) Ey. = — jwpopsrHo. To(w) éq = a, b)ﬁ ohn thedother hang, ha\f{e t(o )t]ie seI?cted in
2 2 iy 2 g0 2 accordance with the radiation conditidm{r,(«)} <0. (For

(=kp + k) Ho. = jweoesvEozs by =k +ky (7) 5 getailed examination of the analytical propertiesrpfu)

on the complex: plane refer to [4] and [5]). Finally, for the

quantitiesZ; = —jE?/H? (¢ = a,b) introduced in (11b) one

obtains

4 2 —
Ak*+ B+ C=0 8 Zo = (k2 — k2 + 6)/(2weqesr)

(Eo. = 2-Eo, Hy. = 2-Hy). From (7), one gets the following
bi-quadratic with respect té dispersion equation:

where A = sin*dy + (ez/e1 + /Jg/m)sin2 P cos? ¥y + Zy = (kQ ki — 6)/(2weoesv). (14)
esps/(erpr) costdo, B = —k3{(eape + pazee) sin® 99 +
2e3p3[1 4 eapia/(e1pn)] cos® Do}, O = kieapzcete.
For a given value ofdy, (8) specifies two values fok?
+32 N2 :
denoted by(k*)? and (k7)*, implying the two modenessé — 1,2) may be derived with the help of (4).

of wave propagation in a gyrotropic space. In the sequ ,
we shall refer to theX)-incident mode, characterized by the ql;r(;rgt;he boundary conditions fd, H., E., H. aty =0

wavenumbek®. To assure that both modes are nonevanescen
the conditions(k*)*(k~)? >0 and (k*)? + (k7)*>0 must A, Z,+ B, Z, = AsZ,+B2Zy,, A1+B; = Ag+Ba+J,(w)
be imposed. In view of (8), these two conditions imply the
constrainsAC > 0 and BA < 0, which restrict the band of the .=
allowable operating frequencies. Po(Avt A2) +n By (B + Bo) = — jupla(u)
Knowledge ofk® via (8) suffices to completely determine TaQa(Al + As) + 1Qu(By + Ba) = juod,(u) + AT (u)
both (%)= and, via (4), the field of the incidentt) mode. (15)

As seenZ, andZ, depend on the physical parameters solely,
being independent of the spectral variable N
In terms of £.; and H; the expressions of’,; and H;
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where Method A: We setz = wt, z’ = wr (=1 < ¢,7 < 1), and
2 use the expansions
A= 4vd, p= By —je—QU, 0:1/&—1- /3/&2
wegey €1 1 piesky (1)
P,=vZ;+jv, Q=v+jvZ, (q=ab). 16) =)= N \/1 = ];)GA’TA’
D. Formulation of the SIE-SIDE of the Problem Tole(t)] = mFm(t) _ m Z bnUn(t)  (22)
With the help of (15), one can expreds and B; (i = 1,2)
in terms of J,.(u) and J.(u). The result of a very lengthy ) .
algebraic procedure is then whereTx and Uy are the Chebyshev ponnomlale of the first
~ and of the second kind. Insert (22) into (19). Multiply (19a) by
2A(Zq — Zy)E(u,0) Tw(r)/V1 =172, (19b) byv1 — 72Uy (1) (M =0,1,2,- ),
= U,(RanTa_l — RbPaTb_l)ja;(U') and integrate fromr = —1 to 7 = 1. The final result is the
(Zu Pyt — ZbPaTb_l)AJ;(u) linear algebraic system of
2A(Za - Zb)Eaz(U'v 0) >
1 Z (anKijn +bnKjfy) =amey
=X {(TaZp Po — s Za Pp) A N=0
=P PaZy Ry = B2 R () 3 (anK iy + by Kiiy) =amdy (23)
+u(RoPyryt — Ry Py 1) J.(w) 17) N=0
where forq = a,b (M =0,1,2,---) where
Ry=0Z;—p. (18)  Kify =wA > s,PrZ AN (kyw)
To get (17) the first of the identities in Appendix A was ] g=at 0 ]
repeatedly used. Kiin =13 Z 54 B Ry Oy (kqw) = — K37y
In the space domain, (17), after dividing both sides by g=a,b
Z,ZyA and using the third identity of Appendix A, take the .., _ 1 —1o—1/p2 _ p2yp(l) (.2
following compact form: v =0a Zb saly 2y (Fy = B Dy (g, i)
q=a,
. B d . (24)
aBP(2,0) = s P I[Z ALG(J.) + jRy—L,(J, )}
; B S tdo w2 =k2P2/(P? - R?) (25a)
(198.) EO,. ]]\4(/6‘ w)
. d 1 — ,
e B af. d =Eo, (M + 1) ks ke 25b
B 0)= 3 5,P; {‘,R%Lquz) + 7 v = Eog (M + 1) Ty () (ky0) (25b)

=a,b . . .
! with Jas(-) denoting the Bessel function of ordéy. AS\]})N,
: {(Pq2 — R2) Tt k,?PqQ} Lq(Jm)} @aob) ¢, (Y, are given in [3], whereas corresponding to the
=+ incident mode
|z| < w, where

1
Eoo = — [(—j Z8Vk, + (— 7V Fo. (262
AT =27, sa=1, sm=—1 (20 Do (A v/ZNk+ (=0 4 p/ZT)k B, (262)

Z* = — jEy./Ho. = wpopsv/ (k2 — k?)
— ! . ! / P

L)) = /_w J(&YHo(kglx — o'|) do’. (21) :(k2 2 2) /(weoea). (26b)

To get (19), the boundary conditidrE(z, 0) = —i-E"(x, 0), Method B: This technique based on rather different prin-
|z < w (f = #, 2) was also used along with the relatl0”%|ples [3], ends up with a linear algebra|c system with the
(1/m) [2%, 7qe =) du = Ho(kgle — 2']); n = =1, values {F*(t,), F*(f,); n = 1,2,---,L} [see (22)] as
(kF + d?/da®)Ho(ky|x — 2'[); n =1 (¢ = a,b). [The Hankel the unknowns. Here,, = cos[(2n - 1)7r/(2L)] andf, =
function Hy(-) is of the second kindk, is determined from cos[nz /(L + 1)] are zeros ofl’,(t) and Uy (t), respectively,
(13)]. while the integetL. is as high as needed to ensure convergence

An Alternative Formulation TechniqueAn  independent of (30) below. Leaving aside all intermediate derivations the
space-domain Green’s function approach, which again yielgisal result is

system (19), thus providing a test of its correctness, is outlined

. . I
in Appendix B. Z [RZZ F*(t,) + RZ F*(1,)] —Jﬂgcm

mn

—

n=

E. Solution of (19)

L
To determine/, and.J. from (19) we shall independently Z [RZZ F*(t,) + R* F"(t,)] =4 %d,, 27)
use two of the algorithms developed in [3] as follows. n=

fan
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(m =1,2,---,L), where
R, =wl Y s, Pyt 2, A0 (kew)
g=a,b
Ry == S s P 2 (P - R D, (w2, )
q—a b
R, =i Z sqBPy Ry BL), (kqw)
q=a,b
Ry =i Y saly RO (Byw) (28)
g=a,b
ém = Eo. exp(jkywty),  dpm = Eopexp(jkywty,)  (29)
with FY) (F = A, B,C, D) given in [3].
In terms of F%(¢,,) and F*(£,), .J. and.J, are given by [3]
1 1 L—-1
Jlz()] = — 2 — bno)Tn(t
[-T( )] mL NZO( 1\0) J\()
L
T r(tn)FZ(tn) (303)
n=1
2 L—1
== _J1-¢# In
T [z ()] o Vit ]\Z;lA(t)
L
> (L= EYUN ()" () (30b)

n=1

(6no =0, N #£0, éoo = 1). Equation (22) and for sufficiently

large values ofL, (30) should yield coinciding results thus

providing a validity test for both algorithms.

F. Far- and Near-Scattered Fields
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5 Y

L
> (1= E2)F*(E,) exp(juwt),)  (32)
L—|—1 s

NIn (ww) + Iy g2 (wu)]

in terms of eithef{a,,, b,} or {F*(t,), F*(f,)}. The second
part of each of (32) has been based on Lobatto’s integration
formulas [7].

The other components of this field can be found from (4)
using (31).

Remarks:

1) As seen, the far-scattered field is composed of two waves
(labeled as a and b) with “radiation patterns;(¢) and
Ly (o), respectively.
Equations (31) can alternatively be deduced from (B.7)
and (B.10) as follows: setting = [(x — /)2 +32]'/2 =
p—z'cos¢ (p — o0) and replacingdy(k,R) in (B.8)
by its large argument asymptotic expression yields

—Jkqp
V qupe /

2)

ejk z’ cos d.’L'

=2m,/j e IkaP J (kg cos p)
WK P
J = J.,J,. Substituting into each of (B.7)
and (B.10), setting (8/8x) = cos¢(3/9p) —
(sin/p) (9/04),(0/0y) =  sing(0/0p) +

(cos¢/p) (8/I¢), evaluating the indicated derivatives,
and retaining only terms whose amplitude varies as
p~1/2, we again arrive at (31).

The z components of the scattered field are the inverseFor the far scattered power, carrying out the integration

Fourier transforms of (11). At point®&z, y, 2) = p(p, ¢) + 22

far from the strip(p — +o0) the stationary phase asymptotic— QRef o (@)

integration technique [6] yields

E?Cat(ﬁ Z)) _ip- e~ Iker < 1 )
z _7 — bz . F
(s 3) = 275 gy )1
_ ViZw
Fq(¢) - ng
- 1
R N AT —
{ iV kg Zsin g (ug) + NG
(52 (0214 2@ () + P ()] |
31
whereu, = kgcos¢ (0 < ¢ < 2m), {T* =15, ™7 =T,
(T = Z,P,Q)}. J.(u) and J,(u), the Fourier transforms of
J.(z) and J.(z), are given by
AR S
) =5 D ani" Iy (wu)
N=0
w L
=3I ZFZ(t ) exp(juwty,)
n=1

Pscat — 1

2

Re [“, J'z) - E°(z,04z
E™(z,0)dz we get the relation
Pt/ = —(7/2) Re EX_o(a’ven + bivdy) with ey
anddy given by (25b). { denotes the conjugate of a complex
number).
Analytical expressions may be derived for the scattered field
near the strip as well. Thus, in order to evalu@t&™(z,y)
and H=***(z, i), one simply has to set

= —w Z T*(t,)Ho(k,R)
(x —wty) (33)
a W OR w2 Nl £
a_p['q(‘]w) - L——i-lkq nz::l ap (1 ~ )F (tn)Ho(qu)
(p=2,v)
R=1/(z —wt,)?+ 42 (34)

in each of (B.7) and (B.10). The quantiti¢s’ andI'* are
given either by{I'*(t,) = F>(t,), I'*(t,) = F*(t,)}, in the
context of method B or by{I'*(t,) = Z_, an cos(NG,,),
I*(t,) = X_o by sin[(N +1)0,]/sin(6,); 0, = (2n —
)7 /(2L), ©,, = nx/(L + 1)} in the context of method A.



TSALAMENGAS: DIFFRACTION OF PLANE WAVES IN UNBOUNDED GYROTROPIC OR BIISOTROPIC SPACE 1069

[In the former casel in (33) and (34) is specified from thethe equations analogous to (7) and (8) read as
beginning; in the latter casd, may assume any convenient
value irrespective of the truncation size use for system (23§f-%; + k) Eo. = —pnZovHoz, (—k, +ki)Ho: = eYorEo.
Results (33) and (34) were based on Lobatto’s integration (38)
sy i i i i

formulas; Hq(-) in (34) denotes the derivative with respect ;4 F(E + = 2ep) KRS + (epu — CE)2EE = 0. (39)
to argument.

Equation (39) specifies two values fbf, denoted by(kT)?2

IIl. SCATTERING BY A STRIP IN A BI-ISOTROPICSPACE and (k7)?, thus implying the two modeness of wave propa-
R . tion in a bi-isotropic space. In the sequel, we shall refer to
Let the strip in Fig. 1 be now embedded in the unboun_d e (+) incident mode characterized by the wavenumtser
lossless biisotropic spade, 1, ¢, ) described by the consti- 1 55qre that both modes are nonevanescent the conditions
tutive relationsD) = co(cE + ZotH), B = jio(YoCE + puH); (kH)2(k7)2>0 and (k)2 4+ (k)2 >0 must be imposed.

Zo = 1/Yo = \/p/co. According to the lossless condition,, ey of (39), these two conditions imply the constrain

§ = x —jr = ¢, where the dimensionless parametgrs €2 4 (2 <2 = x2 + K2 <ep, which restricts the band of

(Pasteur) and: (Tellegen) serve as measures of the degree t‘ﬁfe allowable operating frequencies.

chirality and nonreciprocity of the medium, respectively. Just Knowledge of k* via (39) suffices to determine both
like ¢ andy, x is an even function of frequency, whereass (E:l:)inc and the field of the incident) mode.
an odd one. The practical cage= ¢ = x (x = 0) of a chiral
medium results in as a special case. .

Assume a plane wave obliquely incident on the strip. THe: Formulation of the Boundary-Value Problem
induced current density = #.J, + 2J. gives rise to the In the Fourier transform domain the following equations
scattered field. All these field quantities varyeas”= where3 analogous to (9) and (10) may be written for the scattered
is specified by the incident wave as outlined in Section Ill-Beld (E****, H**") = [E(z,y), H(z,y)]e 7%
below. )

This quasi two-dimensional problem may be formulated in < d + Kf)EZ(u, y) = — pZovH. (u,y)

terms of a system of coupled SIE-SIDE along the lines outlined dy?

in the preceding section. This possibility is based on (and also d? 5\ = .
reflects) the strong similarities that exist between these two dy? + K¢ JHo(u,y) = Yo EL(u, y) (40)
problems. 2 o2
2 2 e 2
(e #62) (G +2) G2 = - w6

A. Basic Equations (F=E,H) (41)

Solutions to the source-free Maxwell’s equatiovis< E =
—jwB, VxH = jwD that vary as(“*=7%) can be expressedwhere KZ = kZ — «?, K} = kZ — v*. The general solu-
in terms of their longitudinal components, andH., satisfying tion of (41) at points of regions 1y >0) and 2 (y<0)
the equations analogous to (2) take the form of (11a) and, in place of (115.;(u,y) =
ZoA; exp(FiTey) + 7 B; exp(Fjmpy) where now
(Vi+k)E. = — nZovH.

L Z
(Vi +ki)H. =YorE, (35) Zi=F./H. = _2—: [£+C+ V(€ +O? — dep]
K2 = k2ep — 2 — k3¢ (1 = a; upper signb; lower sign (42)
2 _ 1.2 A2 22
€ = o =7t =g KEHKE48) =K~ 7,
v=k3(&— ). (36) 1
| 7 =5 (KE+ KE —8) = ki —
In terms of E. and H. the transverse components are given 2
. (43)
y
<F) —~<‘k2 —Wzo)—l with § = [(kZ = k) — dep’]/2 = v /(€ + ()7 = dept
i R 5
H ) “\very 12 ko= 302+ +0), K =302+ -0 (44)

—koC?:“ X Vt + ﬁvt —wuoué X Vt
' < wegez X Vi ko&z X Vi +/3Vt> For é either of its branches may be used in (43) and (44)
E. (fixed thereafter). The proper branches of the double-valued
<H> (37)  functions 7.(w) (i = a,b) are selected according to the
- condition Im{r; ()} < 0.

B. Incident Field
Let (Einc Fin(‘,) _ (EO FO) eXp(jEinC . 7—) be the incident D. Formulation of the SIE-SIDE of the Problem

plane wave, propagating in the direction?ld’f‘:(k, do, Po) [see Applying the boundary conditions gt= 0 and working as
(6)] with £ determined via (39) below. With respect to this fieldn Section 1I-D the following system analogous to (19) results
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in: a is given by the first of (46) whereas
; d 2z o AY (L
QBT (z,0)= Y si{aiALi(Jz) —|—jZi\Ifi—Li(.]w)} Kify =wl Y sioi Ay (kiw)
i=a,b dx t=a.b
(45a) K3y =7 > s:iZi%Cipy(kaw) = K3,
i=a,b
. d X 1 (1) 2
e e . iV . Kifin =— Z‘FiD AW k'z 49
aF7(x,0) = 421, SZ{—JVZ%LZ(JZ) MN =X 7§b3 M (K7 kiw) (49)
2 Rz =wA 0 AD) (k;
+1 <“2 i _)Lium)} (45b) in =W 3 57ifl ()
3 dx2 i=a,b
LT 1 1
wheres; (i = a,b) has been defined in (20). Here the notation Ry, = w Z sili DR (f, i)
i=a,b
o= —4ADk)(Zo — %), A = k22 + e R =J D siZiWiC (kiw)
D=eu—C¢ wP=-Ekic'D/T; i=a,b
L, =U;A"' —k26'D, U, = RV, R =7 5:ZV;BY) (kiw) (50)
Vi = QA kPP, P =qZi+upZo =
Qi=q—YopeZ;, Ry =k}pZi+ X o;=2F with »? defined in (46). On evaluating the right sides in (23)
Vi =R, P, ¢= —kgC —eur, p= _kg Y and (27), we now use
5 — _ 1
qg= kgﬁ —euv, A= —vufiiy (46) Eop = — < [[3(—/{2 v Zo )25k,
has been used" (F = Z,0,Q, P) being shorthand symbols + kolq + nZop/ZE )k, Fo.
for 7, (1 = a) or F, (it = b). N —vuZy —k2 + k?
An Alternative Formulation TechniqueAn  independent Z* =Eo./Ho. = — 7 =
. , . —k‘ +I€< l/(:YO
approach, based on space-domain Green’s functions com- L
bined with the modified reciprocity theorem is applicable, - _ @ [€+¢+ /(£+ 02 = dep). (51)

yielding again the system of SIE-SIDE (45). The medium

complementary tde, 11, ¢, £) is now described by the scalar
(.11, —£,—C) [9]. The equations analogous to (B.7) aSF Far- and Near-Scattered Fields

(B.10) in this case read as The z components of the far-scattered field are given by
‘ E?Cat(ﬁ Z) ) g e ikip < 1 )
%) = N _ZPIAL Zcat =e7" Si——— F;
—aF.(p) = igb 8,|: Z'P'AL(J) <H~ t(p7 2) igb Nz 1/Z; (#)
aif s O e Fi(¢ __3 592 {_ 1 AP T (s
_ 4Pt P . . i — J&m 2\
iP <RZ — ko, ay)ﬁz(m} (#)=-2V N (ui)
(47) - VP (R cos i+ Fo R sin ) 1 (u) |
(52)

—aH.(p) = Y Q' [Z”A/:i(JZ) i i
i=a,b u; = k;cos ¢ (0 < ¢ < 2r), with J.(w) and.J,(u) given by

o (32). The other components of this field can be found from

8y>[' (]w)} (37). As seen the far-scattered field is composed of two waves
(48) with “radiation patterns’F,(¢) and F,(¢), respectively, in

complete analogy with the preceding gyrotropic case.
with 2, R;, Q; defined in Appendix C and#* = F, (i = a), Analytical expressions for the scattered field near the strip
F. (i = b), F = PQ}. may also be found after substitutidgy (J.) and(d/94)L,(J,)
From (47) and (48), one can reproduce both of (45) fol£ = ,y) in (47) and (48) from (33) and (34).

lowing step by step the procedure outlined in Appendix B

with respect to the preceding gyrotropic problem. This task is IV. NUMERICAL EXAMPLES

facilitated by the set of identities listed in Appendix C.

g
+1<R8 + koD

Figs. 2—4 refer to a strip embedded in a lossless ferrite
medium that becomes anisotropic by means of a superimposed
) dc (bias) fieldHy. = 2Hi.. This medium is described by
E. Solution of (45) a scalar dielectric permittivite = ¢ge, in addition to a

From (45) via (22) working in the context of methods Atensorial magnetic permeability given by the second of (1)
and B, one arrives again at systems (23) and (27) where naiere i; = 1 + wowm /(w3 — w?), p2 = —ww,, /(W5 — w?),
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of L, monotonically and asymptotically approach those of
method A. (For a detailed comparison between these two
methods refer to [3]).

The results presented in Figs. 5 and 6 refer to a strip in a
chiral medium characterized by=4, n = 1.5, £ =( =03
for 2w = Ao, ¢o = P9 = 45°. Fig. 5 shows the radiation
patterns of the far scattered waves. These waves labeled as
(pT) and(p~) (p =4 or p =_) and excited by the incident
(p)-mode, respectively, correspond 9 (¢) and Fy,(¢) given
by (52). Finally, Fig. 6 show$E'°!(x,y, ») i
In this case, the«) and () incident mode excitations yield
coinciding results.

V. CONCLUSION

SIE techniques have been applied to study scattering by
T T T T T T a conducting strip embedded in unbounded gyrotropic or bi-

-1.0 -0.5 0.0 0.5 1.0 isotropic spaces. The governing SIE-SIDE were derived and
X/w discretized by two independent to one another methods. The
Fig. 2. Zo|J.| and Z,|J-| versusz/w for a strip in an anisotropic ferrite Present analysis may be used as a basis for treating more

(2w = Xo, fr = 30 GHz, o = Vo = 45°, &, = 16, wo/wm = 0.1124) complicated strip-loaded bi-isotropic/anisotropic structures.
illuminated by the+ incident mode wherf 4. = 2H. (curves labeled “f")
or Hy. = —ZH,. (curves labeled “r").

APPENDIX A

USEFUL IDENTIFIES FOR THEGYROTROPIC CASE
uz = 1. Here,wg = vHye, wym = YM,, v ~ 1.76 x 10%!

C/Kg being the magnetomechanical ratio avid the intensity ~ FOr ¢ = a,b; m = a,b; andm # ¢ we have
of the saturation magnetization. We note that reversal in the .

. . = . . rn q» Zg(— Prn 1&m = _AZaZ
direction of H . results in a change of the sign p§. In all @q = o=V & JQmv) b
these examples, the operating frequency was taken to be 30 AZoZy —Panv Zy(0 P 4 pQm) = PRy
GHz, while oM, = 0.3 Wh/m?, ¢, = 16, 99 = ¢y = 45°, QmP, = — AZ,,, vP,P,+jvQ,P, =AZ,P,
2w = Ao (Ao = free-space wavelength)y /w,,, = 0.1124.

Fig. 2 shows Z,|J.| and Z,|J.| as a function ofz/w I
in the case of ) incident mode primary excitation. The . 7P By + pQm By _R(IP’"/Z(I
curves labeled asf” and “r,” corresponding to the cases J(—vPnRy + o PoPy) — Qu(vRy +jpPy) =
Hy. = 3Hy. and Hy, = —2H,., bring to light the effect of —RZP,[Zy + DZy Py = NZ,(P7 — R2)/P,.
nonreciprocity. _ N _ _
Fig. 3, on the other hand, shows the radiation patterns of tA# Symbols involved here refer to quantities defined in
far-scattered field. The waves labeleda$) and(p~) (p = + Section L.

or p = —), excited by the incidenfp) mode, correspond to

F.(¢) and F,(¢), respectively, given by (31). Finally, for the APPENDIX B

same parameter values, Fig. 4 shqwé°'(x,y, z)| along the GREEN'S FUNCTION-BASED

y axis (x = 0,z = 0) both for (+)mode (dashed curve) and ALTERNATIVE FORMULATION TECHNIQUE

(—) mode (solid curve) primary excitations. (5.7 T = N1 e V(55
We note that as a partial test of the correctness of the nu JI‘}?_ _,g(]g Jgk b)e’ ch Eg ’Sp glfse ,aﬁ( and) d[tfe (to t?{e
ical codes, all results presented in Figs. 2—4 were reproduced popIe P x@;y
by methods A and B independentl nlt phased-line sources, = I6(p — p')e’?* (I =1 A) and
y P Y. M&(p —7)edB* (M =1V), respectlvely, impressed
The convergence characteristics of the algorithms are |Ilust 7( ) inside the transposed (complementary) medium
trated in Table | where for the- incident mode Zy| ./, ()|, =T _T)’yThen 8] 4
and Zy|J.(x)| are shown along with elapsed CPU time fog o
several values ofV,,,, (the number of basis functions used #7) Z £S5 (5,7)
zq

in each of (22); method A) orl. (see (27); method B). o (7.7

Here, z = w/2, ¢, = 9, and 2w = Xo/2, the other .7)

parameter values belng the same as in Figs. 2-4. The most Z qu PP ); G=JM (B.1)
important feature of Algorithm A is its exponential very 7=a:b

stable convergence. Fd¥.,..,. = (10,15, 20), for instance, the ES (0. 0) =iZ M (p,7) (B.2)
computed values are correct to within (5, 10, 16) significant ng 5,7) = — iz Si 7 (jPUbcs +Q Mégn)

decimals for both current densities. Method B, on the other
hand, yields numerical values which, for increasing values -Ho(kylp—7']) (B.3)
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0.1 4 0.1 3
_ _0.01 1
= 0.01 3 =) 3
1 0.001 4

0.001 A — (++) wave 1 — (—+) wave

iy e +—) wave 1 1 e ——) wave

0 90 180 270 360 0 90 180 270 360
4 4

Fig. 3. Radiation patterns of the++), (+—), (—+), and (——) waves when the
values as in Fig. 2.

strip is embedded in an anisotropic ferrite for the same parameter

20 TABLE |
CONVERGENCE OF THEALGORITHMS
ﬂ Method A
Zz tJ | z 13 | CPU
max 0 X 0 z
5 |6.54 7.36 5
10 |6.49026 7.552376 16
‘ 15 {6.4902413289 7.552387316 36
j 20 |6.490241328440637|7.552387318106955| 88
' o |6.490241328440637]7.552387318106955
l Method B
L |2, 13, T [Z,13_T [CPU
10(6.57269|7.78092| 2
20|6.50827|7.60726| 6
40(6.49431{7.56599| 25
6016.49199(7.55843| 56
100|6.49085|7.55456|155
200|6.49039(7.55293|627
T T T T
3 9 15
koy
0.1 3
Fig. 4. Near-field Et°*(0, y, 0)| versuskyy for the same parameter values ]
as in Fig. 2. ]
with {.7:0’ = F, Fb o= Fa (.7: = P,Q)} and {(5@@ =1
(G = Q)7 0 (G $é Q)} (8(17Z(17P(17Q(1 (q = avb) have been 001 —E
defined in Sections 1I-B and C). o o ] :
_The modified reciprocity theorem [V, J.) = (Ju, /)¢, N ] !
(J,M,) = (M,,J)¢ yields for the z components of the — ] :
scattered field E°°**, H**) = [E(x,y), H(z,y)]c™%* the 001 E
relations 0. E i
] \
— * Nedy ot — / ] : — ()=
Ez(p) = Jz(x )8z (J} 70§p) dx 1 i —————— +—=),(—+
—w | ~
|
w i
+/ Jo(2)E (+',0;p) da’ (B.4) 0.0001 — — ; :
S 0 90 180 270 360
w
H(p) = [ LE)EN ! 0p) o v
—w

Fig. 5. Radiation patterns of the++), (+—), (—+), and (——) waves
(B-5) when the strip is embedded in a chiral medig2w = Ao, fr = 30 GHz,
do =V =45°%, e=4,u =15, =(=0.3).

T (eNEM (&0, p) da’

o
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2.0
x=z=0
1.5 4 +,—modes
341.0
0.5
0.0 —T—T T 77—
-15 -9 -3 3 9 15
koy

Fig. 6. Near field EL°'(0, y, 0)| versuskoy for the same parameter values

as in Fig. 5.

where using (4) and taking into account thep(j3z) depen-
dence

£ @) =
(G=J,M). (B.6)

Using (B.1)—(B.3) and (B.6), (B.4) yields

E.(p) :% > s [ZqPq—lALq(JZ)
@ g=a,b
+ <qu—1Rq% + (%)E,](Jx)} (B.7)
Lqy(J) = /w J(2')Holky\/(z — 2')? +y?] da’. (B.8)

Letting ¥ — 0% in (B.7) and using the relation

lim
y—0%

{%EQ(J)} = +25J(z) (B.9)

we again arrive at (19a) with the help of Appendix A equa-

tions.
From (B.5) we obtain the following equation analogous to
(B.7):
1
) =——— q| 4 3
B0 = 13z, = 2 q;b 5@ [JZqAﬁq(L)
g .0
- <Rq% +Jan—y)£q(Jm)] (B.10)

Note: Letting y — 01, ¥ — 0~ successively in (B.10),

subtracting the resulting equations, and applying the boundé’rg}]

condition H.(x,0%) — H.(z,07) = J.(z), |z| < w, results
in the identity J,(z) = J.(z); that is, (B.10) cannot be

used directly to derive a second linearly independent integ

equation.
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Using (4) to expres%..(p) in terms of E.(p) and H.(p)
yields via (B.7), (B.10) the relation

42 - ZTHEp)
e 7] 7]
= Z 5(1{<qu lR(I% - a_y>[’q(JZ)
g=a,b
1 P1(PP-R? ” E2PZ\ L, (J.
+Zqu (q_ ‘q)@—i_qq (1(90)
(B.11)

The algebraic manipulations in deriving (B.11) were simplified
by using the set of identities given in Appendix A. Finally,
settingy = 0 in (B.11) leads via (B.9) to (19b).

APPENDIX C
USEFUL IDENTIFIES FOR THEBI-ISOTROPICCASE

Zo(qPy — ZoppQy) = Zo(qPa — ZoppQa) = —ADZ,Zy,
ZoZy =172 (C.1)
€

Z;P = — HZ&Qi, 7,0, = P,
€

zP =L220", z,Q' =P
€

Z;P'=—Z'P', ZW; =R,P =V,
ZV, = — R,P, R, = R,
(i = a,b) (C.2)

whereP;, Q;, U;, R;, the duals of?;, Q;, R;, U;, are given by

P=—Z'G+ upZo, Qi =q+ YopeZ'

U, =Q'N— k2P, Ry =-kKBZ'+X.  (C.3)

All symbols involved here refer to quantities defined in
Section IlI.

REFERENCES

[1] J.Electromagn. Waves Applicat.—Special Issue Wave Interactions Chiral
Complex Mediavol. 6, no. 5/6, 1992.

[2] A. Sihvola, Ed., inProc. Bi-lsotropics Workshop Novel Microwave
Materials Helsinki Univ. Technol., Finland, Feb. 1993.

[3] J. L. Tsalamengas, “Direct singular integral equation methods in scat-

tering and propagation in strip or slot loaded structuréSEE Trans.

Antennas Propagatto be published.

S. Przezdziecki and R. A. Hurd, “Diffraction by a half plane per-

pendicular to the distinguished axis of a gyrotropic medium (oblique

incidence),”Can. J. Phys.vol. 59, pp. 403-424, 1981.

R. A. Hurd and S. Przezdziecki, “Half-plane diffraction in a gyrotropic

medium,” IEEE Trans. Antennas Propagatol. AP-33, pp. 813-822,

Aug. 1985.

R. E Collin and F. J. ZuckerAntenna Theory New York: McGraw-

Hill, 1969.

M. Abramowitz and I. A. Stegurlandbook of Mathematical Functions

New York: Dover, 1972.

N. Okamoto, “Scattering of obliquely incident plane waves from a finite

periodic structure of ferrite cylinders|EEE Trans. Antennas Propagat.

vol. AP-27, pp. 317-323, May 1979.

[9] J. A. Kong, Electromagnetic Wave TheoryNew York: Wiley, 1986.

J. C. Monzon, “Radiation and scattering in homogeneous general

biisotropic regions,”|EEE Trans. Antennas Propagatvol. 38, pp.

227-235, Feb. 1990.

(5]

(6]
(7]
(8]

':f‘L. Tsalamengas(S'76—M'87), photograph and biography not available at
the time of publication.



