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Pattern Translation and Rotation in
Uncorrelated Source Distributions
for Multiple Beam Antenna Design

Rodney G. VaughanSenior Member, |IEEE

Abstract—In the uncorrelated scenario model, a continuous results in terms of the antenna patterns. However, antenna-
source distribution illuminates a receiver with waves bearing specific patterns can also be used and some results for directive
signals that are uncorrelated with respect to their angle of antennas are compared below

arrival. This model is used for multipath situations such as Th i0is th lati hib bet the | .
scintillating atmospheres, but also can be applied to optical € scenariois the relationship between the incoming

beams for indoor communications, acoustic beamforming, and, Waves,Ei,.(6, ¢), and the configuration of the receiving anten-
of particular interest here, mobile communications. For diversity nas and it is usually expressed as a time-averaged probability

antennas operating in such a scenario, patterns that produce density function (pdf) referenced to the antenna coordinates.

uncorrelated signals are required. An angular separation of g goanarig is normally considered uncorrelated in the sense
directive beams in multipath scenarios acts to decorrelate the L
that for each polarization

received signals. It is of interest to quantify the minimum angular
spacing required of beams in order to provide a framework for )
the design and configuration of the antennas. The approach is to  (Einc(01, ¢1)Epnc (02, ¢2)) = S(6, $)6(01 — 02)6(d1 — ¢2)
consider only the main lobe of the antenna pattern and to take (1)

it as a real function. This is reasonable as long as most of the whereS(6, ¢) is the time-averaged power density (per steradic

energy is conveyed yia th_e r_nain beam. In practice, the sidelobe square) distribution (i.e., the pdf) of incident waves. We
structure and nonuniformity in the phase of an actual pattern o ’

act to improve the situation in the sense that the decorrelation @lSO usually take the orthogonal polarizations to be uncor-
angles become smaller. The conditions for angular diversity result related. The modeled pdf and its uncorrelated nature are
in a simple rule-of-thumb for the minimum beam separation postulates which trade off simplicity, foster analytic progress,
requirement, which is essentially independent of the directivity. 5 reasonably represent the averaged physical situation. The

Finally, both scalar (acoustic case and circularly polarized case) A - ) -
and vector (linearly polarized case) elliptic beams rotated about two-dimensional (2-D) Clarke [4] scenario corresponds to a

their boresight axes are analyzed for the decorrelation rotation ring of dense sources (_normally Vertica”}’ polarized) on a
angle as a function of the ratio of the ellipticity. The resulting de- horizon about the receiving antenna and it can be expressed

sign curves offer a guideline to beam configuration for multipath as a power density of /(27) per steradian from
scenarios.

Index Terms—Multibeam antennas. Sc(8,¢) = Sc(6) = %6(9 —7/2). (2)
U

This scalar case can be duplicated and scaled for both po-
I. INTRODUCTION larizations. In this paper, we also use a Gaussian function to

HE use of multiple antennas is an established diversifjodel adirectional scenario

technique for improving communications channel quality In order to get “uncorrelated” channels from antenna ports,
in multipath environments [1], [2]. The basic idea is to receividie correlation coefficient of narrowband fading signal en-
the wanted signal from multiple antennas that have mutuaNg¢lopes should be lower than about 0.7, which corresponds
uncorrelated channel degradations and combine the receit@d@bout a 1-dB loss (relative to that from a zero correlation)
signals such that the resultant signal is less degraded than #nie ideal two-branch diversity gain [5]. The envelope corre-
of the individual channels. lation coefficientp, is approximately equal to the magnitude

The requirement of the antennas is, therefore, to provide wifiuare of the complex correlation coefficient [5] of the open

correlated channels. Under certain conditions, this requirem@Heuit signals denotedp|®, which is given in terms of the
is the same as providing uncorrelated antenna patterns [3]pgiterns by [3]
beams, which is used below. By dealing with generic beams,
rather than specific antenna implementations such as arrays?12 = (Vo1 Voa) /v (IVou*){[Vozl?)

reflector, surface wave, etc., the formulation gives generic o N .
gives g =[] 560000 -gi6.0)smod8d5 @)
0 0
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The pattern diversity can be realized by the use of umircular support; or a mapping af to ¢ [, 7) must be
correlated polarizations [6], [7], spatial separation of similamployed to allow the use of more general (i.e., nonperiodic)
patterns [2], or angular separation of similar patterns [lfunctions which are then altered to be periodic via the form
With (3), all three degrees of freedom—polarization, spacing(dg((/))). Equivalently, it is useful for visualization to define a
and rotation—can be used together to realize uncorrelaggefriodic functiong(¢) from g(¢)
patterns [8]. A design guideline can be developed for using a 3
single degree of freedom. For example, using space diversity §(¢) = g(¢(¢)) = Zgn(d)), n=0,£1,£2,--- (6)
in the Clarke scenario, the open circuit voltage correlation n
coefficient functionJy(kod) goes to zero for omnidirectional
patterns spaced by = 0.38 wavelengths. A rule of thumb for
space diversity in mobile communications follows as a half- g,.(¢) = g(¢p +n27r) (2n — )7 < P < (2n+ 1)m;
wavelength separation between omnidirectional antennas [2] -0 elsewhere (7)
although much closer spacing is possible [9]. A guideline for
angle diversity from antenna beams is the subject of this papehich gives the truncation of the nonperiodic function to form
The rule of thumb is found to be an angular spacing of hadf periodic function. For circular functiong(#) = g(¢) =
of the half-power beamwidth for a uniform scenario, althougf(¢).
closer spacing is possible when sidelobe structure and phas¥sing g(¢) in the linear correlation, i.e., that with integral
nonuniformity are included. limits of +oc, is the same as using it with the limits of the

The beams are modeled using Gaussian and cosine fuciceular coordinate system suppdrtw, ). So the angular
tions. Gaussian beams allow simple results but their appraorrelation function for noncirculay(¢) in the circular support
imation to a circular function causes the formulation to bis
best suited to medium and high directivities (see Section II). o 0 0
The cosine beams are more suitable for low directivities to be Rg;;0(Q?) = / S(¢)g<¢ + E)g* <¢ - 5) d¢  (8a)

where

quantified. Two related approaches are taken for developing oo
the angular spacing requirement for diversity from directive _ / S(¢)g’<¢ n Q)g* <¢ B Q) 46 (8b)
beams: the beam is considered in spherical polar coordinates - 2 2 '

with an angular pdf for the power density of the scenario; ) . .
and the footprint of the beam on a plane (approximatirMore often than not, problems with reducing the integral occur

the concave spherical surface) of uncorrelated sources is al§g2use the mapping required fgs — £2) does not allow

considered. In Section IIl, the one-dimensional (1-D) case sgparation of these two variables. In practice, it is convenient,

first considered, followed by treatment of the 2-D e”ipticgherefore, to use circular functions for the pattern modeling in

shaped beams. In Section IV, the decorrelation by rotatiGicular coordinate systems or else ensure that the mapping to
of the elliptic beam is quantified. The following discussioft Perodic function is unnecessary by maintaining
section is a of the finite support of the circular coordinate v Q

2 _ 9)
system. g T <7 (
where~p is the effective support of the bednThis condition
keeps the beam effective support within the circular coordinate

In a correlation operation, the integration is bounded ®&ystem suppofftr, ) even when the beam is off center by half

¢ € [—n, ) for a circular beam pattern (functiony(6, ¢), the correlation lag?/2. More discussion about the condition is
in circular coordinates. However, a noncircular function beingjven for Gaussian beams in Section Ill. If the (9) is satisfied,
correlated cannot be truncated-at, even though the supportthen
of the pdfp,(¢) is bounded at these limits. While integrals
such as the centralized mean of a functigp) can be written R, ,»(Q) = /

II. CORRELATION OPERATIONS IN A CIRCULAR SUPPORT

o

sa(o+5 )o (0= )@ a0a
wo= [ wda@rao= [ pedu@as @ - [ s<¢>g<¢ N %)g <¢ . %) J6  (100)

— o0

—7 _x

correlation-type integrals containing the form (here for th@here the approximation sign: refers specifically to the
Clarke scenarigs(¢) = 1/(2m)) approximation of neglecting the energy of the beam, which
. | et is outside of the effective beam suppett.
/ Po(P)g(d+ Q) dp = 2_/ 9(Q)d¢ (5) The prgferenge for using these where possible in qrcu_lar
-7 T J_mt+Q2 supports is obvious. In the case of the source distribution
being on an infinite planar surface (see Section IlI-B), it is

need to havey(¢) defined out top = « +$2 and the Oper"“tionﬁreferable to avoid modeling with circular functions on the
0

becomes inconsistent with the support of the pdf. There
two ways to view the requirements of the beam functi

9(‘7)) Eitherg(.d)) mu.St repeat with perioQ7r2as 9] increases 1The energy outside of 5 is small enough to neglect in the correlation
(circular functions), in which case there is no problem with thietegral calculation.

fane since their periodic property creates periodicity in the
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planar correlation operation. (This is the opposite problem Tthe Gaussian form of the correlation coefficient function
using noncircular functions in a circular support.) is a result of the beams being Gaussian and the scaling
constantsk, and K s are a result of the (truncated) Gaussian

Ill. ANGULARLY SPACED BEAMS IN CIRCULAR COORDINATES  gcenario.

The extent of the beam is bounded by the sum of the
o beam effective support and the correlation lag being within the

The source scenario is uncorrelated and also Gaussiyyrdinate system support, i.ez + Q < 27, from above. A
within the support of a circular coordinate system. For a topnservative simple rule-of-thumb for the limit of the spread
D (single pattern cut) case, the scenario is denoted in thethe beamo,, is obtained by maintaining the supporg

A. 1-D Gaussian Beam with Gaussian Angular PDF

azimuth coordinate as aboutso, radians (from=+2.50, radians about the centre
_2_22 of the beam), corresponding to 92% (froenf(2.5/2)) of
Sc(¢) = pp(d) = Kse *2, —m<dp<m (1) e energy of a centralized Gaussian beam being within the

where the mean angle (here meaning the direction of magHPPOrt and allowing the maximum correlation lag to equal
mum power density) is taken as zero. The normalizing factB¥ice the HPBW &2 « 0.60, radians). The bound follows

required to makeS(¢) the pdf of the incident power is @559, + 1.20, < 2, giving a maximum standard deviation
parameter for the beam function @f ~ 1 rad or a maximum

K-' =20, erf< i ) (12) HPBW of about 95. Note that this rule-of-thumb addresses
? V20, the accuracy of an approximation within the mathematical
The antenna amplitude pattern is denoted formult_:ltion and does_not account for inaccuracies of _the
i Gaussian beam modeling a real-world beam. For comparison,
N . -5 a |sinc|]-shaped beam has about 90% of its total energy (in the
gp)=g(@)=c ", —wmspsm (13) sense of having support éfco) within the support of its main
The relation between the half-power beamwidth (HPBW) of labe. For the beam function being well within the support, i.e.,
pattern and the Gaussian standard deviation paramgtisr o, <~ 1rad, corresponding to moderate and high directivities,
there results? ~ 02/2 and K. = /oy,
HPBW = ag2\/21n \/Q7 i.e., 0,7 0.6 HPBW. (14) The above rule-of-thumb is for a uniform scenario; for direc-
tive scenarios, the beams can be less directive. Using beams
To relate the beamwidth to the directivity, a 2-D bearith lower directivity (-, <~ 1 rad) results in the angular
must be considered. A circularly symmetric Gaussian beafBrrelation coefficient function values increasing, especially
is denoted using the zenith coordind@tand has directivity  for its smaller values. The decorrelation angle increases as a

2 result. Lower directivities are better dealt with using cosine
Dy(oy) = e (15)  peams (see subsecti@h below).
Jo e "o sinfdb To find the correlation coefficient between the zero-mean

The pencil beam directivity formul®, = 41 000/(HPBW)? signals from each beam we use

[10] is a good estimate, being within 0.5 dB as longaas (Vor Vs,) Ry142(9)

is less than 1 rad at which the directivity B, = 6.75 dB (¢} = TV P VoD VR @R (20)
and D, = 6.51 dB. Kraus’ [10] formula for Gaussian beams o1 o2 gtol 9292

(which is 0.88D,) has improved accuracy for higher{- 8 From the symmetry of the configurationR,.,i () =
dB) directivities only. The off axis directivity relative to its g , ,(Q), so the normalizing factor is

maximum value is

2 2 -2
g(0) 2(2In+/2)2 \ HPBW
where
which gives, for example, a level of abou0.8 dB at an angle 5 5
from boresight of quarter the HPBW. K, = 2528 <erf<L> _ erf(L)) (22)
The correlation function of the open circuit voltages result- 2 V20, V20,
ing from the 1-D beams is and
_o?
Vo1 Viy) = Ry1g2(Q) = K, K.e 7 17 2 :
< o1 02> !]1[]2( ) E -C ( ) L= 2 Og 5 _ U_; (23)
where 7 +275 9
K, = 2ro, erf( T ) (18) The correlation coefficient function between the voltages is
V20, now established as
and i 2
o252 p(§2) ~ j;f(\/iop) 2y, G_QT(U%_m)
s - 1 w—k —r—k
2 : (19) 2 (el (55,2) —ef(55,0)

ol =>4
202 + 02 (24)
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his is found from
Fig. 1. The angular correlation coefficient function of the signal powerts s is found fro

(similar to that of signal envelopes) for 1-D Gaussian beams spaced sym- Q2
metrically with respect to the Gaussian scenario of uncorrelated sources. The O~ —0—5‘ 27
abscissa iS5y = (04/05)? whereaoy is the spread of the amplitude beam pe( d) ~e o (27)
andog is the spread of the scenario (incident power).
If the two beams(¢+£2/2) are well within the support of the = lg = O'g\/hl V2((0g/05)? +2)
scenarioSg(¢) [cf. the condition of (9)], then the correlation 1 1
coefficient function is approximately Gaussian =HPBWy/o(og/os)? + - (28)
_o2 . . . .
p(Q) = 2 (25) Wheno,/os >~ 3 and, in particular, for the uniform scenario
HPBW . .
where Q= (uniform scenario) (29)
2
g . . .
o) =0, <——g + 2). (26) i.e., the 0.7 decorrelation angle is half of the half-power
7% beamwidth of the antenna pattern.

This equation relates the spread of the correlation coefficient! NiS simple result is independent of the pattern beamwidth
function to that of the beam and the scenario. The power corf& long as the beam is well within the circular support. In
lation coefficient, which is similar to the envelope correlatioRractice, the sidelobe structure and nonuniform phase of a
coefficient, viz.,|p(2)|2 ~ p.(€), is shown in Fig. 1 with the "eal-world pattern will make the decorrelation angle smaller,

scenario spread, as a parameter. As noted above, the HPB\O the above rule-of-thumb is interpreted as an upper limit
has little influence as long as it is less than about 90 for the minimum decorrelation angle for a uniform scenario.

The limiting and special cases for the scenario are big. 1 (above) offers a feel for the effect of the spread of the
interest. For a single incident wave, = 0, which gives scenario. For example, in the case where the power pattern
s, = oo and the correlation coefficient function is alwayd'as the same spread as the scenario, (@s/0g)? = 2,
unity independent of the beam (as long as it has nonzero gamﬁ 0.7 decorrelation beam separation increases from 0.5 to
This can also be seen directly from the defining equation (1bjV2 = 0.7 of the HPBW.
with S(¢) = 6(¢). The result comes from the fact that for
a single incident wave, the open circuit voltages of the twl. Gaussian Footprint on a Plane
beams are simply s_caled yersions of the same signal. For thgq, an antenna being illuminated by a plane of uniform
case of the scenario having the same spread as the begfifces, a similar correlation expression can be derived for the
o5 = o4, theno, = V30, i.e., the correlation coefficient yanglation of the beam. Traditionally, the term “footprint” is
function has a spread af//3 of the spread of the beams.appjied to satellite antennas illuminating the (convex spherical)
Similarly, for the spread of the scenario being the same as gth but the context is borrowed to recouch and extend to
spread of the power pattern = o,/v/2, theno, = 20, FOr 14 dimensions the results of the previous section. Fig. 2 is a
a uniform scenariog;, — oo giving oserf(Z—) — V21 sketch of the beam coordinates. The beam is viewed here as
and S(¢) = Sc = 1/2r. This results ins, = /20,, i.e., receiving rather than transmitting, and reciprocity is assumed.
the correlation coefficient function has a spread, whick/s The relationship between the amplitude pattern of the beam
times the spread of the amplitude beam. g(8, ¢) and the amplitude footprint on the plang, i(z,y) is

The 0.7 decorrelation angle,; can be defined as the anglealso depicted in the figure. If the beam is sufficiently narrow,
for which p. = 0.7 ~ 1/+/2. For sufficiently directive beams then, for a small beam translation given by a chang®gf
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in the zenith angle and a beam rotation given by a chanBer very directive beams, the largecan lead to computational
of @y in the azimuth angle, the correspondence (denetgd problems and it is better to scale the angle in order to

between the footprint and the beam is reducen and set the integration limits appropriately. The beam
becomesy(¢) = cos™(m¢) and the HPBW formulas modify
9(© + 60, P + ©0) < h(z + 20,y + %) accordingly.

= h(x + dsin © cos @,y + dsin O sin D). (30) The 2-D beam is written

The small angle approximation allows the correspondence in g(0, $) = sin™ @ cos™ <?) (37)

translation distance on the plane to be proportional to the

zenith angle change, i.erg = /23 + ¥ x ©9. The beam

rotation is omitted here and addressed below in Section IV
The footprint model is

which is directed along the:r axis. For a uniform three-
dimensional scenari® (6, ¢) = Sy = 1/(4=) and the angular
correlation function is

h = _(;f”%) 31 Ry1g2(W) = i/wsmz’"e“ede/w cos™ (£
(x,y)=c / (31) ale\ 5= ) o 2
whereo is the spread of the amplitude beam in theirection « cos™ <</) + W) " (382)
and similarly foro,,. Truncating the footprint to a support 2
of (£2X,42Y"), the correlation coefficient function for the 1 7 7 v 38b
voltages of two spaced beams is, cf. (25) T 4r s(2ng + Dlec| 1o, 2 (38b)
2 2
(=242 where
p(z0,yo) = Kaye (4"1 4”) (32) - "
. n . nil i
where K, is given by (33), shown at the bottom of the page.Is(n) o /0 S0 df = 2(n + i n€l, nodd; (39)
When X, Y become large relative te,, o, (footprint well (n—1)!!
within the scenario support), thelf, ~ 1. The significant =ty o "€ I, n even (39b)
aspect is that the andy functions are independent q
an
Mz, y) = h(z)h(y) (34) x

I..(n,vy) = / cos” <—> COSn<— + 7) d¢ (40a)
because of the postulate that the scenario is uncorrelated. So —n 2 2
the 1-D decorrelation result of the previous section holds = — T - Fo.(n,v) (40Db)
independently of the beam spread in the second dimension, 220=1)
(i.e., p(xo, yo) = px(x0)-py(yo)) because of the assumption ofyhere
the uncorrelated scenario and remains approximately Gaussian
owing to the narrow beam assumption. et n\2

F,(n,v) = <k> cos(n — 2k)~y,

x>
[}

C. 2-D Cosine Beam
] ] ) _ n € 1, neven; (4la)
The cosine beam is an alternative model for the main lobe

of a directive pattern. The 1-D amplitude pattern is written

9(¢) = cos” @) (35) nel, nodd (41b)

w3

2
cos(n — 2k)y - e(n — 2k),

I
-
o
N
> 3
~—

which goes to zero afp| = = and is unity atyp = 0. The with

relationship between the HPBW andis (m) 1 0 (42a)
em)== m=20;
—1 . 2
HPBW = 4cos™ (27 27) =1 m#0. (42b)
i.e., From the symmetry of the system, the normalizing factor is
) ) HPBW 1
n= _108(\/5)/108 cos < 4 ) (36) Rglgl(o) = HIS(ZTLQ + 1)Icc(2n¢70) (43)

o, _ (O (2300 () - enf () -
4erf(o—m) erf(—)

Ty
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Fig. 3. The power correlation coefficient fafos™ beams including the Fig. 4. The pattern and correlation coefficient function for a six-element

low-gain cases oHPBW = 180°, 131°, and108°. Yagi antenna pattern. The HPBW isG2T'he upper curve is for the amplitude
pattern, which gives a 0.7 decorrelation angle of,28nd the lower curve is
for the complex pattern which results in a decorrelation angle 8f 13

in which the simplification

Ic(2n,,0) = I(n =2ng4) = /7T cos™ <§> de

-7

=2L,(n), neven (44)

0.95

0.9

can be used. The correlation coefficient function is then %
(20,1 . v €085

) 3

) = . “Folne, = . 45) ¢
o) (2ne — DI 2270t <71¢ 2) 45) £ o8

The ¢ dependence drops out in the normalization, as e>§0.75_

pected from the discussion of the previous section. The powgr

correlation coefficient functiofp, (¥)|* ~ p.(¥) is plotted in 07

Fig. 3 for HPBW's of 180 (ny = 1), 131 (ny = 2), 108

(ng = 3), andHPBW <~ 50° (ng >~ 15). 0.65
For this latter case of moderate and high directivities, the . _ :

same rule-of-thumb that was derived for the Gaussian beams 6 ;2 % a0 a5 40 45 50

is confirmed: thep. = 0.7 decorrelation angle is half of pattem rotation angle (degrees)

the HPBW of the beam. The formulation here using COSirﬁ"g. 5. A low-directivity pattern with its correlation function. The 0.7

beams addresses lower directivity patterns, which was notd@orrelation angle is similar for the amplitude pattern (abod{) %thd for

convenient with the Gaussian beams. For example the befcomplex pattern (about 2

with a HPBW of 180 has a 0.7 decorrelation angle of 0.38

times the HPBW, i.e., about &7for the 108 beamwidth, we in g uniform scenario are quoted from [11]. For a six-element
get about 50 for the 0.7 decorrelation angle. The broader thgga_yagi antenna with a HPBW of 52the amplitude-
low directivity cosine beam, the less the decorrelation anggﬁ“y pattern gives a 0.7 decorrelation angle of 2@hich
relative to the HPBW becomes. _ _fits with the rule-of-thumb given here. The complex pattern
The use of directional scenarios is straightforward to INives a 0.7 decorrelation angle of abouf 1Be., half that of

corporate in the formulation here by using cosine angulgfe ampjitude-only pattern. The two correlation functions are

distributions, which has the effect of increasing the values vaen in Fig. 4.

the integer powers of the sine and cosine terms in the integra|:Or a low-directivity beam, the difference between the real
for the cprrelation function. Incr_easingly d_irective scenariognd complex beam results is not usually as pronounced as for
serve (o increase the decorrelation angle in the same Wayaaﬁgh—directivity beam with sidelobe structure, although this,
with the Gaussian beams. of course, depends on the phase behavior of the pattern. A
) ) o ) ) “well-behaved” pattern from a multiple-wire antenna and its
D. Comparison with Realistic Patterns in a Uniform Scenarigqre|ation coefficient function are given in Fig. 5. The HPBW
For comparison, results from the angular correlations & about 90 and the 0.7 decorrelation angles are about 50
numerical far-field patterns from moment-method calculatiofamplitude pattern) and 40(complex pattern).
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In summary, the effect of any sidelobe structure and phase Smaller
nonuniformity in the pattern is seen to decrease the decorrela- HPBW
tion angle relative to that of the amplitude-only pattern, which D
is also an intuitive result. For the medium directivity pattern
of the Yagi antenna, the decorrelation angle reduces to one
quarter of the HPBW in a uniform scenario. This is a large
change from the rule-of-thumb of half of the HPBW, which Larger
applies to amplitude-only patterns. For Gaussian beams, this UPBW
means that the beam overlap moves from the 3-dB points to the
0.8 dB points. However, such directive antennas may often be
operated in directive scenarios, which, from the results above

and from the fact that the sidelobe structure is not normally =1
utilized, would serve to increase the decorrelation angle to be
greater than a quarter of the HPBW. @)
<\2Y
IV. ROTATION OF AN ELLIPTIC BEAM .

The study of beams in uncorrelated scenarios is concluded
by the decorrelation action on elliptic beams by rotation of the
beam about its boresight direction. The scenario is circularly
symmetric Gaussian, centered at zenith, i.ef at0

02

5(6,¢) = S(0) = Ke 27 (46)

where the normalizing constant

T _ e
K1l= 27r/ e 9% sinfdf 47
0
: ) . . ®)
0_'0_95 not requwg evaluation _for finding the Correl?tlon COelf—"ig. 6. (a) Indicates the elliptic beams where the ratio of HPBW's is a
ficient. For a uniform scenarie; = oo and Sy = i For parameter. (b) Indicates the beam rotation about boresight as a mechanism

a single incoming wave from the zenith directiofiz(§) = to obtain uncorrelated signals.
Titaa » o |
A general elliptic beam, which is suitable for rotation, cagor HPBW's less than about 35the HPBW expression for
be written the Gaussian beams is accurate.
0\ —3 82 The correlation function for rotating the beam ®y in the
9(6,9) = COSn<§>G T (48) 4 direction is

where the beamwidth proportional tg, is modulated as an _ T et 20
elliptic function in ¢. Specifically Ry(27) = K ) € cos™{ 5 ) sin@df d¢p  (50)

CL2X2
cos? ¢+ x2sin? ¢ 1
where x = b/a and a and b are the conventional elliptic ki(¢,7) = 252
parameters. Atp = 0 andw, o, = ax = b; at ¢ = 7 /2 and 20, 9 2 20 . 9
37/2, o, = a. Fig. 6 depicts the elliptic beams “seen” from + cos(¢— ) Fcos ((/H_,Y);); (sm (¢ = v)+sin ($+7))
the 6 = 0 direction. The correlation argument is the beam X
rotation angle2y and the ratio of the HPBW'’s ig = R. The
scenario is circular, with beams co-centered at 0. No closed form was found for the integrals in the correlation

The cos™ 6/2 term IS us_ed to ensure t_hat Fhe beam h%ﬁnctions although some simplifications can be made for
constant value (zero in this case) @t =, i.e., in the back

. . ) ) . ecial cases in order to decrease computation time. The
direction. Without the cosine term, the beam has multlpﬁéD P

values at? = = depending onp, which is not physical. The correlation coefficient function is

HPBW's are affected by the choice afunlessn <~ 0.01 in [f e k&M cos? G sin 6 d6 dep

which case the cut off (where beam function approaches zero) p(2y) = [ e 41(67=96% cog? G sin 6 d6 dp” (52)
as ¢ approachesr can be too sharp to model a physically

realizable beam. In the followingy = 1, which restricts the This is presented as the power -correlation coefficient
HPBW to less than 180 A smallern is required for broader |p(2v)|?> =~ p.(2vy) as a function of the rotation angl2y
beams. The HPBW has to be found numerically. The equatiomsd with the ratio of the HPBW's of the elliptic beams as
allow straightforward use of the Newton—Raphson techniquee.parameter.

or(p,a’,x%) = (49) Where

(51)
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rotation angle between beams (degrees) ratio of HPBWs of elliptic beam
(@ Fig. 8. The 0.7 decorrelation angle for scalar (upper set) and vector (lower

set) real elliptic beams.

1 = T T T

T T T T
. HPBW of circular scenario is Inf degrees

522 polarized) received signal contributions by a phase factor given
o8- N R R S R by the rotation angle.
‘ ‘ ‘ ‘ ‘ ! The curves are similar for low directivity (HPBW 17)0and

EOJ ; ; : ; ; 1 also for scenario spreads reducing to the same HPBW as the
gogp- i e A e e larger HPBW of the beams.
';%0.5—- AR T U N N L o] The p. = 0.7 decorrelation values are presented as a
® ! : ! ! j function of the ratio of the HPBW'’s in Fig. 8. Curve 1 is
§0-4" SRR N NN NN N T oo T for low directivity (HPBW 170) and can be compared with
Soal .. Lo ; o o beam 2, the high directivity (HPBW 1Y case. For both 1 and

: : : ‘ ‘ 2, the scenario HPBW is the same as the larger HPBW of the

0.21 -+ NN NG N NN

: ‘ ‘ ‘ beams. The main difference occurs at low HPBW ratios where
0tf - L S L T | the decorrelation angles are a maximum of about &3art.
' ‘ ‘ : : The vector cases are all rather similar indicating that the

L I

% T =0 s a0 s s 70 s s uncorrelated linear polarizations is the dominant decorrelating
rotation angle between beams (degrees) effect for lower HPBW ratios of the beam, as expected. Even
(b) for beams with a HPBW ratio as low as 1.5, a beam rotation

) i i i ?f about 30 is sufficient for decorrelating the signals. For
Fig. 7. An example of the envelope correlation functions. The rotation an . .
is the angle between the two co-directed identical elliptic beams that havé i BW ratios of greater than about five, the curves for the
ratio of HPBW's of R. The scenario is uniform and here the smaller HPBWcalar and vector cases are almost the same. Here, the (scalar)
is fixed at 17. (a) Scalar beams. (b) Vector case, which corresponds to fgitern rotation is the principle decorrelation mechanism, not
scalar beam curves being multiplied bys? (rotation angle). N . !
the uncorrelated polarizations of the scenario.

The rotation of the beam corresponds to including the effect
of linear polarization diversity when the beam is purely polar- V. CONCLUSION
ized and recall here that the polarizations in the scenario arerhe conditions for angle diversity have been established
assumed uncorrelated. The relationship between the correlatign antenna beams that are purely real. The uncorrelated

coefficient for the scalar and vector cases is distributed scenario is weighted to incorporate the effects of
directive angle-of-arrival found in actual situations. Numerical
P2 = |p@))2 cos®(29). (53) complex patterns are also evaluated in a uniform uncorrelated

scenario to show the effect of sidelobe structure and phase
The vector case always has a zero correlation coefficient fonanuniformity.
rotation of 90, which corresponds to receiving orthogonal lin- The decorrelation angle for real beams in a uniform sce-
ear polarizations that are (postulated as) uncorrelated. Fig. #fajios is shown to be half of the half-power beamwidth.
and (b) shows an example of the decorrelation function fahis is rule-of-thumb can be used for configuring multiple-
a scalar and vector beam, respectively. The scalar case dleam base-station diversity antennas and is independent of
applies to circularly polarized beams where a beam rotationtige directivity as long as the HPBW is less than about 90
inconsequential in the sense that it just changes the (circulaftijrectivity less than~6 dB). The presence of sidelobes and
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the fact that a real-world pattern is complex rather than rg
can result in a reduction of the decorrelation angle by
factor of up to a half, i.e., to one quarter of the half-powe
beamwidth, in a uniform scenario. Directive scenarios res
in an increase of the decorrelation angle. The formulation f
the rotation of elliptic beams in a circular Gaussian scenal
give guidelines for the decorrelation angles for both scal
and elliptic beams.
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