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Pattern Translation and Rotation in
Uncorrelated Source Distributions

for Multiple Beam Antenna Design
Rodney G. Vaughan,Senior Member, IEEE

Abstract—In the uncorrelated scenario model, a continuous
source distribution illuminates a receiver with waves bearing
signals that are uncorrelated with respect to their angle of
arrival. This model is used for multipath situations such as
scintillating atmospheres, but also can be applied to optical
beams for indoor communications, acoustic beamforming, and,
of particular interest here, mobile communications. For diversity
antennas operating in such a scenario, patterns that produce
uncorrelated signals are required. An angular separation of
directive beams in multipath scenarios acts to decorrelate the
received signals. It is of interest to quantify the minimum angular
spacing required of beams in order to provide a framework for
the design and configuration of the antennas. The approach is to
consider only the main lobe of the antenna pattern and to take
it as a real function. This is reasonable as long as most of the
energy is conveyed via the main beam. In practice, the sidelobe
structure and nonuniformity in the phase of an actual pattern
act to improve the situation in the sense that the decorrelation
angles become smaller. The conditions for angular diversity result
in a simple rule-of-thumb for the minimum beam separation
requirement, which is essentially independent of the directivity.
Finally, both scalar (acoustic case and circularly polarized case)
and vector (linearly polarized case) elliptic beams rotated about
their boresight axes are analyzed for the decorrelation rotation
angle as a function of the ratio of the ellipticity. The resulting de-
sign curves offer a guideline to beam configuration for multipath
scenarios.

Index Terms—Multibeam antennas.

I. INTRODUCTION

T HE use of multiple antennas is an established diversity
technique for improving communications channel quality

in multipath environments [1], [2]. The basic idea is to receive
the wanted signal from multiple antennas that have mutually
uncorrelated channel degradations and combine the received
signals such that the resultant signal is less degraded than any
of the individual channels.

The requirement of the antennas is, therefore, to provide un-
correlated channels. Under certain conditions, this requirement
is the same as providing uncorrelated antenna patterns [3] or
beams, which is used below. By dealing with generic beams,
rather than specific antenna implementations such as arrays,
reflector, surface wave, etc., the formulation gives generic
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results in terms of the antenna patterns. However, antenna-
specific patterns can also be used and some results for directive
antennas are compared below.

The scenario is the relationship between the incoming
waves, , and the configuration of the receiving anten-
nas and it is usually expressed as a time-averaged probability
density function (pdf) referenced to the antenna coordinates.
The scenario is normally considered uncorrelated in the sense
that for each polarization

(1)
where is the time-averaged power density (per steradic
square) distribution (i.e., the pdf) of incident waves. We
also usually take the orthogonal polarizations to be uncor-
related. The modeled pdf and its uncorrelated nature are
postulates which trade off simplicity, foster analytic progress,
and reasonably represent the averaged physical situation. The
two-dimensional (2-D) Clarke [4] scenario corresponds to a
ring of dense sources (normally vertically polarized) on a
horizon about the receiving antenna and it can be expressed
as a power density of per steradian from

(2)

This scalar case can be duplicated and scaled for both po-
larizations. In this paper, we also use a Gaussian function to
model adirectional scenario.

In order to get “uncorrelated” channels from antenna ports,
the correlation coefficient of narrowband fading signal en-
velopes should be lower than about 0.7, which corresponds
to about a 1-dB loss (relative to that from a zero correlation)
in the ideal two-branch diversity gain [5]. The envelope corre-
lation coefficient is approximately equal to the magnitude
square of the complex correlation coefficient [5] of the open
circuit signals denoted , which is given in terms of the
patterns by [3]

(3)

if , are the normalized receiving patterns. For a single
polarization, or the acoustic case, the dot product reduces to
the scalar product.
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The pattern diversity can be realized by the use of un-
correlated polarizations [6], [7], spatial separation of similar
patterns [2], or angular separation of similar patterns [1].
With (3), all three degrees of freedom—polarization, spacing,
and rotation—can be used together to realize uncorrelated
patterns [8]. A design guideline can be developed for using a
single degree of freedom. For example, using space diversity
in the Clarke scenario, the open circuit voltage correlation
coefficient function goes to zero for omnidirectional
patterns spaced by wavelengths. A rule of thumb for
space diversity in mobile communications follows as a half-
wavelength separation between omnidirectional antennas [2]
although much closer spacing is possible [9]. A guideline for
angle diversity from antenna beams is the subject of this paper.
The rule of thumb is found to be an angular spacing of half
of the half-power beamwidth for a uniform scenario, although
closer spacing is possible when sidelobe structure and phase
nonuniformity are included.

The beams are modeled using Gaussian and cosine func-
tions. Gaussian beams allow simple results but their approx-
imation to a circular function causes the formulation to be
best suited to medium and high directivities (see Section II).
The cosine beams are more suitable for low directivities to be
quantified. Two related approaches are taken for developing
the angular spacing requirement for diversity from directive
beams: the beam is considered in spherical polar coordinates
with an angular pdf for the power density of the scenario;
and the footprint of the beam on a plane (approximating
the concave spherical surface) of uncorrelated sources is also
considered. In Section III, the one-dimensional (1-D) case is
first considered, followed by treatment of the 2-D, elliptic-
shaped beams. In Section IV, the decorrelation by rotation
of the elliptic beam is quantified. The following discussion
section is a of the finite support of the circular coordinate
system.

II. CORRELATION OPERATIONS IN A CIRCULAR SUPPORT

In a correlation operation, the integration is bounded to
for a circular beam pattern (function), ,

in circular coordinates. However, a noncircular function being
correlated cannot be truncated at , even though the support
of the pdf is bounded at these limits. While integrals
such as the centralized mean of a function can be written

(4)

correlation-type integrals containing the form (here for the
Clarke scenario )

(5)

need to have defined out to and the operation
becomes inconsistent with the support of the pdf. There are
two ways to view the requirements of the beam function

. Either must repeat with period 2as increases
(circular functions), in which case there is no problem with the

circular support; or a mapping of to must be
employed to allow the use of more general (i.e., nonperiodic)
functions which are then altered to be periodic via the form

. Equivalently, it is useful for visualization to define a
periodic function from

(6)

where

elsewhere
(7)

which gives the truncation of the nonperiodic function to form
a periodic function. For circular functions,

.
Using in the linear correlation, i.e., that with integral

limits of , is the same as using it with the limits of the
circular coordinate system support . So the angular
correlation function for noncircular in the circular support
is

(8a)

(8b)

More often than not, problems with reducing the integral occur
because the mapping required for does not allow
separation of these two variables. In practice, it is convenient,
therefore, to use circular functions for the pattern modeling in
circular coordinate systems or else ensure that the mapping to
a periodic function is unnecessary by maintaining

(9)

where is the effective support of the beam.1 This condition
keeps the beam effective support within the circular coordinate
system support even when the beam is off center by half
the correlation lag . More discussion about the condition is
given for Gaussian beams in Section III. If the (9) is satisfied,
then

(10a)

(10b)

where the approximation sign refers specifically to the
approximation of neglecting the energy of the beam, which
is outside of the effective beam support .

The preference for using these where possible in circular
supports is obvious. In the case of the source distribution
being on an infinite planar surface (see Section III-B), it is
preferable to avoid modeling with circular functions on the
plane since their periodic property creates periodicity in the

1The energy outside of
B is small enough to neglect in the correlation
integral calculation.



984 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 7, JULY 1998

planar correlation operation. (This is the opposite problem to
using noncircular functions in a circular support.)

III. A NGULARLY SPACED BEAMS IN CIRCULAR COORDINATES

A. 1-D Gaussian Beam with Gaussian Angular PDF

The source scenario is uncorrelated and also Gaussian
within the support of a circular coordinate system. For a 1-
D (single pattern cut) case, the scenario is denoted in the
azimuth coordinate

(11)

where the mean angle (here meaning the direction of maxi-
mum power density) is taken as zero. The normalizing factor
required to make the pdf of the incident power is

(12)

The antenna amplitude pattern is denoted

(13)

The relation between the half-power beamwidth (HPBW) of a
pattern and the Gaussian standard deviation parameteris

i.e., (14)

To relate the beamwidth to the directivity, a 2-D beam
must be considered. A circularly symmetric Gaussian beam
is denoted using the zenith coordinateand has directivity

(15)

The pencil beam directivity formula
[10] is a good estimate, being within 0.5 dB as long as
is less than 1 rad at which the directivity is dB
and dB. Kraus’ [10] formula for Gaussian beams
(which is ) has improved accuracy for higher ( 8
dB) directivities only. The off axis directivity relative to its
maximum value is

(16)

which gives, for example, a level of about0.8 dB at an angle
from boresight of quarter the HPBW.

The correlation function of the open circuit voltages result-
ing from the 1-D beams is

(17)

where

(18)

and

(19)

The Gaussian form of the correlation coefficient function
is a result of the beams being Gaussian and the scaling
constants and are a result of the (truncated) Gaussian
scenario.

The extent of the beam is bounded by the sum of the
beam effective support and the correlation lag being within the
coordinate system support, i.e., , from above. A
conservative simple rule-of-thumb for the limit of the spread
of the beam is obtained by maintaining the support
as about radians (from radians about the centre
of the beam), corresponding to 92% (from ) of
the energy of a centralized Gaussian beam being within the
support and allowing the maximum correlation lag to equal
twice the HPBW ( radians). The bound follows
as , giving a maximum standard deviation
parameter for the beam function of rad or a maximum
HPBW of about 95. Note that this rule-of-thumb addresses
the accuracy of an approximation within the mathematical
formulation and does not account for inaccuracies of the
Gaussian beam modeling a real-world beam. For comparison,
a |sinc|-shaped beam has about 90% of its total energy (in the
sense of having support of ) within the support of its main
lobe. For the beam function being well within the support, i.e.,

rad, corresponding to moderate and high directivities,
there results and .

The above rule-of-thumb is for a uniform scenario; for direc-
tive scenarios, the beams can be less directive. Using beams
with lower directivity ( rad) results in the angular
correlation coefficient function values increasing, especially
for its smaller values. The decorrelation angle increases as a
result. Lower directivities are better dealt with using cosine
beams (see subsectionC. below).

To find the correlation coefficient between the zero-mean
signals from each beam we use

(20)

From the symmetry of the configuration,
, so the normalizing factor is

(21)

where

(22)

and

(23)

The correlation coefficient function between the voltages is
now established as

(24)
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Fig. 1. The angular correlation coefficient function of the signal powers
(similar to that of signal envelopes) for 1-D Gaussian beams spaced sym-
metrically with respect to the Gaussian scenario of uncorrelated sources. The
abscissa isSg = (�g=�S)

2 where�g is the spread of the amplitude beam
and�S is the spread of the scenario (incident power).

If the two beams are well within the support of the
scenario [cf. the condition of (9)], then the correlation
coefficient function is approximately Gaussian

(25)

where

(26)

This equation relates the spread of the correlation coefficient
function to that of the beam and the scenario. The power corre-
lation coefficient, which is similar to the envelope correlation
coefficient, viz., , is shown in Fig. 1 with the
scenario spread as a parameter. As noted above, the HPBW
has little influence as long as it is less than about 90.

The limiting and special cases for the scenario are of
interest. For a single incident wave , which gives

and the correlation coefficient function is always
unity independent of the beam (as long as it has nonzero gain).
This can also be seen directly from the defining equation (10)
with . The result comes from the fact that for
a single incident wave, the open circuit voltages of the two
beams are simply scaled versions of the same signal. For the
case of the scenario having the same spread as the beams

, then , i.e., the correlation coefficient
function has a spread of of the spread of the beams.
Similarly, for the spread of the scenario being the same as the
spread of the power pattern , then . For
a uniform scenario, giving

and . This results in , i.e.,
the correlation coefficient function has a spread, which is
times the spread of the amplitude beam.

The 0.7 decorrelation angle can be defined as the angle
for which . For sufficiently directive beams

Fig. 2. The footprint in Cartesian coordinates from a beam.

this is found from

(27)

(28)

When and, in particular, for the uniform scenario

(uniform scenario) (29)

i.e., the 0.7 decorrelation angle is half of the half-power
beamwidth of the antenna pattern.

This simple result is independent of the pattern beamwidth
as long as the beam is well within the circular support. In
practice, the sidelobe structure and nonuniform phase of a
real-world pattern will make the decorrelation angle smaller,
so the above rule-of-thumb is interpreted as an upper limit
for the minimum decorrelation angle for a uniform scenario.
Fig. 1 (above) offers a feel for the effect of the spread of the
scenario. For example, in the case where the power pattern
has the same spread as the scenario, i.e., ,
the 0.7 decorrelation beam separation increases from 0.5 to

of the HPBW.

B. Gaussian Footprint on a Plane

For an antenna being illuminated by a plane of uniform
sources, a similar correlation expression can be derived for the
translation of the beam. Traditionally, the term “footprint” is
applied to satellite antennas illuminating the (convex spherical)
earth, but the context is borrowed to recouch and extend to
two dimensions the results of the previous section. Fig. 2 is a
sketch of the beam coordinates. The beam is viewed here as
receiving rather than transmitting, and reciprocity is assumed.

The relationship between the amplitude pattern of the beam
and the amplitude footprint on the plane, is

also depicted in the figure. If the beam is sufficiently narrow,
then, for a small beam translation given by a change of
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in the zenith angle and a beam rotation given by a change
of in the azimuth angle, the correspondence (denoted)
between the footprint and the beam is

(30)

The small angle approximation allows the correspondence in
translation distance on the plane to be proportional to the
zenith angle change, i.e., . The beam
rotation is omitted here and addressed below in Section IV.

The footprint model is

(31)

where is the spread of the amplitude beam in thedirection
and similarly for . Truncating the footprint to a support
of , the correlation coefficient function for the
voltages of two spaced beams is, cf. (25)

(32)

where is given by (33), shown at the bottom of the page.
When become large relative to (footprint well
within the scenario support), then . The significant
aspect is that the and functions are independent

(34)

because of the postulate that the scenario is uncorrelated. So
the 1-D decorrelation result of the previous section holds
independently of the beam spread in the second dimension,
(i.e., ) because of the assumption of
the uncorrelated scenario and remains approximately Gaussian
owing to the narrow beam assumption.

C. 2-D Cosine Beam

The cosine beam is an alternative model for the main lobe
of a directive pattern. The 1-D amplitude pattern is written

(35)

which goes to zero at and is unity at . The
relationship between the HPBW andis

i.e.,

(36)

For very directive beams, the largecan lead to computational
problems and it is better to scale the angle in order to
reduce and set the integration limits appropriately. The beam
becomes and the HPBW formulas modify
accordingly.

The 2-D beam is written

(37)

which is directed along the axis. For a uniform three-
dimensional scenario, and the angular
correlation function is

(38a)

(38b)

where

odd; (39a)

even (39b)

and

(40a)

(40b)

where

even; (41a)

odd (41b)

with

(42a)

(42b)

From the symmetry of the system, the normalizing factor is

(43)

(33)



VAUGHAN: PATTERN TRANSLATION AND ROTATION FOR MULTIPLE BEAM ANTENNA DESIGN 987

Fig. 3. The power correlation coefficient forcosn beams including the
low-gain cases ofHPBW = 180�, 131�, and108�.

in which the simplification

even (44)

can be used. The correlation coefficient function is then

(45)

The dependence drops out in the normalization, as ex-
pected from the discussion of the previous section. The power
correlation coefficient function is plotted in
Fig. 3 for HPBW’s of 180 , 131 , 108

, and .
For this latter case of moderate and high directivities, the

same rule-of-thumb that was derived for the Gaussian beams
is confirmed: the decorrelation angle is half of
the HPBW of the beam. The formulation here using cosine
beams addresses lower directivity patterns, which was not so
convenient with the Gaussian beams. For example the beam
with a HPBW of 180 has a 0.7 decorrelation angle of 0.38
times the HPBW, i.e., about 67; for the 108 beamwidth, we
get about 50 for the 0.7 decorrelation angle. The broader the
low directivity cosine beam, the less the decorrelation angle
relative to the HPBW becomes.

The use of directional scenarios is straightforward to in-
corporate in the formulation here by using cosine angular
distributions, which has the effect of increasing the values of
the integer powers of the sine and cosine terms in the integral
for the correlation function. Increasingly directive scenarios
serve to increase the decorrelation angle in the same way as
with the Gaussian beams.

D. Comparison with Realistic Patterns in a Uniform Scenario

For comparison, results from the angular correlations of
numerical far-field patterns from moment-method calculations

Fig. 4. The pattern and correlation coefficient function for a six-element
Yagi antenna pattern. The HPBW is 52�. The upper curve is for the amplitude
pattern, which gives a 0.7 decorrelation angle of 23�, and the lower curve is
for the complex pattern which results in a decorrelation angle of 13�.

Fig. 5. A low-directivity pattern with its correlation function. The 0.7
decorrelation angle is similar for the amplitude pattern (about 50�) and for
the complex pattern (about 40�).

in a uniform scenario are quoted from [11]. For a six-element
Uda–Yagi antenna with a HPBW of 52, the amplitude-
only pattern gives a 0.7 decorrelation angle of 23, which
fits with the rule-of-thumb given here. The complex pattern
gives a 0.7 decorrelation angle of about 13, i.e., half that of
the amplitude-only pattern. The two correlation functions are
given in Fig. 4.

For a low-directivity beam, the difference between the real
and complex beam results is not usually as pronounced as for
a high-directivity beam with sidelobe structure, although this,
of course, depends on the phase behavior of the pattern. A
“well-behaved” pattern from a multiple-wire antenna and its
correlation coefficient function are given in Fig. 5. The HPBW
is about 90 and the 0.7 decorrelation angles are about 50
(amplitude pattern) and 40(complex pattern).
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In summary, the effect of any sidelobe structure and phase
nonuniformity in the pattern is seen to decrease the decorrela-
tion angle relative to that of the amplitude-only pattern, which
is also an intuitive result. For the medium directivity pattern
of the Yagi antenna, the decorrelation angle reduces to one
quarter of the HPBW in a uniform scenario. This is a large
change from the rule-of-thumb of half of the HPBW, which
applies to amplitude-only patterns. For Gaussian beams, this
means that the beam overlap moves from the 3-dB points to the
0.8 dB points. However, such directive antennas may often be
operated in directive scenarios, which, from the results above
and from the fact that the sidelobe structure is not normally
utilized, would serve to increase the decorrelation angle to be
greater than a quarter of the HPBW.

IV. ROTATION OF AN ELLIPTIC BEAM

The study of beams in uncorrelated scenarios is concluded
by the decorrelation action on elliptic beams by rotation of the
beam about its boresight direction. The scenario is circularly
symmetric Gaussian, centered at zenith, i.e., at

(46)

where the normalizing constant

(47)

does not require evaluation for finding the correlation coef-
ficient. For a uniform scenario and . For
a single incoming wave from the zenith direction,

.
A general elliptic beam, which is suitable for rotation, can

be written

(48)

where the beamwidth proportional to is modulated as an
elliptic function in . Specifically

(49)

where and and are the conventional elliptic
parameters. At and , ; at and

, . Fig. 6 depicts the elliptic beams “seen” from
the direction. The correlation argument is the beam
rotation angle and the ratio of the HPBW’s is . The
scenario is circular, with beams co-centered at .

The term is used to ensure that the beam has
constant value (zero in this case) at , i.e., in the back
direction. Without the cosine term, the beam has multiple
values at depending on , which is not physical. The
HPBW’s are affected by the choice ofunless in
which case the cut off (where beam function approaches zero)
as approaches can be too sharp to model a physically
realizable beam. In the following, , which restricts the
HPBW to less than 180. A smaller is required for broader
beams. The HPBW has to be found numerically. The equations
allow straightforward use of the Newton–Raphson technique.

(a)

(b)

Fig. 6. (a) Indicates the elliptic beams where the ratio of HPBW’s is a
parameter. (b) Indicates the beam rotation about boresight as a mechanism
to obtain uncorrelated signals.

For HPBW’s less than about 35, the HPBW expression for
the Gaussian beams is accurate.

The correlation function for rotating the beam by in the
direction is

(50)

where

(51)

No closed form was found for the integrals in the correlation
functions although some simplifications can be made for
special cases in order to decrease computation time. The
correlation coefficient function is

(52)

This is presented as the power correlation coefficient
as a function of the rotation angle

and with the ratio of the HPBW’s of the elliptic beams as
a parameter.
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(a)

(b)

Fig. 7. An example of the envelope correlation functions. The rotation angle
is the angle between the two co-directed identical elliptic beams that have a
ratio of HPBW’s ofR. The scenario is uniform and here the smaller HPBW
is fixed at 17�. (a) Scalar beams. (b) Vector case, which corresponds to the
scalar beam curves being multiplied bycos2 (rotation angle).

The rotation of the beam corresponds to including the effect
of linear polarization diversity when the beam is purely polar-
ized and recall here that the polarizations in the scenario are
assumed uncorrelated. The relationship between the correlation
coefficient for the scalar and vector cases is

(53)

The vector case always has a zero correlation coefficient for a
rotation of 90 , which corresponds to receiving orthogonal lin-
ear polarizations that are (postulated as) uncorrelated. Fig. 7(a)
and (b) shows an example of the decorrelation function for
a scalar and vector beam, respectively. The scalar case also
applies to circularly polarized beams where a beam rotation is
inconsequential in the sense that it just changes the (circularly

Fig. 8. The 0.7 decorrelation angle for scalar (upper set) and vector (lower
set) real elliptic beams.

polarized) received signal contributions by a phase factor given
by the rotation angle.

The curves are similar for low directivity (HPBW 170) and
also for scenario spreads reducing to the same HPBW as the
larger HPBW of the beams.

The decorrelation values are presented as a
function of the ratio of the HPBW’s in Fig. 8. Curve 1 is
for low directivity (HPBW 170) and can be compared with
beam 2, the high directivity (HPBW 17) case. For both 1 and
2, the scenario HPBW is the same as the larger HPBW of the
beams. The main difference occurs at low HPBW ratios where
the decorrelation angles are a maximum of about 35apart.

The vector cases are all rather similar indicating that the
uncorrelated linear polarizations is the dominant decorrelating
effect for lower HPBW ratios of the beam, as expected. Even
for beams with a HPBW ratio as low as 1.5, a beam rotation
of about 30 is sufficient for decorrelating the signals. For
HPBW ratios of greater than about five, the curves for the
scalar and vector cases are almost the same. Here, the (scalar)
pattern rotation is the principle decorrelation mechanism, not
the uncorrelated polarizations of the scenario.

V. CONCLUSION

The conditions for angle diversity have been established
for antenna beams that are purely real. The uncorrelated
distributed scenario is weighted to incorporate the effects of
directive angle-of-arrival found in actual situations. Numerical
complex patterns are also evaluated in a uniform uncorrelated
scenario to show the effect of sidelobe structure and phase
nonuniformity.

The decorrelation angle for real beams in a uniform sce-
narios is shown to be half of the half-power beamwidth.
This is rule-of-thumb can be used for configuring multiple-
beam base-station diversity antennas and is independent of
the directivity as long as the HPBW is less than about 90
(directivity less than 6 dB). The presence of sidelobes and
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the fact that a real-world pattern is complex rather than real
can result in a reduction of the decorrelation angle by a
factor of up to a half, i.e., to one quarter of the half-power
beamwidth, in a uniform scenario. Directive scenarios result
in an increase of the decorrelation angle. The formulation for
the rotation of elliptic beams in a circular Gaussian scenario
give guidelines for the decorrelation angles for both scalar
and elliptic beams.
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