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Array Pattern Distortion and Remedies
in Space–Time Adaptive Processing

for Airborne Radar
Renbiao Wu,Member, IEEE, and Zheng Bao,Senior Member, IEEE

Abstract—Space–time adaptive processing (STAP) for airborne
early warning radar has been a very active area of research since
the late 1980’s. An airborne rectangular planar array antenna is
usually configured into subarrays and then partial adaptive pro-
cessing is applied to the outputs of these subarrays. In practice,
three kinds of errors are often encountered, i.e., the array gain
and phase errors existing in each element, the channel gain and
phase errors, and the clutter covariance matrix estimation errors
due to insufficient secondary data samples. These errors not only
degrade the clutter suppression performance, but also cause the
adapted array patterns to suffer much distortion (high sidelobes
and distorted mainbeams), which may result in the rise of false-
alarm probability and make the adaptive monopulse tracking and
sidelobe blankering more difficult. In this paper, the causes of
the above three kinds of errors to array pattern distortion are
discussed and a novel quadratic soft constraint factored approach
is proposed to precisely control the peak sidelobe level of adapted
patterns. The soft constraint factor can be determined explicitly
according to the peak sidelobe level desired and the known
or desired tolerant error standard deviations. Numerical results
obtained by using high-fidelity simulated airborne radar clutter
data are provided to illustrate the performance of the proposed
approach. Although the method is presented for STAP, it can be
directly applied to the conventional adaptive beamforming for
rectangular planar arrays used to suppress jammers.

Index Terms—Adaptive arrays, airborne radar.

I. INTRODUCTION

A IRBORNE early warning radar is very useful for the
detection of small radar cross-section (RCS) targets in

severe clutter. Unlike ground-based radar in which nearly all
the clutter return is received at or near zero Doppler due to
the platform motion, the clutter return in an airborne radar has
widely spread Doppler frequencies. A conventional airborne
moving target indicator (AMTI) is ineffective in canceling
airborne radar clutter because it uses temporal degrees of
freedom only and only the mainlobe clutter can be removed in
this way. Much better clutter suppression performance can be
obtained by fully exploiting the distribution characteristics of
the airborne clutter spectrum in the spatial-Doppler (or spatial-
temporal) domain and adaptively forming two-dimensional
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nulls matched to the clutter spectrum distribution. This is
the basic idea behind space–time adaptive processing (STAP)
which was first proposed in [1] in 1973. With the availability
of ever-improving phased-array antenna and advanced digital
signal processing technology, there has been a renewed interest
in STAP since the late 1980’s. So far, several STAP algorithms
have been developed in [2]–[5] and a very good review about
the state-of-the-art advances of STAP technology can be found
in [6].

It is commonly believed that STAP has the potential to
improve the performance of an airborne early warning radar
without the costly antenna refinements normally needed to
reduce array sidelobes and correspondingly, clutter. Hence,
a practical STAP algorithm should be robust against various
kinds of mismatch errors. Although theoretic performance
prediction of many existing STAP algorithms is excellent, their
practical performance is not so encouraging. Many algorithms
suffer significant performance degradation when there exist
mismatch errors. How to improve the robustness of STAP
algorithms is a very important issue and has become the
current research focus.

Usually, an airborne radar uses a rectangular planar phased-
array antenna. To reduce the cost of both the receivers and the
signal processors, the planar array is usually configured into
subarrays by using analog beamforming to the columns of the
array and then (adaptive) digital beamforming is applied to
the outputs of these subarrays. For airborne sidelooking radar
working at high-pulse repetition frequency (HPRF) mode, the
range is highly ambiguous and the clutter return of each range
bin is the superposition of many clutter echoes coming from
different ranges with different depression angles. In this case,
we have found that the array errors not only have significant
effects on the clutter suppression performance [5], [7], but also
cause the adapted array patterns suffer much distortion (high
sidelobes and distorted mainlobes), which may result in the rise
of false-alarm probability and make the adaptive monopulse
tracking and sidelobe blankering more difficult.

For conventional adaptive arrays used to suppress jammers,
the pattern distortion caused by interference covariance matrix
estimation errors due to insufficient secondary data samples
has received significant attention in the published literatures
[8]–[10]. Diagonal loading (or noise injection) [9] is a simple
and effective way to remedy the pattern distortion caused by
the covariance matrix estimation errors. However, the diagonal
loading value is usually chosen by rule of thumb. In [11],
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we have proposed a method that can be used to precisely
control the peak sidelobe level in conventional full adaptive
linear arrays when both array and covariance matrix estimation
errors exist. In this paper, the differences of the effects of array,
channel, and estimation errors on the adaptive array patterns in
STAP are discussed and a method is proposed that can remedy
this distortion and precisely control the peak sidelobes to the
desired level according to the known or desired tolerant error
standard deviations. The proposed method can also be directly
applied to the conventional partial adaptive planar arrays used
to suppress jammers.

The remainder of this paper is organized as follows.
Section II discusses the effects of different errors on the
array patterns and gives an upper limit on the practical
peak sidelobes of adaptive patterns. The proposed adaptive
pattern control method is given in Section III. Some numerical
examples are provided in Section IV to illustrate the
performance of the proposed method. Finally, Section V
contains our conclusion.

II. EFFECT OFERRORS ONADAPTED PATTERNS

Suppose the airborne phased-array antenna is a rectangular
planar array composed of (rows) (columns) omnidi-
rectional elements. We assume that each column of the array is
synthesized by using a separate analog beamformer and STAP
is applied to the outputs of the equivalent horizontal linear
array with “elements” (column subarrays).

For airborne sidelooking radar whose antenna normal is
perpendicular to the platform flight direction, parallel to the
factored approach referenced by [6], we independently pro-
posed a STAP algorithm notated as TF$SAP (temporal fil-
tering then spatial adaptive processing) in [5]. TF$SAP is
a factored approach that encompasses multichannel AMTI
and Doppler filtering with ultralow sidelobes followed by
adaptive beamforming for each Doppler bin and the block
diagram can be found in [5] and [7]. Compared to the joint-
domain adaptive processing approaches, TF$SAP performs
well for those Doppler bins well separated from the mainlobe
clutter region, but suffers some performance degradation in the
mainlobe clutter region. TF$SAP is a good candidate STAP
scheme for airborne radar working in the HPRF mode since in
this case, the mainlobe clutter region is limited to only a few
Doppler bins and some of them must be discarded due to the
necessary ground traffic filtering over slow moving vehicles.
In addition, it has very good compatibility with other radar
functions, such as space-time adaptive monopulse tracking
and space-time adaptive sidelobe blankering [12]. TF$SAP
significantly outperforms the joint-domain adaptive processing
algorithms in the implementation cost and is ready to be
implemented using currently available digital signal processing
(DSP) chips [12].

In practical airborne array antennas, there are many kinds of
mismatch error sources, such as mutual coupling and channel

frequency response mismatch errors. Although it is commonly
believed that STAP can relieve the requirement for costly
antenna refinements, careful monitoring and calibration of
these errors are still necessary for STAP so as to achieve
greater performance improvement over the conventional non-
adaptive processing approach. Even after calibration, small
residue errors still exist. Like [13], we model the residue
errors after calibration as amplitude and phase errors in the
array elements (abbreviated as array errors) and in the receiver
channels (abbreviated as channel errors).1 Assume there are

Doppler bins and the adaptive weight vector applied to
the th Doppler bin is denoted by

where denotes the transpose.
Then the adaptive array pattern for theth Doppler bin is
given by

(1)

where

(2)

: the bearing cone angle;: the depression angle; :
the beam pointing angle; : the complex conjugate; and

: the horizontal and vertical element spacings, respectively;
: the radar wavelength; and : the amplitude and

phase errors in the element located at theth row and the
th column, respectively; and : the amplitude and phase

errors in the th receiver channel, respectively;
: the weights used by the analog beamformer to each

column of the array; and : the th column-subarray
pattern in the presence of array errors. , , , and
are modeled as zero-mean independent random variables with
standard deviations , , , and , respectively.

When there is no interference and infinite secondary data
samples are available, the adaptive weight vector

degenerates into the quiescent weight vector.
Usually, the quiescent weight vector is designed to steer
the beam to a given look direction and yield low sidelobes
to suppress the pulse interference and strong unwanted target
signals entering into the sidelobe regions. Define(3), shown
at the bottom of the page, where are the
quiescent weight settings to provide low sidelobe patterns.

We would like first to analyze the pattern distortion caused
by array and channel errors in a nonadaptive rectangular planar
array and this is helpful for us to determine an upper limit on
the attainable peak sidelobe level of adaptive patterns. Let us

1In [13], array and channel errors are defined as uncorrelated and correlated
array errors, respectively.

(3)
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set the adaptive weight vector in (1) and denote
the array pattern so obtained by . If the number
of array elements is not so small and the random array and
channel errors are not very large and independent with each
other, then according to Lindenberg and Levy’s central limit
theorem, under some general conditions the distribution of

is asymptotically normal. The sidelobe level of
the normalized radiation pattern obeys Rician distribution.
Without loss of generality and assuming that
and , then it can be deduced (see Appendix A)
that in the principal plane corresponding to (the worst
case), no matter how low the designed peak sidelobe level is,
a level for practical peak sidelobes referred to as “PPSL” not
to exceed with a confidence probability 99.9% is given by2

(dB) (4)

where and denotes the Frobenius norm.
In the presence of array and channel errors, the practical

beam pattern is composed of two parts, i.e., the designed
pattern and the perturbed component. The perturbed compo-
nent is random and approximately uniformly distributed in
all directions. When the array and channel errors are small,
they have little effects on the mainlobes. However, even small
errors have significant effects on the sidelobes. For a given
designed peak sidelobe level, when the errors become large
enough the perturbed component is the dominant contribution
to the practical sidelobes. In this case, the practical peak
sidelobe level of quiescent patterns is mainly determined by
the array and channel error standard deviations and is almost
independent of the designed peak sidelobe level, which can
be noted from (4). Hence, PPSL is an upper limit for the
peak sidelobes of the adaptive array patterns withas the
quiescent weight settings. Furthermore, can
be viewed as the equivalent channel error variance due to array
errors. Hence, (4) indicates that the pattern distortion caused
by the equivalent channel errors (practical channel errors plus
the equivalent parts of array errors) cannot be remedied.

In STAP, the pattern distortion comes from two parts, i.e.,
the perturbation of adaptive weights to the quiescent weight
settings and the equivalent channel errors. Since the latter part
is not controllable, we must try to reduce the perturbation of
adaptive weights to the quiescent weight settings. The array
errors and covariance matrix estimation errors contribute much
more to this perturbation than the channel errors. The estima-
tion errors will cause the divergence of the noise eigenvalues
and result in the pattern distortion. The effect of array errors on
STAP is quite different from that on the conventional adaptive
arrays. When there are no array errors, all thecolumn-
subarray patterns defined in (2) are
identical and equal to .
In this case, the clutter is approximately homogeneous along
the range domain. However, in the presence of array errors, the

column-subarray patterns are no longer identical. For HPRF
airborne radar, the range is highly ambiguous. The clutter

2In [13], the normalized relationship between errors and sidelobe levels
was also discussed. Unfortunately, the results for planar arrays are incorrect.

return of each range bin is the sum of many clutter echoes com-
ing from multiple ambiguous ranges with different depression
angles. Since the normalized relationships among

are different from angle to angle, the clutter is no
longer homogeneous along the range domain [7]. Like the es-
timation errors, array errors also cause the noise eigenvalues to
diverge and, hence, results in the pattern distortion. This hap-
pens even when infinite secondary data samples are available.
Nevertheless, the effect of array errors is more severe than that
of the estimation errors since array errors increase the dimen-
sion size of the clutter subspaces and violate the homogeneous
clutter distribution along the range domain. It is usually more
difficult to remedy the pattern distortion in STAP than that in
the conventional adaptive arrays used to suppress jammers.

III. CONTROL OF PEAK SIDELOBE LEVEL IN STAP

As pointed out in the previous section, to remedy the pattern
distortion caused by adaptive processing we must try to reduce
the perturbation of adaptive weights to the quiescent weight
settings. Instead of using the hard constraint
as used in [5] and [7], where denotes the conjugate
transpose. Below, we present a factored STAP algorithm
with soft constraint that can be formulated as the following
optimization problem:

minimize (5)

subject to (6)

where denotes the estimated clutter covariance matrix
corresponding to theth Doppler bin and is a small positive
soft constraint factor satisfying .

It can be proved that by constraining the perturbation of
the adaptive weights to the quiescent weight settings using
(6), the peak sidelobe level of the adaptive patterns can be
controlled to the desired level (to be discussed later on). It can
also be shown that the soft constraint plays the role of diagonal
loading. Using the Lagrange multiplier method it can be found
that the solution to (5) subject to the soft constraint (6) is

(7)

where denotes the identity matrix and is the loading value
to be determined, which satisfies the following equation:

(8)

Take eigenvalue decomposition with then we have

(9)

where denotes a matrix with the eigenvectors of as
its columns and is a diagonal matrix with the eigenvalues

as its diagonal elements. After some simple
mathematical manipulations, (8) can be transformed into

(10)

where .
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Since is a monotonically decreasing function with
respect to the variable , the loading value can be calcu-
lated using fast algorithms, such as the bisection root-finding
method.

The remaining problem is how to determine the value of
according to the peak sidelobe level desired referred to

as PSLD. Since PPSL in (4) is an upper limit on the peak
sidelobes of both adaptive and nonadaptive array patterns,
PSLD must be higher than PPSL. Let’s treat the difference
between the adaptive and quiescent weight settings as addi-
tional channel mismatch errors added to the real array and
channel errors. After some similar mathematical manipulations
as used in [11], under some mild conditions we can obtain
the relationship among the PSLD, the array and channel error
standard deviations and the soft constraint factoras follows
(see Appendix for details):

(dB) (11)

If the array and channel error standard deviations are knowna
priori , then can be directly determined from (11) according
to the desired peak sidelobe level. Otherwise, we can deter-
mine a value of with desired tolerant capability for array
and channel mismatch errors. Equation (11) also indicates that
the standard deviations of array and channel errors determine
an upper limit on the attainable peak sidelobe level [PPSL
defined by (4)] and diagonal loading cannot remedy the pattern
distortion caused by the real channel errors and the equivalent
parts of the array errors.

Once is evaluated according to (11), the loading value can
be obtained by solving for (10). The amount of computations
required to compute the loading value is much greater than
that needed to calculate the adaptive weights defined by
(7). Solving one loading value for each Doppler bin is too
computationally expensive. Fortunately, we have found that
apart from a few bins in the vicinity of the mainlobe clutter
region, the normalized loading values for all other Doppler
bins are almost the same. Herein, the normalized loading value
is defined to be the ratio of the loading value to the noise
power corresponding to the same Doppler bin. In this case,
once one loading value is obtained the loading values for all
other Doppler bins can be determined according to this value
and the known or estimated noise power (with the modulation
effect of the AMTI considered). Hence, the cost of loading
value calculation is shared by Doppler bins. Since for HPRF
radar tends to be very large ( or more larger),
the additional cost of calculating loading value is trivial in
contrast to that needed by the TF$SAP method.

The calculation of the loading value can be further simpli-
fied using parallel algorithms without eigenvalue decomposi-
tion. In our STAP scheme, adaptive weight vectors can be
computed independently. This coarse-gridded parallelism can
be exploited to implement our algorithm very efficiently using
a single-instruction multiple-data (SIMD) parallel processing
structure. We can calculate the adaptive weight vectors at some
quantitized loading values in parallel according to (7) and then
find the best one satisfying (8) as the desired loading value

by utilizing the fact that is a monotonically decreasing
function with respect to the loading value. This scheme
makes better use of the parallel processing structure and the
adaptive weight calculation code of the signal processor. It has
been implemented in an STAP signal processor [12] built with
many DSP chips (TMS320C30, A41102, A100).

Since our STAP scheme is basically a factored approach that
transforms the space–time adaptive processing into adaptive
beamforming for multiple Doppler bins, hence, the above
analysis and the beam pattern control method can be directly
applied to the conventional adaptive beamforming for rect-
angular planar arrays used to suppress jammers such as the
shipborne surveillance radar used in [14].

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

In the State Key Laboratory for Radar Signal Processing,
Xidian University, China, a software has been developed to
simulate the airborne radar clutter data with high fidelity. The
software can simulate video signals with a wide variety of
system and environmental mismatch errors taken into account.
In this section, we present some numerical results based
on these data to illustrate the performance of the proposed
method.

In the following examples, we assume: the number of
columns ; the number of rows ; the
number of Doppler bins (not including the two
pulses used in AMTI); the radar wavelength m; the
pulse repetition frequency Hz; the array-element
spacings m; the platform flight velocity

m/s; the platform altitude km; the beam-
pointing angle ; ; and

are Chebyshev weights with40- and
30-dB peak sidelobes, respectively, and the Doppler filters

employ Chebyshev weights with70-dB peak sidelobes. To
simplify the notations, let “ ” and “ ” denote the array and
channel error standard deviations, respectively. For example,

means that where means
radians. Unless otherwise stated, all the results

presented below are for No. 13 Doppler bin.
First, we present an example to illustrate the special effect of

array errors on the pattern distortion in STAP. The covariance
matrix estimation errors and the channel errors have similar
effects on the array pattern distortion for both STAP and the
conventional adaptive arrays [11]. (Since the discussion in [11]
is based on full adaptive linear array, in that case, the array and
channel errors can be treated as one. The array errors in [11]
correspond to the channel errors herein.) However, the effect of
array errors on STAP is more severe than that on conventional
adaptive arrays. Fig. 1(a) compares the clutter eigen spectra in
cases with ( ) and without ( ) array errors. It
can be noted from Fig. 1(a) that array errors not only cause the
noise eigenvalues of the clutter covariance matrix to diverge
and result in the pattern distortion, but also greatly increase the
dimension size of the clutter subspace. The adaptive pattern in
the error-free case is shown in Fig. 1(b). Note that when there
are no errors, the adaptive pattern has formed a very deep null
in the sidelobe clutter region corresponding to the Doppler
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(a)

(b)

(c)

Fig. 1. Effect of array errors on the adaptive pattern distortion. (a) Com-
parison of clutter eigenspectra with (E = 5%) and without (E = 0%) array
errors. (b) Adaptive pattern in the absence of array errors. (c) Adaptive pattern
in the presence of array errors (E = 5%).

bin under test. In addition, the adaptive pattern has preserved
very well the low sidelobe feature of the designed quiescent
pattern ( 40-dB peak sidelobes). However, array errors result
in severe pattern distortion, as can be seen from Fig. 1(c). By
comparing Fig. 1(b) and (c) it can be noted that even small
array errors ( ) result in the rise of the peak sidelobe
level of the adaptive pattern from40 dB to 6 dB.

Now we use one example to demonstrate the performance
of the proposed adaptive pattern control method. Assume that
the array error standard deviation and the channel
error standard deviation and 2 secondary data

(a)

(b)

(c)

Fig. 2. Comparison of the quiescent patterns and the adapted patterns before
and after using the new method in the presence of array, channel, and
covariance matrix estimation errors.E = 5%, C = 10%, andPSLD = �20

dB. (a) The quiescent patterns. (b) The adaptive patterns before using the new
method. (c) The adaptive patterns after using the new method.

samples are used to estimate the clutter covariance matrix.
One hundred independent trials are carried out and the random
error and noise samples are changed from trial to trial. The
results are shown in Fig. 2. Fig. 2(a) shows all the patterns
in the 100 trials obtained by using the quiescent weights.
Although the designed peak sidelobe level is40 dB, the
practical peak sidelobes rise up to22 dB, which is exactly the
corresponding PPSL predicted by (4). The adaptive patterns
before and after using the new method are plotted in Fig. 2
(b) and (c), respectively, where the desired peak sidelobe level
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Fig. 3. Normalized loading values for all Doppler bins.E = 5%,C = 10%,
and PSLD = �20 dB.

(PSLD) is 20 dB. Note that although the margin between
the PSLD and upper limit (PPSL) is only 2 dB, the new
method can still precisely control the peak sidelobes of the
adaptive patterns to the desired level. The normalized load
values for all Doppler bins are plotted together in Fig. 3. Note
that except for a few bins in the vicinity of the mainlobe
clutter region (around No. 33 Doppler bin), the normalized
loading values are almost the same (15 dB) for all Doppler
bins. Hence, only one loading value needs to be computed
online and the computational load can be shared byDoppler
bins. The loading values corresponding to those bins in the
mainlobe clutter region tend to be very large and there are
two reasons to it: one is because the dimensional size of the
clutter subspaces in these bins is much larger than that in other
Doppler bins and the other is because the pattern distortion is
also caused by near mainlobe interference. In this case, we
must make a good tradeoff between the pattern control quality
and the clutter suppression performance. Applying a constant
normalized loading value to all Doppler bins seems to be a
good compromise.

V. CONCLUSION

In this paper, we have studied the effects of different
errors on the array pattern distortion in space–time adaptive
processing for airborne radar. A method is proposed to remedy
the pattern distortion and it can precisely control the peak
sidelobes of adapted patterns to the desired level. Although
the method is presented for STAP, it can be applied directly to
the conventional adaptive beamforming for rectangular planar
arrays used to suppress jammers.

APPENDIX A
DERIVATION OF (4)

By substituting into (1), we can obtain the
quiescent pattern in the presence of array and channel errors,
which has the following form:

(12)

where and .
Without loss of generality, assume that and

. For small amplitude and phase
errors, it follows:

(13)

Hence, can be rewritten as

(14)

(15)

When the number of array elements is large, is the
sum of many independent random variables. According to
Lindenberg and Levy’s central limit theorem, under certain
general conditions, the distribution of approaches a
normal distribution. The mean of is given by

(16)

(17)

where denotes the expectation.
We now derive the variance of . Let

, , and . Then
we have

(18)

(19)

and

(20)

(21)

By ignoring all the moments above the second order we have

(22)

and

(23)

where . From (23), it can be
noted that is the sum of many exponential
functions and and tend to be small,
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by the same argument as used in [13], it can be deduced that
when compared to . Thus, in

the principal plane corresponding to , both and
reach the maximum values and

(24)

(25)

where .
In [13], it was shown that the sidelobe level of the normal-

ized radiation pattern obeys Rician distribution and general-
purpose design curves were also given, which relate the peak
sidelobe level to the above variances. Using (25) and these
design curves, (4) is obtained.

It must be pointed out that the similar result of (25) in [13]
was given as follows:

(26)

This result is incorrect. One simple way to verify it is to
consider the special case when . In this case, the planar
array degenerates to a linear array and . After some
simple mathematical manipulations we have

(27)

(27) is contradictory to the result given in (26).

APPENDIX B
DERIVATION OF (11)

In addition to the uncontrollable pattern distortion caused
by the real channel errors and the equivalent part of the
array errors, in adaptive arrays, the perturbation of adaptive
weights to the quiescent weight settings also results in pattern
distortion. The difference between the adaptive and quiescent
weights can be viewed as additional channel errors. Define the
adaptive weight vectors equivalently as

(28)

where with
and denoting the equivalent amplitude

and phase errors in theth channel due to the perturbation of
adaptive weights to the quiescent weight settings.

Substituting (28) into (1) we obtain the corresponding
adaptive pattern, which has the form

(29)

Because the additional channel errors satisfy (8), it follows:

(30)

The additional channel errors are approximately uncorrelated
with the real array and channel errors. When they are inde-
pendent random variables with zero means, it can be derived
in the same way as used in Appendix A that

(31)

Using (31) and the pattern design curves given in [13], (11)
is obtained.

As pointed out in [11], generally speaking, the additional
channel errors due to adaptive processing are correlated ran-
dom variables with nonzero means because they must satisfy
the constraint equation (8). However, (31) seems to be an
approachable upper bound. Large simulation results confirm
this conclusion and more theoretical analysis is given in [11]
for adaptive beamforming based on uniform linear arrays in
the presence of array and estimation errors.
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