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Electromagnetic Excitation of a Thin Wire:
A Traveling-Wave Approach

Johan C. Bogerdviember, IEEE,Anton G. Tijhuis,Member, IEEE,and J. J. A. Klaasen

Abstract—An approximate representation for the current along iteratively. Both Pocklington’s and H&h's equation occur
a perfectly conducting straight thin wire is presented. The current  jn two versions, the so-called “exact” and “approximate”
is approximated in terms of pulsed waves that travel along the equations. Only a few years ago [4], it has been observed that

wire with the velocity of the exterior medium. At the ends of the the * imate” . . | t td ot
wire, these pulses are partially reflected, with a constant reflec- € "approximate” versions give an almost exact description

tion coefficient and delay time. Subsequently, the traveling-wave Of the total current. A review of these integral equations and
representation for the current is used to derive an approximate of several approximate and numerical solutions can be found
expression for the electric field outside the wire that is caused jn [4] and [5].

by this current. For voltage excitation, this expression contains In this paper, we present an approximate expression for

only closed-form contributions. For plane-wave excitation, the h d el i field db larized pulsed ol
expression contains a single integral over the initial pulse that € Scattered electric field caused by a polarized puised plane

must be computed numerically. Although the expression obtained wave that is incident upon the wire at arbitrary angles of
is essentially a far-field approximation, it turns out to be valid incidence and polarization. In this expression, the scattered
from distances of the order of a single wire length. Results for fie|d consists of spherical waves caused by a direct current
;r;es%rftz%n?rﬁg’edi‘;@%'gge%f. wire dimensions and pulse lengths a'€ wave along the_wire and by repe_:ated reflections of such waves
at the end points. At a sufficient distance from the wire,

Index Terms—Electromagnetic radiation, electromagnetic scat- each of the constituents of the scattered electric field again
tering, linear antennas. reduces to a plane wave. Therefore, our expression is capable
of describing multiple-scattering effects. This makes the model
suitable for several “statistical” applications, such as analyzing
the scattering of an electromagnetic wave by a cloud of metal

CENTURY ago, Pocklington [1] introduced his integrowires, also referred to as chaff [6], or determining the effective

differential equation for the total electric current alonglectromagnetic properties of composite media [7]. Besides
a straight thin-wire segment. In his paper, Pocklington alsetatistical” applications the model also enhances the physical
presented an approximate solution to this equation. In doijygight into radiation by thin-wire structures [8].
so, he already introduced the idea on which the present-dayrhe desired expression is obtained in three steps. First, we
theory of scattering by thin wires is based, i.e., that only thfstermine an approximate expression for the current along the
total current that flows along the wire is of interest. This hagire in case of a delta-gap excitation. To this end, a model is
led to a variety of so-called thin-wire integral equations fofised which is inspired by a first-order approximate solution of
this current. In their derivation, the two-dimensional integralgjien’s equation [9], [10], and earlier published results [4],
equation for the electric current density on the surface of tl['rﬂ]_[lg]_ In this model, the current is described by waves that
wire is reduced to a one-dimensional (1-D) equation, whigfgye| along the wire with the velocity of the exterior medium,
relates this current to the electric field intensity parallel to thghd are repeatedly reflected at the ends. A similar model has
wire. also been used by @nez Martn et al. [11].

In the 1930's, Hakn [2], [3, pp. 444-504] used a Green's The model parameters are given in the frequency do-
function technique to derive an equivalent integral equatiogyain or in the time domain. In the frequency domain, the
in which the space and time differentiations that occur imodel parameters are a real-valued admittance that depends
Pocklington's equation are avoided. In Haills equation, on frequency and on the coordinate along the wire, and a
two extra unknown time signals are introduced that can Bgmplex, frequency-dependent reflection coefficient. For these
determined by imposing boundary conditions at both ends ameters, expressions are used which were found in &hen
of the wire. From this equation, closed-form expressiong [14] and in Ufimtsev [15], respectively. In the time domain,
for the induced current along the wire can be determinggh se an even simpler model with only three constant real-

valued parameters. An admittance determines the amplitude
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by time marching as outlined in [4]. The differences between

this model and the one discussed in [11] are the use of. .

an extra parameter to describe the time delay of the waves g“m t) /
during reflection, and the fact that the parameters are evaluated z=L
by minimizing the time-integrated squared error between the

model current and an “exact” numerical result at a single V()
observation point. 7

The second step is to find an expression for the radiated
electric field caused by this current. This expression is obtained
by applying a far-field approximation to the pertaining integral
representation. Our version of this approximation consists of z=124-0
integrating by parts until all integrals are ©{ R=2) or higher, /
with R being the distance between the observation point and & >4
point on the wire. These integrals are then neglected compare
with the boundary terms of(R~1). This leaves us with a z=0
represgn_tatlon (_)f the radiated field in terms of spherical WaVES 1. Transient excitation of a straight thin-wire segment by an incident
that originate either from the delta gap or from the ends @éid or an impressed voltage.
the wire.

In the third and final step, the effect of plane-wave ex-
citation is identified as the cumulative effect of a continuous
distribution of delta-gap sources. This implies that the scatteredVe consider a perfectly conducting straight thin-wire seg-
field can be constructed from a suitable linear combination @fent of lengthL with a circular cross section of radius
radiated delta-gap fields as described above. This applicat®ybedded in a homogeneous lossless dielectric with permit-
of the superposition principle results in an extra integrévity ¢ and permeability,. (Fig. 1). The wave speed in
over the source location. For the spherical waves that arritree exterior medium is given bydﬁfl/\/@. A Cartesian
directly from the gap locations, this integral must be evaluategordinate system is introduced with the central axis of the
numerically. For the constituents departing from the endlire located atr = zu., with 0 < z < L. The wire is excited
points, the integration can be carried out in closed form. by an incident electric field#(r,#), which is a solution of

To assess the quality of the different models, we hawaxwell’'s equations in absence of the wire and/or driven by
considered two typical delta-gap excitations: a short pulse tteat impressed voltag®,(t) across the gap, — 6 < z <
excites several natural modes of the wire and a long pulsg + 6. The dimensions of the wire are chosen such that
that primarily excites the dominant mode. In the frequency-< « < L. Both the incident field and the impressed voltage
domain model and for short-pulse excitation, the current &e identically zero before the initial instaht= #y,. The aim
approximated with remarkable accuracy. The electric fieldf the computation is to determine an approximate expression
however, is not nearly as accurate. For long-pulse excifar the scattered electric field®(r,¢) around the wire for
tion, the approximation deteriorates considerably for botlh < ¢ < oo when the incident field is a linearly polarized
guantities. This is hardly surprising, because high-frequenpulsed plane wave.
considerations were used to obtain the expression for the
reflection coefficient. When the time-domain model is uses. Integral Representation for the Scattered Electric Field
to describe short-pulse excitation, satisfactory approximationsm this section a closed-form integral representation for the

?re fo::nd for the. cur;ent :S V\:e" 6_‘5 ;prl(;he electr:;: field. I_ lectric field around the wire is given. When the wire is driven
act, the expression for the electric field agrees better Wiy, 1\ 5 delta-gap source, the electric field induced by the

the numerical resuIFs 'Fhan Its frequency-domam coupterpa&mem on the wire is indicated as the radiated electric field
For long-pulse excitation, the analytical and numerical r Té

. z= Zg+6

Il. FORMULATION OF THE PROBLEM

S k4 r,t). When the wire is excited by an incident electric field
sults are almost indistinguishable. These results demonstrg{ v, 1), the electric field induced by the current on the wire

that, with a smaller set of parameters, our new model P& indicated as the scattered electric fietr, )
vides a more accurate description of the radiated electricy, oyact description for the radiated/scattered electric field

field than the conventional frequency-domain analysis. Therg,,=,s(r #) around the wire, which holds for al} is given by
fore, we have only used this model to describe plane-waye, in’tegral representatio'n [16]

excitation.

The paper is organized as follows. In Section I, the problem €0, £ (r,8) = VV - A(r, t) — iafA(r,t) 1)
is formulated. In Section lll, a first-order approximation of the c?
solution of Halen's integral equation is presented. Section I\yhere

deals with the current along the wire in case of voltage excita- Tt — Rfc)
tion. Section V presents the corresponding radiated electric A(r,t) = ’4 7 ds(r’). 2)
field. In Section VI, superposition is applied to deal with 9D 4

plane-wave excitation. The conclusions, finally, are given D denotes the closed surface of the thin-wire segment while
Section VII. A and.J represent the vector potential and the electric current
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density flowing alongdD, respectively.R = |R| with R = causal solution of the inhomogeneous second-order differential
r — r’. This integral representation for the radiated/scatteredquation

electric field (1) can be reduced to a 1-D integral by using the

thin-wire approximation. This thin-wire approximation can be , 1,

used in the exact field representation (1) or can be used to [az - ?at}g(zvt) = =8(2)6(2). (8)
define an approximate vector potential, which results in

L I(2 ¢ — R/c) This solution is given by (e.g., Tijhuis [16])

~ /
Alr,t) = uz/o R dz 3)

zZ

G(z,t) = §u<t - ) ©)
whereZ(z,t) is the total current that flows along the wire. ¢

When, in case of the approximated vector potential (3), thehere 2/(¢) denotes the Heavyside unit time-step function.
bound_ary conditions for the total current at the end points %ftarting from (7) and (9) and using the superposition principle,
the wire are used we obtain by a straightforward convolution for< » < L
and fortg < t < oo

I(zo,t) = 0, for o =0, L 4
L L , LI(# t—Ry/e) ,, Y [L./, 7= ,
both thin-wire approximations lead to the same integral repre T dz = ) EN Ay, t— e dz
sentation for the radiated/scattered electric field 0 Tita 0
YA
E73(r, ) = —— / Q(<,t— R/cR 2 c
" dre Jy R3 E(i_? FtL_Z
L 9Q( 1~ R/OR wR(t- o)Al
R2c (10)
HI(Z,t— R/c)u, & (5)
B Re? & whereY & v ¢/u denotes the wave admittance of the dielec-
h tric medium surrounding the wire. The unknown time signals
wi

Fo(t) and Fr(t) represent two independent homogeneous
t 9 solutions of the 1-D wave equation (7). These signals can
Az, 1) = —/ 5.1 ) dr (6) be determined by using the boundary conditions (4) for the
e total current at the end points of the wire. Equation (10) is
being the total charge per unit length along the wire. Frolftown as the reduced form of Haii's integral equation [2],
(5) is observed that the total currefitz,¢) along the wire [3, Pp. 444-504].
completely determines the radiated/scattered electric field. In
equations where the thin-wire approximation is used, like in

(3) and (5), the vectoR reduces tdR = r — 7'u.. lll. FIRST-ORDER APPROXIMATE SOLUTION
OF THE HALLEN INTEGRAL EQUATION
B. Integral Equation for the Current As introduced by Haén [2], [3, pp. 444-504] and also used

An almost exact description for the total curreditz,) PY Bouwkamp [10], the integral on the left-hand side of (10)
along the wire is provided by the so-called reduced form &AM Pe written as
Pocklington’s thin wire integro-differential equation. Tijhuis LI+ t—R.Jc) ., Tz t—ajc) [*1
et al. [4] have demonstrated that this redl_Jced form is more / T irR, dz = T/o R, dz
accgrate than the “_exact” _form of Pockllngton’s_ equation. LI(7’ b= Ruje)— Tt — a)c)
Taking the observation point on the central axis of the +/ © a i d7'. (11)
0

cylinder, 0 < z < L, and neglecting only the radial currents 4m R,
on the end faces at = 0, L results in

This integral is approximated by neglecting the second integral
i term in the right-hand side of (11). The remaining integral in
—eVy(£)(z — 29) _Leath(zuZ’t) the right-hand side of (11) can be evaluated analytically and
_ [8? _ iaz} / Z(#',t — Ro/c) 4 (7) s given as
SR Y S 4r R,

L1, L 2+ V22 + a?
whereR, = /(z — 2/)2 + a? and §(z) denotes Dirac’s one- / 7 =) = 21n<5) +IH<7L )
dimensional (1-D) delta function. 0 e
To obtain the corresponding Haf form, the combination St n <L —z++(L—2)?%+a? ) (12)

of space and time differentiations occurring in (7) is recog- L

nized as the differential operator governing the propagation of

plane waves in a homogeneous, lossless dielectric. For tiéen only delta-gap excitation is considered, the approxi-
operator, the Green’s functio@i(z,t) can be defined as themated form of Hakn’s integral equation gives as result for
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the currentZ(z,t) frequency-domain description for the approximate current is
0y given as
I(zt) = T;;vg <t n % - %) Is(z,w) = (2, 0)Vy(w) explik]z — 2] — (2 w0)L p(w)
LA (t L i) x 3T W)V, (w) explik(z + 2, + 2nL)]
Q(z) c ¢ oy
47 7 (¢ a L—z 13 = y
Tam TPt e T (13) = Bz, ) p(w) D TF (@) Vy(w)
n=0
where the unknown time signal&y(¢) and Fr(¢) can be X explik(2L — z — z, + 2nL)]
determined by applying the boundary conditions (4) for the ) <
total current at the end points of the wire. The total current + 3 (z,0)THw) > T (w)Vy(w)
Z(z,t) is then obtained as =0
x explik(2L + z — z, + 2nL)]
2Yn a |z — z4) oo
I(z,t) = Vylt+- - —2 n
(77 ) Q(Z) g< + ¢ c ) —i—Ef(Z,UJ)F?(UJ)ZF? ((U)‘/Q(UJ)
oo n=0
2Ym Sy (t+d o2t 2nL x explik(2L — z + z, + 2nL)] (15)
Q(2) g c c c
n=0 where
_2Yn S, <t Loz @) V,(w) exciting voltage;
Q(2) = ¢ ¢ c zg position of excitation;
2V & o 2L4z-2 2L Y;(z,w) unknown real-valued adn_’nttance;_ _
20) Z V,lt+ T T I's(w) unknown complex reflection coefficient.
"/ n=0 The subscript " indicates that the admittanc& ;(z,w)
2Y 71 & vl 2L—2z+2, 2nL and reflection coefficienf s(w) are frequency-domain model
+ Q(z) Z g\t + c ¢ I parameters. The reflection coefficient can be frequency depen-
n=0 (14) dent while the admittance can depend on frequency as well

as on position. From the numerical results presented in [4],
In this equation the total current is described by a direbtl]: [12], and [13], itis observed that during the reflection of

current wave as a result of the delta-gap source and subseqiacurrent waves at the end points of the wire, a phase shift
reflections of this wave which are identified as the signaf¥iSes: Because we want to describe this phase shift only with
Fo(t) and Fr(t) in (13). The reflection coefficient at boththe reflection coefficient ;(w), the admittancel;(»,w) has
ends of the wire i" = —1, and there is no time delay fort© be real valued. o

the departure of the reflected waves. Comparing (13) and (14jn the time-domain description for the current there are three

shows that the reflected current waves may be regarded asMidel parameters; an admittaricg a reflection coefficient,
homogeneous solution of the 1-D wave equation (7). and a delay time&, which denotes the delay time during the
reflections of the current waves at the end points of the wire.

The time-domain description for the approximate current is
IV. CURRENT FOR VOLTAGE EXCITATION given as

In this section, the approximated time-domain expressimé(z’t)
for the current along a wire is introduced. This is done for the |z — 24
situation where the wire is excited by a delta-gap source. As = >tV <t - ! )

mentioned in the introduction, this model is inspired by the c

first—order_solutio_n of Haéih’'s equation, _S_ection II_I, as well I, ergnvg <t _z2+zg 20l (2n + 1)td>
as by earlier published results. Further, it is described how the ot ¢ ¢
values of the three model parameters are obtained. oo 9l
.. . . e on —z—z; 2nL
In addition to the time-domain description for the current, an — Z r;"v, <t -7
equivalent frequency-domain description is introduced. This is n=0 ¢ ¢
done, because suitable expressions for the parameters in such 5 o= o
a description were available from the literature. — (2n+ 1)td> + 2 1% Z L3
n=0
. . 2L+ 22— 2 2nL
A. Approximate Expression for the Current Vy <t — R (2n + 2)td>
(& (&
The current for a delta-gap excitation, indicated with 0o ol onl
Zs(2.t) or Is(z,w), is described by waves traveling across the 4 3,12 3™ 12"y, <t _chzmarra  ank
wire which are repeatedly reflected at the ends of the wire. n=0 ¢ ¢
With the assumption of a suppressed time faetqr(—iwt)
. . def — (2n+2)tq ). (16)
and the introduction of the wavenumbér= w,/zp, the
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The three time-domain model paramet&;, I';, and t; where

have constant, e.g., position-independent, real values, which , e 7r
makes the time-domain description simpler than the general E(y) = Ci(y) +Z[Sl(y) - 5}
frequency-domain description given in (15). In fact, the _ [Ycos(t) PR Ysin(t) g — " 21
frequency-domain counterpart of (16) follows from (15) by _/ — AT L/O T P (21)
making the special choic&;(z w) = X; and I'j(w) =

I'; exp(iwty). This choise was inspired by observation
several time-domain results computed by the procedLﬁQdT = exp(7).
described in [4].

oo

ofith Si(y) and Ci(y) as the sine and cosine integrals [20]

C. Time-Domain Model Parameters

B. Frequency-Domain Model Parameters The time-domain model parameteEt_, Iy, and ¢4 are
For the two frequency-domain model parametgrs z, ) determined by comparing the approximate expression for

and T ;(w) approximate expressions have been found in tﬁ}%e currgnt at a smgle. point W.'th .results O.f a numerlgal
literature. Both parameters were derived by using the thiﬁ{gmrputatm.n. Thls pumer|cal solut'|on 'S .determlned by. solving
wire approximation, which implies that they are valid for small allen’s thin-wire integral equation with the marching-on-
values ofka (ka < 0.2). The admittanc& (=, w) is obtained

In-time method [4]. The values of the time-domain model
from Shen et al. [14], who derived an approximation for th@arameters are obtained by minimizing the time-integrated
current on a infinite wire, excited by a delta-gap source 3

uared error between the approximate current and the numer-
2, = 0. This approximated current is written as (17), showﬁal solution for fixed values of the excitation and observation
at the bottom of the page, whete= 0.5772156649... is

pointsz, andz. The pulse shape of the delta-gap sourgé&)
Euler’ is Gaussian and is given by
uler's constant.
The expression (17) consists of a phase faetar(ik|z|), ¢ 2
which represents the traveling-wave nature of the solution, Vy(t) = exp —<7 - 4) ] (22)
and an almost real-valued admittance. For an infinite wire, the v
reflection terms are absent from (15), and the admittance aghere, is related to the pulse duration. When the points of

be identified as excitation and observation are in the rargeL < (z,, z) <
. Io(2) 0.9L, the results of the minimization turn out to be almost
2y(z,w) = exp(=ihlz]) 7 ) (18) independent of the particular choice af and z. The results
g

presented in this paper where obtained fgr= 0.5L and
Because a real value f&;(z,w) is desired, either the realz = 0.3L, respectively. The upper and lower time limits
part or the absolute value of the remaining terms in (17) can e chosen such that the pulses belonging to the first four
taken as representative for this parameter. In our computatiorgflections participate in the minimization process while the

we have chosen the absolute value, which leads to first pulse, which propagates fromy to » without reflection,
Ioo(2) is ignored.
Yi(zw) = ‘ Voo(w) . (19) The minimization is a time-consuming process, which seems
g

to make the model less suitable for fast “statistical” applica-
The amplitude of the wave which propagates directly frgm tions. However, when the model parameters are determined
to z without any reflection is equal t& ;(|z — z,|,w). Due as a function of the physical dimensions of the wire, like
to the fact that the amplitude of this wave depends stronglye lengthZ and the radius:, it appears that the values of
on |z — z4, it is not approximated and the dependence ail three parameters are smooth functiondiqfZ /a). When
position is preserved. The amplitudes of the waves which di€ L/a) > 8 the relations are almost linear. We notice that
reflected first atz = 0 are approximated b{;(z,,w) while the quantityln(Z/a) is half the position-independent term of
the amplitudes of the waves which reflect firstzat= L are (z) (12). This means that we only need to calculate the model
approximated by (L — z,,w). parameters once for some valueslofL/a), and store these
The reflection coefficienI ;(w) is obtained from Ufimtsev values in a table. The intermediate points can then be found by
[15]. For the complete derivation we refer to [15], but alstnter- or extrapolation. Of course, extrapolation is only allowed
to Vainshtein [17]-[19]. The same expression was also usas long as the thin-wire conditions are satisfied.
by Shamansky [12]. The approximated reflection coefficient From the parameter investigation, it was observed that the
is written as values of the model parameters do depend on the frequency

ln( —1 2) content of the voltage excitation. Comparing the spectrum of
Ie(w) = 4 (Y#a) (20) the true and approximated currents revealed that this depends
! In(<2L,) — E(2kL i2kL :
n(viez) — B(2kL)exp(—i2kL) on the number of natural modes that are excited. It turns out

271

Io(z,w) = Y exp(ik|z|)V,(w) In |1 +
(z:0) PUkIDVS() 2In(ka) + v — In(k|z| + /(k2)? + exp(—27)) — i3n

17
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Time-domain Model Parameters Current on Wire, Delta-Gap Excitation
1.0 T T T T T T T T 2.0 T T T T
Tp=0.3 ns — Hallen, marching on in time —
Tp=2.0 ns Appr ., frequency-domain model -
Appr., time-domain model ——
0.9
1.0 r b
0.7 /
-1.0
0.6 1 1 1 1 1 1 1 1 L 4
5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 0 5 10 15 20 25
1n(L/a) t [ns]
Fig. 2. Reflection coefficient; as function ofln(L/a), with L = 1 m. Fig. 3. Total currenZ(0.3L,t) on a wire with dimensiond. = 1 m and
a = 2 mm, excited by a delta gap a, = L/2 with a Gaussian pulse with
T, = 0.3 ns.
that there is one choice of parameters which gives an accurate
description of the first natural mode, and one which favors Current on wire, delta-gap excitation
the higher order modes. As an example, in Fig. 2, for two °-°°® ' ' ' o N
. A L. Hallen, marching on in time —
characteristic values df}, the reflection coefficient’, as a Freq.-domain approximation -
function of In(L/a) is depicted. Time-domain approximation
The choice of the physical parametdrsa, andZ}, will be 0.006 ]
addressed in the next subsection. In this section it will also be
demonstrated that with, = 2.0 ns, only the first natural mode
is excited while with7}, = 0.3 ns, several natural modes of £ ; ., |
the wire are excited. _
—
D. Results
0.002 r
A wire with length L = 1 m and radiuse = 2 mm is
excited with a Gaussian delta-gap soudgt) [see (22)]. In
Fig. 3 the time-domain results of the numerical and both the
approximated currents, e.g., fé@, = 0.3 ns, are depicted. In 0 1 2 3 4 5 6 7 8
Fig. 4 the frequency-domain spectra of the same currents are L/

shown. In this figure the currents are depicted as a function ofig. 4. Total current/(0.3L,w) on a wire with dimensiond. = 1 m and
relative frequencyL /A, where) is defined as the wavelength.c = 2 mm, excited by a delta gap a, = /2 with a Gaussian pulse with
From this figure it is observed that the currents have peaks= 03 "s:

when

A ) order modes of the wire are dominant, while at late times the
L=ng, withn=135,...,15 (23)  current is dominated by the first mode of the wire.

_ When a longer pulse duration is choséf}, = 2.0 ns,
Each value ofn corresponds with a natural mode of thgnly the first natural mode of the wire is excited. This single
wire [3, pp. 444-504], [21], whose spatial distribution isnode is approximated most successfully by the time-domain
approximately represented by a standing-wave pattern of {hgdel. The numerical result and the result obtained by the
current. Because the wire is excited gt = L/2 only the time-domain model are almost indistinguishable. This is hardly
“odd” natural modes are excitgd = 1,3,5,...). The “even” gyrprising, since the time-domain model contains three real-
natural modes(n = 2,4,6,...) are not excited because atalued parameters, which suffices to describe an exponent
z = L/2 the natural-mode current distribution is equal to Zero4 exp(s,t) with a real-valued amplitudet and a complex

From both figures it can be concluded that the less accurgi€quencys,,. Next, we will derive an analytical expression
approximation of the time-domain model, in comparison witfy, the radiated electric field.

the frequency-domain model (Fig. 3), is mainly caused by

the mismatch of the first natural mode of the wire = 1)

(Fig. 4). The reason that the first mode is approximated less

accurate is that the time-domain model parameters are obtained V- RADIATED FIELD FOR VOLTAGE EXCITATION

by minimizing the squared error over the first four reflected The currentZ(z,¢) on the wire caused by the delta-gap
waves of the current. During this early-time interval the highexxcitation produces a radiated field which in the far field is
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given by where
£ (r,t) =1~ /L ATt — BRI DI BXW) 1oy Re=Rl,. f=[Rd, (30)
4 0 R3 F R< X (R< X 11;/) 31
This far-field representation is obtained by neglecting those < Ré” (31)
terms in the integrand of the field representation (5) which R,
are proportional taR—2 and R 2 [3, pp. 378-383], [22], [23]. Te=t- > (32)
The analytical expression for the radiated field, indicated with 2= -1
Er(r,t), is found by substituting the analytical expression for p<jE = <VR F 1) (33)
the current (16) in (24). To achieve that we rewrite the current ¢
as qf(t)Ifi<tﬂF—C+Zg>+gi<tﬂF—C_Zg> (34)
I(?t)—h<t——|z_zg|>+f+<t——z+zg> ‘ ‘
A c c with ¢ = (0, 24, L). From (29), it can be observed that the
B 7+ 2, + 7 — 2, radiated field is represented in terms of spherical waves that
+f <t + —> +9g <t - ) originate either from the delta gap at= z, or from the ends
o of the wire atz = 0, L. This is consistent with numerical
+g” <t+ - V”) (25) results that have appeared in the literature (see, e.g., Miller

and Landt [13]).

whereh, f, andg are readily identified as the different terms The approximate expression (29) for the electric-field
in (16). The function is equal to the first term, the functionsstrength were compared with results from a complete
f* indicate the summation terms with an odd number efumerical computation as wel as from the frequency-domain
reflections, while the functiong® indicate the summation model. Several combinations @}, z,, andr, with |r| in orders
terms with an even number of reflections. The"“and “—"  of a single wire length, were considered. Both reference results
superscripts indicate whether the waves are propagating in /e been obtained by substituting the accompanying currents
positive or in the negative direction. The time derivative of in the exact representation for the radiated electric field (5)
the current can now be written as a sum of the time derivativaed evaluating the integral in this equation numerically.
of h, f, and g. Because the current consists of a sum dfhe numerical current is obtained by solving Halls thin
traveling waves, the time derivatives 4f f, and g can be wire integral equation with the so calledarching-on-in-time

rewritten in terms of space derivatives method4], while the frequency-domain approximated current
R |7 — 2, is given by (15), (19), and (20). The time-domain result of
ath<t— P ) this latter current is obtained with the aid of the so-called
, inverse Fast Fourier Transformation (iFFT). In all cases, (29)
—c R |7 — 7 ; : A
= — —— 0. h <t - — = 7> turned out to provide a relatively accurate approximation of
(¢ = 2)/R+sgn(z' — zy) ¢ ¢ the actual field. Fig. 5 shows a representive result for a wire
) (26)  with length . = 1 m and radius: = 2 mm, which is excited
O, f* <t R == ? +Zg) by a delta gap at, = L/4 with a Gaussian pulse of the
¢ ¢ form (22) with 7, = 0.3 ns. The component§, and &, of
_ —c 9 fi . E 2+ zg 27) the radiated electric field are not shown, but the results are
T (#—z2)/Rt1 "7 c T comparable to those of ti& component shown in Fig. 5. The
R 4 —2 pulse duration was chosen &s = 0.3 ns, which implies that
Org™ <t ot g) several modes of the wire are excited. Becayse L/4 some

, “even” modes are excited as well. The identity represented
S, Y <t _E 2= Zﬂ) (28) in (23) becomes valid for. = 1,2,3,...,15\{4,8,12}. We
(2 —z)/R*1 ¢ ¢ already have concluded that, when several modes of the wire
where the chain rule of differentiation has been used aate excited, the higher order modes are approximated better
where sgn(z) is the sign function. The integral in (24) isthan the first one (Figs. 3 and 4). This explains the accurate
approximated by taking only the boundary term which igepresentation of the early-time radiated electric field and the
found after integrating by parts. The integral term is neglectéess accurate representation of the late-time radiated electric
because it is proportional t&2—2. Neglecting this term is field obtained with the time-domain model.
consistent with the approximations used to obtain the far-fieldWhen only the first mode of the wire is excited,(= 2.0
representation (24). The analytical expression for the radiates) the current is approximated very well. It appears that
field now assumes the form the result for the radiated electric field, obtained with the
- _ time-domain model, is better than the result obtained with
ArY £5(r, ) = (ng _pjg)h(ng)Fzg the frequency-domain model and is almost indistinguishable
+ [—PBLQSF(TO)JFPE (h (To_ﬁ)Jrqof(To))}Fo from the numerical result. Comparable results have also been
¢ obtained for other points of observation. Therefore it can be
+ [pJLr <h <TL_ L- zg>+q2’(TL)>+pZ a7 (TL):|FL (29) concluded that, although the expression for the radiated field
¢ is essentially a far-field approximation, it turns out to be valid
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Fig. 5. Radiated electric field at = (1.0,0.0,0.5)L. The wire has Fig. 7. Scattered electric field at = (1.0,0.0,0.5)L. The wire has
dimensionsL = 1 m ande = 2 mm and is excited by a delta gap atdimensionsL = 1 m ande = 2 mm and is excited by a plane wave. The
zg = L/4 with a Gaussian pulse witfi, = 0.3 ns. time derivative of the Gaussian pulse is used @&pd= 0.3 ns. The angle of

incidence is# = 60°, while the angle of polarization = 0°.

Electric Field, Plane-Wave Excitation
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Fig. 6. Scattered electric field at = (1.0,0.0,0.5)L. The wire has

dimensionsL = 1 m anda = 2 mm and is excited by a plane GaussiarFig. 8. Scattered electric field at = (1.0,0.0,0.5)L. The wire has

pulse withT), = 0.3 ns. The angle of incidence &= 90°, while the angle dimensionsL = 1 m andae = 2 mm and is excited by-a plane Gaussian
of polarizationn = 0°.

pulse withT), = 2.0 ns. The angle of incidence &= 60°, while the angle
of polarizationn = 0°.

from distances of the order of a single wire length. Finally,

it can be concluded that with the time-domain model, whicFPrrect delay time. Therefore the scattered electric field can

has an approximated expression for the current as well as R Written as

the radiated electric field, results are obtained which have the L cos 0

same or even better accuracy than the results obtained with;(r, ) = cosy si119/ &g <r Zg,t — L) dzg (35)

the frequency-domain model and an exact representation for 0 ¢

the radiated field. Therefore, only the time-domain model (19\)here 6 is the angle of incidence and is the angle of

and (29) will be usgd tp derive an approx.imgte expressionJS) larization. For the terms of the radiated fi€j{r, ¢), which

the scattered electric field caused by an incident plane wa epend onz, only via the time delay, the integral for the

scattered electric field can be evaluated analytically. For the
V1. SCATTERED FIELD FOR PLANE-WAVE EXCITATION first term of the radiated field} (r, t) this is not possible since
The approximated scattered electric field,

indicated lifie dependence o1y is more complicated. Approximating this
&, (r,t), which results from a plane-wave excitation is derivethtegral by taking only the boundary term after integrating by

directly from the radiated field due to a delta-gap excitatioparts, as done with the approximated solution for the radiated
A plane-wave excitation can be envisaged as the cumulatiield, gives only an accurate result when the incoming field is
effect of a continuous distribution of delta-gap sources guerpendicular to the wirdé = 90°). Because in all other

a finite wire, provided that the sources are excited with theituations the approximation is very poor, this integral is
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evaluated numerically with the aid of a repeated trapezoidal essentially a far-field approximation, it turns out to be
rule. In Fig. 6 some results of the approximated scattergdlid from distances of the order of a single wire length.
electric field together with the numerical result are showiThe most accurate approximation is reached when only the
The wire with lengthL = 1 m and radiuse = 2 mm is first natural mode of the wire is excited. When more modes
excited by a normally incident plane Gaussian pulse witdire excited, the approximation becomes less accurate but still
1, = 0.3 ns. Initially, the high-frequency model parametersery acceptable. When only the first natural mode of the wire is
were used, which were determined &y = 0.3 ns. Observing excited, other values of the model parameters are required. The
the results of the scattered electric field in the frequeneyodel parameters also depend on the dimensions of the wire.
domain reveals that the higher modes of the wire become 1888s dependence is almost linear, when they are considered
dominant compared with the first mode of the wire, in spitas a function ofln(L/a). This means that we only have to

of the fact that the same number of modes are excited ascompute the model parameters for certain valuekf/a),

the case of the delta-gap excitation. Therefore, we expectdre these values in a table, and use interpolation for the
that a more accurate result would be obtained when modelermediate points.

parameters are used that represent this first mode of the wireApproximate expressions for the scattered electric field
This is achieved by taking the model parameters found foutside the wire were obtained by treating the excitation of
1, = 2.0 ns. From Fig. 6 it can be concluded that with these continuous superposition of delta-gap sources along the
parameters an acceptable accurate approximation is obtaineige. If the delta-gap sources are excited with the correct
When we want to use the model parameters belonging to ifelay times, the total response is the superposition of all the
higher order modes, we have to suppress the first natural maaidividual responses. These responses, in turn, were described
of the wire. This can for example be achieved by taking thgy the time-domain far field approximation mentioned above.

following pulse shape for the delta-gap source The approximation for the scattered electric field contains an
integral over the initial pulse, which must be computed numer-

t t 2 ically, and closed-form contributions from all reflected pulses.

Volt) = 2<4 - Tp)eXP _<Tp - 4) : (36)  The scattered electric field around the wire is approximated

best when the pulse of the plane wave excites only the first

Apart from a factor off, this pulse is the time derivative of theNatural mode of the wire. In this case the analytical and exact
Gaussian pulse specified in (22). The results for the scattefggults are almost indistinguishable. When the pulse shape is
electric field can be observed in Fig. 7. From this figure fpaussian and more natural modes of the wire are excited, the
can be concluded that, although a far-field approximation hé@ntribution from the higher order modes is less important

been used and the distance from the wire is in the order ofn for a delta-gap excitation. So, the best approximation is
wire length, a very accurate approximation is reached. WheHll obtained with the model parameters corresponding to the
the pulse duration is chosen 45 = 2.0 ns, only the first first natural mode of the wire. When the excitation of the

natural mode is excited which always leads to results which gt mode is suppressed, e.g. by choosing a different pulse

almost indistinguishable from the numerical ones. An exampigape, & very accurate approximation is reached by using
of single-mode excitation is depicted in Fig. 8. the parameters corresponding to the higher order modes. So,

it seems likely that, if even better results for the current
as well as the scattered electric field are desired, the time-
domain model should be divided in a single-mode part and
In this paper approximate representations have been paehigher mode part with accompanying model parameters.
sented for the current along a perfectly conducting straighhe total current and/or scattered field will then be acquired
thin wire and the corresponding electric field around thes the sum of the single-mode result and the higher mode
wire. The current is approximated in terms of pulsed wavessult.
that travel along the wire with the velocity of the exterior The scattered field consists of spherical waves caused by a
medium. At the ends of the wire, these pulses are partialfjrect current wave along the wire and by repeated reflections
reflected, with a constant reflection coefficient and delaf such waves at the end points. At a sufficient distance
time. These parameters and the strength of the currentfraim the wire, each of these constituents again reduces to
the excitation point were determined for frequency-domaim plane wave. Therefore, the expression for the scattered
as well as time-domain descriptions of the model. For theectric field derived in this paper is capable of describing
parameters in the frequency-domain model expressions hawveltiple-scattering effects. This makes the model suitable
been found in literature. The time-domain model parametdy several “statistical” applications, such as analyzing the
have been determined by comparing the approximate currenattering of an electromagnetic wave by a cloud of metal
at a single point with the results of a numerical computationires, also referred to as chaff, or determining the effective
with the marching-on-in-time method, for the case of delta-gagtectromagnetic properties of composite media. To investi-
excitation. gate multiple scattering with the model proposed in this
A delta-gap excitation was investigated first. For the radpaper, it is recommended to investigate first the scattering
ated electric field the most accurate approximation is fourmd a small nhumber of wires. In that case, it would still be
from the time-domain description of the model parametergossible to compare numerically and analytically obtained
Although the expression for the approximated electric fielesults.

VIlI. CONCLUSION
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