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Electromagnetic Excitation of a Thin Wire:
A Traveling-Wave Approach

Johan C. Bogerd,Member, IEEE,Anton G. Tijhuis,Member, IEEE,and J. J. A. Klaasen

Abstract—An approximate representation for the current along
a perfectly conducting straight thin wire is presented. The current
is approximated in terms of pulsed waves that travel along the
wire with the velocity of the exterior medium. At the ends of the
wire, these pulses are partially reflected, with a constant reflec-
tion coefficient and delay time. Subsequently, the traveling-wave
representation for the current is used to derive an approximate
expression for the electric field outside the wire that is caused
by this current. For voltage excitation, this expression contains
only closed-form contributions. For plane-wave excitation, the
expression contains a single integral over the initial pulse that
must be computed numerically. Although the expression obtained
is essentially a far-field approximation, it turns out to be valid
from distances of the order of a single wire length. Results for
a representative choice of wire dimensions and pulse lengths are
presented and discussed.

Index Terms—Electromagnetic radiation, electromagnetic scat-
tering, linear antennas.

I. INTRODUCTION

A CENTURY ago, Pocklington [1] introduced his integro-
differential equation for the total electric current along

a straight thin-wire segment. In his paper, Pocklington also
presented an approximate solution to this equation. In doing
so, he already introduced the idea on which the present-day
theory of scattering by thin wires is based, i.e., that only the
total current that flows along the wire is of interest. This has
led to a variety of so-called thin-wire integral equations for
this current. In their derivation, the two-dimensional integral
equation for the electric current density on the surface of the
wire is reduced to a one-dimensional (1-D) equation, which
relates this current to the electric field intensity parallel to the
wire.

In the 1930’s, Halĺen [2], [3, pp. 444–504] used a Green’s
function technique to derive an equivalent integral equation,
in which the space and time differentiations that occur in
Pocklington’s equation are avoided. In Hallén’s equation,
two extra unknown time signals are introduced that can be
determined by imposing boundary conditions at both ends
of the wire. From this equation, closed-form expressions
for the induced current along the wire can be determined
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iteratively. Both Pocklington’s and Hallén’s equation occur
in two versions, the so-called “exact” and “approximate”
equations. Only a few years ago [4], it has been observed that
the “approximate” versions give an almost exact description
of the total current. A review of these integral equations and
of several approximate and numerical solutions can be found
in [4] and [5].

In this paper, we present an approximate expression for
the scattered electric field caused by a polarized pulsed plane
wave that is incident upon the wire at arbitrary angles of
incidence and polarization. In this expression, the scattered
field consists of spherical waves caused by a direct current
wave along the wire and by repeated reflections of such waves
at the end points. At a sufficient distance from the wire,
each of the constituents of the scattered electric field again
reduces to a plane wave. Therefore, our expression is capable
of describing multiple-scattering effects. This makes the model
suitable for several “statistical” applications, such as analyzing
the scattering of an electromagnetic wave by a cloud of metal
wires, also referred to as chaff [6], or determining the effective
electromagnetic properties of composite media [7]. Besides
“statistical” applications the model also enhances the physical
insight into radiation by thin-wire structures [8].

The desired expression is obtained in three steps. First, we
determine an approximate expression for the current along the
wire in case of a delta-gap excitation. To this end, a model is
used which is inspired by a first-order approximate solution of
Hallén’s equation [9], [10], and earlier published results [4],
[11]–[13]. In this model, the current is described by waves that
travel along the wire with the velocity of the exterior medium,
and are repeatedly reflected at the ends. A similar model has
also been used by Ǵomez Mart́ın et al. [11].

The model parameters are given in the frequency do-
main or in the time domain. In the frequency domain, the
model parameters are a real-valued admittance that depends
on frequency and on the coordinate along the wire, and a
complex, frequency-dependent reflection coefficient. For these
parameters, expressions are used which were found in Shenet
al. [14] and in Ufimtsev [15], respectively. In the time domain,
we use an even simpler model with only three constant real-
valued parameters. An admittance determines the amplitude
of the traveling waves, while the reflections at the end points
are governed by a reflection coefficient and a delay time
which corresponds to the fact that the electromagnetic wave
travels in the exterior medium. The values of these parameters
are determined numerically, by comparing the approximate
expression with the result of solving Hallén’s integral equation
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by time marching as outlined in [4]. The differences between
this model and the one discussed in [11] are the use of
an extra parameter to describe the time delay of the waves
during reflection, and the fact that the parameters are evaluated
by minimizing the time-integrated squared error between the
model current and an “exact” numerical result at a single
observation point.

The second step is to find an expression for the radiated
electric field caused by this current. This expression is obtained
by applying a far-field approximation to the pertaining integral
representation. Our version of this approximation consists of
integrating by parts until all integrals are of or higher,
with being the distance between the observation point and a
point on the wire. These integrals are then neglected compared
with the boundary terms of . This leaves us with a
representation of the radiated field in terms of spherical waves
that originate either from the delta gap or from the ends of
the wire.

In the third and final step, the effect of plane-wave ex-
citation is identified as the cumulative effect of a continuous
distribution of delta-gap sources. This implies that the scattered
field can be constructed from a suitable linear combination of
radiated delta-gap fields as described above. This application
of the superposition principle results in an extra integral
over the source location. For the spherical waves that arrive
directly from the gap locations, this integral must be evaluated
numerically. For the constituents departing from the end
points, the integration can be carried out in closed form.

To assess the quality of the different models, we have
considered two typical delta-gap excitations: a short pulse that
excites several natural modes of the wire and a long pulse
that primarily excites the dominant mode. In the frequency-
domain model and for short-pulse excitation, the current is
approximated with remarkable accuracy. The electric field,
however, is not nearly as accurate. For long-pulse excita-
tion, the approximation deteriorates considerably for both
quantities. This is hardly surprising, because high-frequency
considerations were used to obtain the expression for the
reflection coefficient. When the time-domain model is used
to describe short-pulse excitation, satisfactory approximations
are found for the current as well as for the electric field. In
fact, the expression for the electric field agrees better with
the numerical results than its frequency-domain counterpart.
For long-pulse excitation, the analytical and numerical re-
sults are almost indistinguishable. These results demonstrate
that, with a smaller set of parameters, our new model pro-
vides a more accurate description of the radiated electric
field than the conventional frequency-domain analysis. There-
fore, we have only used this model to describe plane-wave
excitation.

The paper is organized as follows. In Section II, the problem
is formulated. In Section III, a first-order approximation of the
solution of Halĺen’s integral equation is presented. Section IV
deals with the current along the wire in case of voltage excita-
tion. Section V presents the corresponding radiated electric
field. In Section VI, superposition is applied to deal with
plane-wave excitation. The conclusions, finally, are given in
Section VII.

Fig. 1. Transient excitation of a straight thin-wire segment by an incident
field or an impressed voltage.

II. FORMULATION OF THE PROBLEM

We consider a perfectly conducting straight thin-wire seg-
ment of length with a circular cross section of radius
embedded in a homogeneous lossless dielectric with permit-
tivity and permeability (Fig. 1). The wave speed in

the exterior medium is given by . A Cartesian
coordinate system is introduced with the central axis of the
wire located at , with . The wire is excited
by an incident electric field , which is a solution of
Maxwell’s equations in absence of the wire and/or driven by
an impressed voltage across the gap

. The dimensions of the wire are chosen such that
. Both the incident field and the impressed voltage

are identically zero before the initial instant . The aim
of the computation is to determine an approximate expression
for the scattered electric field around the wire for

when the incident field is a linearly polarized
pulsed plane wave.

A. Integral Representation for the Scattered Electric Field

In this section a closed-form integral representation for the
electric field around the wire is given. When the wire is driven
only by a delta-gap source, the electric field induced by the
current on the wire is indicated as the radiated electric field

. When the wire is excited by an incident electric field
, the electric field induced by the current on the wire

is indicated as the scattered electric field .
An exact description for the radiated/scattered electric field

around the wire, which holds for all, is given by
the integral representation [16]

(1)

where

(2)

denotes the closed surface of the thin-wire segment while
and represent the vector potential and the electric current
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density flowing along , respectively. with
. This integral representation for the radiated/scattered

electric field (1) can be reduced to a 1-D integral by using the
thin-wire approximation. This thin-wire approximation can be
used in the exact field representation (1) or can be used to
define an approximate vector potential, which results in

(3)

where is the total current that flows along the wire.
When, in case of the approximated vector potential (3), the

boundary conditions for the total current at the end points of
the wire are used

for (4)

both thin-wire approximations lead to the same integral repre-
sentation for the radiated/scattered electric field

(5)

with

(6)

being the total charge per unit length along the wire. From
(5) is observed that the total current along the wire
completely determines the radiated/scattered electric field. In
equations where the thin-wire approximation is used, like in
(3) and (5), the vector reduces to .

B. Integral Equation for the Current

An almost exact description for the total current
along the wire is provided by the so-called reduced form of
Pocklington’s thin wire integro-differential equation. Tijhuis
et al. [4] have demonstrated that this reduced form is more
accurate than the “exact” form of Pocklington’s equation.
Taking the observation point on the central axis of the
cylinder, , and neglecting only the radial currents
on the end faces at results in

(7)

where and denotes Dirac’s one-
dimensional (1-D) delta function.

To obtain the corresponding Hallén form, the combination
of space and time differentiations occurring in (7) is recog-
nized as the differential operator governing the propagation of
plane waves in a homogeneous, lossless dielectric. For that
operator, the Green’s function can be defined as the

causal solution of the inhomogeneous second-order differential
equation

(8)

This solution is given by (e.g., Tijhuis [16])

(9)

where denotes the Heavyside unit time-step function.
Starting from (7) and (9) and using the superposition principle,
we obtain by a straightforward convolution for
and for :

(10)

where denotes the wave admittance of the dielec-
tric medium surrounding the wire. The unknown time signals

and represent two independent homogeneous
solutions of the 1-D wave equation (7). These signals can
be determined by using the boundary conditions (4) for the
total current at the end points of the wire. Equation (10) is
known as the reduced form of Hallén’s integral equation [2],
[3, pp. 444–504].

III. FIRST-ORDER APPROXIMATE SOLUTION

OF THE HALL ÉN INTEGRAL EQUATION

As introduced by Halĺen [2], [3, pp. 444–504] and also used
by Bouwkamp [10], the integral on the left-hand side of (10)
can be written as

(11)

This integral is approximated by neglecting the second integral
term in the right-hand side of (11). The remaining integral in
the right-hand side of (11) can be evaluated analytically and
is given as

(12)

When only delta-gap excitation is considered, the approxi-
mated form of Halĺen’s integral equation gives as result for
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the current

(13)

where the unknown time signals and can be
determined by applying the boundary conditions (4) for the
total current at the end points of the wire. The total current

is then obtained as

(14)

In this equation the total current is described by a direct
current wave as a result of the delta-gap source and subsequent
reflections of this wave which are identified as the signals

and in (13). The reflection coefficient at both
ends of the wire is , and there is no time delay for
the departure of the reflected waves. Comparing (13) and (14)
shows that the reflected current waves may be regarded as the
homogeneous solution of the 1-D wave equation (7).

IV. CURRENT FORVOLTAGE EXCITATION

In this section, the approximated time-domain expression
for the current along a wire is introduced. This is done for the
situation where the wire is excited by a delta-gap source. As
mentioned in the introduction, this model is inspired by the
first-order solution of Hall´en’s equation, Section III, as well
as by earlier published results. Further, it is described how the
values of the three model parameters are obtained.

In addition to the time-domain description for the current, an
equivalent frequency-domain description is introduced. This is
done, because suitable expressions for the parameters in such
a description were available from the literature.

A. Approximate Expression for the Current

The current for a delta-gap excitation, indicated with
or , is described by waves traveling across the

wire which are repeatedly reflected at the ends of the wire.
With the assumption of a suppressed time factor

and the introduction of the wavenumber , the

frequency-domain description for the approximate current is
given as

(15)

where

exciting voltage;
position of excitation;
unknown real-valued admittance;
unknown complex reflection coefficient.

The subscript “ ” indicates that the admittance
and reflection coefficient are frequency-domain model
parameters. The reflection coefficient can be frequency depen-
dent while the admittance can depend on frequency as well
as on position. From the numerical results presented in [4],
[11], [12], and [13], it is observed that during the reflection of
the current waves at the end points of the wire, a phase shift
arises. Because we want to describe this phase shift only with
the reflection coefficient , the admittance has
to be real valued.

In the time-domain description for the current there are three
model parameters; an admittance, a reflection coefficient
and a delay time which denotes the delay time during the
reflections of the current waves at the end points of the wire.
The time-domain description for the approximate current is
given as

(16)
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The three time-domain model parameter and
have constant, e.g., position-independent, real values, which
makes the time-domain description simpler than the general
frequency-domain description given in (15). In fact, the
frequency-domain counterpart of (16) follows from (15) by
making the special choice and

. This choise was inspired by observation of
several time-domain results computed by the procedure
described in [4].

B. Frequency-Domain Model Parameters

For the two frequency-domain model parameters
and approximate expressions have been found in the
literature. Both parameters were derived by using the thin-
wire approximation, which implies that they are valid for small
values of . The admittance is obtained
from Shen et al. [14], who derived an approximation for the
current on a infinite wire, excited by a delta-gap source at

. This approximated current is written as (17), shown
at the bottom of the page, where is
Euler’s constant.

The expression (17) consists of a phase factor ,
which represents the traveling-wave nature of the solution,
and an almost real-valued admittance. For an infinite wire, the
reflection terms are absent from (15), and the admittance can
be identified as

(18)

Because a real value for is desired, either the real
part or the absolute value of the remaining terms in (17) can be
taken as representative for this parameter. In our computations,
we have chosen the absolute value, which leads to

(19)

The amplitude of the wave which propagates directly from
to without any reflection is equal to . Due
to the fact that the amplitude of this wave depends strongly
on , it is not approximated and the dependence on
position is preserved. The amplitudes of the waves which are
reflected first at are approximated by while
the amplitudes of the waves which reflect first at are
approximated by .

The reflection coefficient is obtained from Ufimtsev
[15]. For the complete derivation we refer to [15], but also
to Vainshtein [17]–[19]. The same expression was also used
by Shamansky [12]. The approximated reflection coefficient
is written as

(20)

where

(21)

with and as the sine and cosine integrals [20]
and .

C. Time-Domain Model Parameters

The time-domain model parameters and are
determined by comparing the approximate expression for
the current at a single point with results of a numerical
computation. This numerical solution is determined by solving
Hallén’s thin-wire integral equation with the marching-on-
in-time method [4]. The values of the time-domain model
parameters are obtained by minimizing the time-integrated
squared error between the approximate current and the numer-
ical solution for fixed values of the excitation and observation
points and . The pulse shape of the delta-gap source
is Gaussian and is given by

(22)

where is related to the pulse duration. When the points of
excitation and observation are in the range

, the results of the minimization turn out to be almost
independent of the particular choice of and . The results
presented in this paper where obtained for and

, respectively. The upper and lower time limits
are chosen such that the pulses belonging to the first four
reflections participate in the minimization process while the
first pulse, which propagates from to without reflection,
is ignored.

The minimization is a time-consuming process, which seems
to make the model less suitable for fast “statistical” applica-
tions. However, when the model parameters are determined
as a function of the physical dimensions of the wire, like
the length and the radius , it appears that the values of
all three parameters are smooth functions of . When

the relations are almost linear. We notice that
the quantity is half the position-independent term of

(12). This means that we only need to calculate the model
parameters once for some values of , and store these
values in a table. The intermediate points can then be found by
inter- or extrapolation. Of course, extrapolation is only allowed
as long as the thin-wire conditions are satisfied.

From the parameter investigation, it was observed that the
values of the model parameters do depend on the frequency
content of the voltage excitation. Comparing the spectrum of
the true and approximated currents revealed that this depends
on the number of natural modes that are excited. It turns out

(17)
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Fig. 2. Reflection coefficient�t as function ofln(L=a), with L = 1 m.

that there is one choice of parameters which gives an accurate
description of the first natural mode, and one which favors
the higher order modes. As an example, in Fig. 2, for two
characteristic values of the reflection coefficient as a
function of is depicted.

The choice of the physical parameters and will be
addressed in the next subsection. In this section it will also be
demonstrated that with ns, only the first natural mode
is excited while with ns, several natural modes of
the wire are excited.

D. Results

A wire with length m and radius mm is
excited with a Gaussian delta-gap source [see (22)]. In
Fig. 3 the time-domain results of the numerical and both the
approximated currents, e.g., for ns, are depicted. In
Fig. 4 the frequency-domain spectra of the same currents are
shown. In this figure the currents are depicted as a function of a
relative frequency , where is defined as the wavelength.
From this figure it is observed that the currents have peaks
when

, with (23)

Each value of corresponds with a natural mode of the
wire [3, pp. 444–504], [21], whose spatial distribution is
approximately represented by a standing-wave pattern of the
current. Because the wire is excited at only the
“odd” natural modes are excited . The “even”
natural modes are not excited because at

the natural-mode current distribution is equal to zero.
From both figures it can be concluded that the less accurate

approximation of the time-domain model, in comparison with
the frequency-domain model (Fig. 3), is mainly caused by
the mismatch of the first natural mode of the wire
(Fig. 4). The reason that the first mode is approximated less
accurate is that the time-domain model parameters are obtained
by minimizing the squared error over the first four reflected
waves of the current. During this early-time interval the higher

Fig. 3. Total currentI(0:3L; t) on a wire with dimensionsL = 1 m and
a = 2 mm, excited by a delta gap atzg = L=2 with a Gaussian pulse with
Tp = 0:3 ns.

Fig. 4. Total currentI(0:3L;!) on a wire with dimensionsL = 1 m and
a = 2 mm, excited by a delta gap atzg = L=2 with a Gaussian pulse with
Tp = 0:3 ns.

order modes of the wire are dominant, while at late times the
current is dominated by the first mode of the wire.

When a longer pulse duration is chosen, ns,
only the first natural mode of the wire is excited. This single
mode is approximated most successfully by the time-domain
model. The numerical result and the result obtained by the
time-domain model are almost indistinguishable. This is hardly
surprising, since the time-domain model contains three real-
valued parameters, which suffices to describe an exponent

with a real-valued amplitude and a complex
frequency . Next, we will derive an analytical expression
for the radiated electric field.

V. RADIATED FIELD FOR VOLTAGE EXCITATION

The current on the wire caused by the delta-gap
excitation produces a radiated field which in the far field is
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given by

(24)

This far-field representation is obtained by neglecting those
terms in the integrand of the field representation (5) which
are proportional to and [3, pp. 378–383], [22], [23].
The analytical expression for the radiated field, indicated with

, is found by substituting the analytical expression for
the current (16) in (24). To achieve that we rewrite the current
as

(25)

where and are readily identified as the different terms
in (16). The function is equal to the first term, the functions

indicate the summation terms with an odd number of
reflections, while the functions indicate the summation
terms with an even number of reflections. The “” and “ ”
superscripts indicate whether the waves are propagating in the
positive or in the negative direction. The time derivative of
the current can now be written as a sum of the time derivatives
of and . Because the current consists of a sum of
traveling waves, the time derivatives of and can be
rewritten in terms of space derivatives

(26)

(27)

(28)

where the chain rule of differentiation has been used and
where is the sign function. The integral in (24) is
approximated by taking only the boundary term which is
found after integrating by parts. The integral term is neglected
because it is proportional to . Neglecting this term is
consistent with the approximations used to obtain the far-field
representation (24). The analytical expression for the radiated
field now assumes the form

(29)

where

(30)

(31)

(32)

(33)

(34)

with . From (29), it can be observed that the
radiated field is represented in terms of spherical waves that
originate either from the delta gap at or from the ends
of the wire at . This is consistent with numerical
results that have appeared in the literature (see, e.g., Miller
and Landt [13]).

The approximate expression (29) for the electric-field
strength were compared with results from a complete
numerical computation as wel as from the frequency-domain
model. Several combinations of and , with in orders
of a single wire length, were considered. Both reference results
have been obtained by substituting the accompanying currents
in the exact representation for the radiated electric field (5)
and evaluating the integral in this equation numerically.
The numerical current is obtained by solving Hallén’s thin
wire integral equation with the so calledmarching-on-in-time
method[4], while the frequency-domain approximated current
is given by (15), (19), and (20). The time-domain result of
this latter current is obtained with the aid of the so-called
inverse Fast Fourier Transformation (iFFT). In all cases, (29)
turned out to provide a relatively accurate approximation of
the actual field. Fig. 5 shows a representive result for a wire
with length m and radius mm, which is excited
by a delta gap at with a Gaussian pulse of the
form (22) with ns. The components and of
the radiated electric field are not shown, but the results are
comparable to those of the component shown in Fig. 5. The
pulse duration was chosen as ns, which implies that
several modes of the wire are excited. Because some
“even” modes are excited as well. The identity represented
in (23) becomes valid for . We
already have concluded that, when several modes of the wire
are excited, the higher order modes are approximated better
than the first one (Figs. 3 and 4). This explains the accurate
representation of the early-time radiated electric field and the
less accurate representation of the late-time radiated electric
field obtained with the time-domain model.

When only the first mode of the wire is excited (
ns) the current is approximated very well. It appears that
the result for the radiated electric field, obtained with the
time-domain model, is better than the result obtained with
the frequency-domain model and is almost indistinguishable
from the numerical result. Comparable results have also been
obtained for other points of observation. Therefore it can be
concluded that, although the expression for the radiated field
is essentially a far-field approximation, it turns out to be valid
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Fig. 5. Radiated electric field atr = (1:0; 0:0;0:5)L. The wire has
dimensionsL = 1 m and a = 2 mm and is excited by a delta gap at
zg = L=4 with a Gaussian pulse withTp = 0:3 ns.

Fig. 6. Scattered electric field atr = (1:0;0:0;0:5)L. The wire has
dimensionsL = 1 m anda = 2 mm and is excited by a plane Gaussian
pulse withTp = 0:3 ns. The angle of incidence is� = 90�, while the angle
of polarization� = 0�.

from distances of the order of a single wire length. Finally,
it can be concluded that with the time-domain model, which
has an approximated expression for the current as well as for
the radiated electric field, results are obtained which have the
same or even better accuracy than the results obtained with
the frequency-domain model and an exact representation for
the radiated field. Therefore, only the time-domain model (16)
and (29) will be used to derive an approximate expression for
the scattered electric field caused by an incident plane wave.

VI. SCATTERED FIELD FOR PLANE-WAVE EXCITATION

The approximated scattered electric field, indicated by
, which results from a plane-wave excitation is derived

directly from the radiated field due to a delta-gap excitation.
A plane-wave excitation can be envisaged as the cumulative
effect of a continuous distribution of delta-gap sources on
a finite wire, provided that the sources are excited with the

Fig. 7. Scattered electric field atr = (1:0;0:0;0:5)L. The wire has
dimensionsL = 1 m anda = 2 mm and is excited by a plane wave. The
time derivative of the Gaussian pulse is used andTp = 0:3 ns. The angle of
incidence is� = 60�, while the angle of polarization� = 0�.

Fig. 8. Scattered electric field atr = (1:0;0:0;0:5)L. The wire has
dimensionsL = 1 m anda = 2 mm and is excited by a plane Gaussian
pulse withTp = 2:0 ns. The angle of incidence is� = 60�, while the angle
of polarization� = 0�.

correct delay time. Therefore the scattered electric field can
be written as

(35)

where is the angle of incidence and is the angle of
polarization. For the terms of the radiated field , which
depend on only via the time delay, the integral for the
scattered electric field can be evaluated analytically. For the
first term of the radiated field this is not possible since
the dependence on is more complicated. Approximating this
integral by taking only the boundary term after integrating by
parts, as done with the approximated solution for the radiated
field, gives only an accurate result when the incoming field is
perpendicular to the wire . Because in all other
situations the approximation is very poor, this integral is
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evaluated numerically with the aid of a repeated trapezoidal
rule. In Fig. 6 some results of the approximated scattered
electric field together with the numerical result are shown.
The wire with length m and radius mm is
excited by a normally incident plane Gaussian pulse with

ns. Initially, the high-frequency model parameters
were used, which were determined for ns. Observing
the results of the scattered electric field in the frequency
domain reveals that the higher modes of the wire become less
dominant compared with the first mode of the wire, in spite
of the fact that the same number of modes are excited as in
the case of the delta-gap excitation. Therefore, we expected
that a more accurate result would be obtained when model
parameters are used that represent this first mode of the wire.
This is achieved by taking the model parameters found for

ns. From Fig. 6 it can be concluded that with these
parameters an acceptable accurate approximation is obtained.
When we want to use the model parameters belonging to the
higher order modes, we have to suppress the first natural mode
of the wire. This can for example be achieved by taking the
following pulse shape for the delta-gap source

(36)

Apart from a factor of this pulse is the time derivative of the
Gaussian pulse specified in (22). The results for the scattered
electric field can be observed in Fig. 7. From this figure it
can be concluded that, although a far-field approximation has
been used and the distance from the wire is in the order of a
wire length, a very accurate approximation is reached. When
the pulse duration is chosen as ns, only the first
natural mode is excited which always leads to results which are
almost indistinguishable from the numerical ones. An example
of single-mode excitation is depicted in Fig. 8.

VII. CONCLUSION

In this paper approximate representations have been pre-
sented for the current along a perfectly conducting straight
thin wire and the corresponding electric field around the
wire. The current is approximated in terms of pulsed waves
that travel along the wire with the velocity of the exterior
medium. At the ends of the wire, these pulses are partially
reflected, with a constant reflection coefficient and delay
time. These parameters and the strength of the current at
the excitation point were determined for frequency-domain
as well as time-domain descriptions of the model. For the
parameters in the frequency-domain model expressions have
been found in literature. The time-domain model parameters
have been determined by comparing the approximate current
at a single point with the results of a numerical computation
with the marching-on-in-time method, for the case of delta-gap
excitation.

A delta-gap excitation was investigated first. For the radi-
ated electric field the most accurate approximation is found
from the time-domain description of the model parameters.
Although the expression for the approximated electric field

is essentially a far-field approximation, it turns out to be
valid from distances of the order of a single wire length.
The most accurate approximation is reached when only the
first natural mode of the wire is excited. When more modes
are excited, the approximation becomes less accurate but still
very acceptable. When only the first natural mode of the wire is
excited, other values of the model parameters are required. The
model parameters also depend on the dimensions of the wire.
This dependence is almost linear, when they are considered
as a function of . This means that we only have to
compute the model parameters for certain values of ,
store these values in a table, and use interpolation for the
intermediate points.

Approximate expressions for the scattered electric field
outside the wire were obtained by treating the excitation of
a continuous superposition of delta-gap sources along the
wire. If the delta-gap sources are excited with the correct
delay times, the total response is the superposition of all the
individual responses. These responses, in turn, were described
by the time-domain far field approximation mentioned above.
The approximation for the scattered electric field contains an
integral over the initial pulse, which must be computed numer-
ically, and closed-form contributions from all reflected pulses.
The scattered electric field around the wire is approximated
best when the pulse of the plane wave excites only the first
natural mode of the wire. In this case the analytical and exact
results are almost indistinguishable. When the pulse shape is
Gaussian and more natural modes of the wire are excited, the
contribution from the higher order modes is less important
than for a delta-gap excitation. So, the best approximation is
still obtained with the model parameters corresponding to the
first natural mode of the wire. When the excitation of the
first mode is suppressed, e.g. by choosing a different pulse
shape, a very accurate approximation is reached by using
the parameters corresponding to the higher order modes. So,
it seems likely that, if even better results for the current
as well as the scattered electric field are desired, the time-
domain model should be divided in a single-mode part and
a higher mode part with accompanying model parameters.
The total current and/or scattered field will then be acquired
as the sum of the single-mode result and the higher mode
result.

The scattered field consists of spherical waves caused by a
direct current wave along the wire and by repeated reflections
of such waves at the end points. At a sufficient distance
from the wire, each of these constituents again reduces to
a plane wave. Therefore, the expression for the scattered
electric field derived in this paper is capable of describing
multiple-scattering effects. This makes the model suitable
for several “statistical” applications, such as analyzing the
scattering of an electromagnetic wave by a cloud of metal
wires, also referred to as chaff, or determining the effective
electromagnetic properties of composite media. To investi-
gate multiple scattering with the model proposed in this
paper, it is recommended to investigate first the scattering
of a small number of wires. In that case, it would still be
possible to compare numerically and analytically obtained
results.
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