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Theory and Experiment of the
Hemispherical Cavity-Backed Slot Antenna

K. W. Leung, Member, IEEEand K. Y. Chow

Abstract—The hemispherical cavity-backed slot antenna is
studied theoretically and experimentally. The exact magnetic
field Green’s function of the cavity is derived rigorously and
expressed in a form convenient for numerical computation. The
moment method is used to find the equivalent magnetic current
in the slot and, hence, the input impedance of the antenna
configuration. The effects of the cavity size, of the slot length,
and of the slot offset on the input impedance are studied and
very good agreement between theory and experiment is obtained.
The variation of the magnetic current around the slot and cavity
resonances are discussed. Comparisons between the rigorous
solution and the single-mode theory are given and the limitation
of the single-mode theory is discussed.

I. INTRODUCTION

T HE SLOT antenna has been an important subject for
many years. It offers several advantages such as low

profile, light weight, easy fabrication, and high-power capa-
bility. These features make the slot antenna very suitable
for airborne applications. An open slot antenna cut in an
infinite ground plane has the simplest structure and is easy
to analyze via the Booker relationship [1]. However, the open
slot antenna radiates equally from both sides and, thus, limits
the application. A remedy to the problem is to cover the back
of the slot by a metallic cavity, the so-called cavity-backed
slot antenna [2]–[8]. By using the cavity, the radiation of the
antenna is restricted to the front side only and the radiation
efficiency on the side is increased. Moreover, as the cavity-
backed slot antenna has relatively weak mutual coupling in
the array configuration, it is a suitable candidate for a large
antenna-array system.

Owing to the presence of the cavity, the symmetry upon
which the Booker relationship depends is destroyed and the
analysis becomes more complicated. Cockrell [2] employed
the complex Poynting theorem to calculate the input admit-
tance of the rectangular cavity-backed slot antenna. He calcu-
lated the input admittance by separating the electromagnetic
fields into parts external and internal to the cavity. While the
external part had been studied in [9], the internal part was
obtained by expanding the cavity’s field in modes of an ideal
hollow waveguide. The waveguide was then shorted by a con-
ducting plane at one end and by a conducting plane containing
the slot at the other end. Finally, the two parts of the solution
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were combined by equating the input power to the power en-
tering the cavity plus that radiating into the half-space. In this
method, a single piecewise sinusoidal (PWS) term was used to
model the aperture field. Such an assumption is justified only
at relatively low frequencies and is not valid in general. Galejs
[3] and Hadidi and Hamid [4] used the Green’s function tech-
nique to find the input admittance/impedance of the rectangular
cavity-back slot antenna. Instead of considering the conserva-
tion of the complex power, they enforced the boundary condi-
tion of the magnetic field across the slot and formulated an in-
tegral equation for the unknown magnetic current (or aperture
field) in the slot. The magnetic current and, hence, the input
admittance/impedance, were then found using the variational
method [3] or the moment method (MoM) [4]. This approach is
more flexible than the previous one in that the accuracy of the
magnetic current can be improved by adding more basis (trial)
functions. Of course, when a delta-gap source is used to model
the excitation, the number of basis function cannot be too
large or a divergent solution results [10], [11]. Apart from the
rigorous theory, Long [5] carried out extensive measurements
from which a mathematical model was derived [6].

The cavity has long been concentrated on the rectangular
shape [2]–[7]. Recently, Liet al. [8] studied the cylindrical
version. They calculated the input impedance using the com-
plex Poynting theorem and verified the results by experiment.
Lately, a new configuration, the hemispherical cavity-backed
slot antenna, was considered for the cavity TEmode [12]
using the single-mode theory [13]–[16]. In this paper, the
hemispherical cavity-backed slot antenna is analyzed rigor-
ously and verified by measurements. The Green’s function
approach [3]–[4] is used to formulate the problem, which
is solved using MoM. The Green’s function for the upper
half-space has been well studied and will not be discussed
in detail. For the cavity part, the mode-matching method
[17] is used to derive the magnetic field Green’s function
rigorously. To enhance the numerical efficiency, the modal
solution of the Green’s function is represented as a sum of
the particular and homogeneous solutions [18]. Physically,
the particular solution accounts for the source radiating in an
unbounded medium, whereas the homogeneous solution for
the boundary discontinuity. We will use the physical argument
to solve the problem arising from the slowly convergent
particular solution [17]. Consequently, the modal solution
converges very quickly, making the computation very fast.
In this paper, the results using the rigorous solution will be
compared with those using the single-mode approximation
[12] and the limitation of the single-mode theory is discussed.
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(a) (b)

Fig. 1. The geometry of the hemispherical cavity-backed slot antenna. (a)
Top view. (b) Side view.

Furthermore, the effects of the cavity size, of the slot length,
and of the slot offset on the input impedance are investigated.
While studies of the cavity-backed slot antenna were usually
concentrated on the slot resonance, some discussions on the
cavity resonance are also addressed in this paper. The first few
fundamental cavity TM and TE modes are considered and their
excitations discussed. Finally, we will discuss the variation of
the magnetic current around the slot resonance as well as the
cavity resonance.

II. FORMULATION

The geometry of the hemispherical cavity-backed slot an-
tenna is shown in Fig. 1, where the slot of lengthand of
width is cut from an infinite ground plane. Beneath the
slot is a hemispherical cavity of radius. The slot has offsets

and from the axis and axis, respectively. In the
following formulation, the fields are assumed to vary harmon-
ically as , which is suppressed. Furthermore, and

refer to the field and source points, respectively.
Since only the slender slot is considered
in this paper, we assume that the equivalent magnetic current

in the slot is a function of only and excited at . To
begin with, we enforce the boundary condition of the magnetic
field across the slot

(1)

where the superscripts and denote the fields on the upper
half plane and inside the cavity, respectively, andis the
terminal current of the excitation source. We then invoke
image theory so that the free-space and the spherical cavity,
instead of the half-space and the hemispherical cavity, are
considered. It follows from (1) that

(2)

where and are the free-space and spherical-cavity
Green’s functions, respectively, and is the surface of the
slot. In (2), has been multiplied by “ ,” where the factor
of two accounts for the effect of the ground plane and the
minus sign ensures that the tangential field is equal on each
side of the slot region.

Let

(3)

and expand by a set of basis function

(4)

where ’s are unknown coefficients to be determined. Then,
by inserting (3) and (4) into (2) and setting to unity for
convenience, one obtains

(5)

Using the Galerkin’s procedure the following matrix equation
is obtained:

(6)

where

(7)

(8)

and or . To solve for the matrix , it is required
to calculate the slot admittance . First,
we evaluate the free-space admittance . It involves the
Green’s function which has been well studied and given
by

(9)

where is the distance between
the field and source points on the ground plane .
Since simply represent the self and mutual admittances,
which are coordinate independent, we will calculate as
if the slot were located at the center of the coordinate system.
Then by using the equivalent radius [19], the
admittance can be easily found from the knowledge of
the cylindrical dipole. Note that has a singularity occurring
at , causing a numerical problem in performing the
numerical integration. To avoid this difficulty, the distance

is replaced by and the resulting
Green’s function is the so-called “reduced kernel.” In this case,

can be written in the Richmond form [20], which can be
implemented numerically in a straightforward manner. In the
next section, we will derive the cavity Green’s function
rigorously from which the cavity admittance is found.
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III. D ERIVATION OF THE CAVITY GREEN’S FUNCTION

To begin with, image theory is used so that an equivalent
problem of a magnetic current flowing inside a spherical cavity
is obtained. To comply with the geometry of the cavity, the
magnetic current on the ground plane or

is first decomposed into its spherical components
and . Since can excite TE to

and TM to modes, both the electric potential function

and the magnetic potential function are required to repre-
sent all possible fields it excites. On the other hand, however,
one electric potential function alone is sufficient for the

case as can excite TE to modes only. Note that
when the slot is aligned with theaxis (a diameter), we have

or so that and only remains. In
the following derivation, we use the lettersand to denote
the particular and homogeneous solutions, respectively.

A. Green’s Functions and

Particular Solutions

(10)

(11)

where

(12)

(13)

Homogeneous Solutions

(14)

(15)

In (10)–(15), is the associated Legendre function of the
first kind with order and degree and and
are the spherical Bessel function of the first kind and the
spherical Hankel function of the second kind, respectively.
Both of them are of order and of Schelkunoff type [21,
p. 268]. All other symbols have the usual meanings. The
unknown modal coefficients and are determined
from the boundary conditions at the source point

and are continuous but is discontinuous by a
surface magnetic current ), whereas the modal coefficients

and determined from the boundary condition at the
cavity surface at ). Using the techniques
of [17], the coefficients are obtained as follows:

(16)

(17)

(18)

(19)

where

(20)

(21)

for
for

(22)

and and
are the TE and TM modes reflection

coefficients, respectively, at the cavity boundary. Note that if
the cavity was not present, there was no reflected wave and,
therefore, . In this case, the homogeneous
solutions disappear and only the particular solutions remain,
which is to be expected. It is interesting to note that when
the denominators of and are set to zero, one
obtains the characteristic equations of the TE and TM modes,
respectively, as given in [21, pp. 269–271]. Finally the
Green’s functions and are given by

(23)

(24)

B. Green’s Function

Following the procedure given in [21, pp. 267–269], one
obtains the following differential equation for the particular
solution of :

(25)

Equation (25) was solved [11] and the result is given by

(26)

where

(27)
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By matching the boundary conditions on the cavity surface,
the homogeneous solution is obtained as follows:

(28)

Finally, the Green’s function is given by

(29)

C. Green’s Function

After the Green’s functions , , and are found,
the cavity Green’s function is obtained easily by following
the procedure of [22]. It was found that the particular solution
of is a slowly convergent series of Hankel function. This
causes a problem as the amplitudes of higher order Hankel
functions are too large to handle numerically. To tackle the
problem, recall that the particular solution simply represents a

directed magnetic field due to adirected magnetic point
current in an unbounded medium. This is exactly given by,
the free-space Green’s function. Therefore, or

can be written as follows:

(30)

where

(31)

and has been given in (9). Note that is reciprocal in
and , as expected. In deriving (31), the double-summations
have been reduced to the single-summations by using the
addition theorem for Legendre polynomials [21, p. 292]. In
this paper, the rigorous solution will be compared with the
single-mode theory [12].

IV. EVALUATIONS OF AND INPUT IMPEDANCE

From (7), (8), and (30), we have

(32)

where is given by (8) with . It was found that
for the frequency range we are concerned with two basis
functions of and

are sufficient for the MoM convergence.
It should be mentioned that for the particular choice of
and , one may calculate by using the simple formula
given in [23], which requires no numerical integrations at all.
In addition, as the homogeneous solution is a smooth
and quickly convergent function, the computation of the input
impedance is very efficient.

The input impedance of the cavity-backed slot antenna is
given by

(33)

where

(34)

is the terminal voltage. From (3), (33), and (34), we have
.

V. MEASURED AND COMPUTED RESULTS

To verify the theory, measurements were carried out using
the image technique [5], [8]. Three quarter-spherical cavities
of radii , , and cm were fabricated. The half-
slot of width mm was cut in the edge of a thin copper
plate. The edge is then butted up against an aluminum plate,
which serves as an image plane. A coaxial probe of radius 0.63
mm was used to excite the half slot. The measurements were
taken using an HP8510C network analyzer, with the reference
plane set at the coaxial aperture using the port extension. By
using the image technique, the measured input impedance is
one-half of that of the original configuration (the whole slot
without the image plane) [5], [8]. In this paper, the results are
of the whole slot case.

The convergence of the modal Green’s function is first
examined by varying the number of modal terms. It is worth
mentioning that the number of modal term required for
to converge depends on the slot position. For example, when
the slot is aligned with a cavity’s diameter (e.g., ),
all TM modes cannot be excited because of lacking the

component. Consequently, all TM modal terms can be
neglected without affecting the accuracy of the solution. In
particular, when the slot is located at the center of the cavity

, not only all TM modes, but also some
higher order TE modes are eliminated. When this happens, all
TM modal terms together with the corresponding TE modal
terms can be omitted in the numerical solution. Obviously, the
solution converges most quickly when and
the convergence is slowed down for other slot locations. It
was found that the offset has a stronger effect than on
the convergence, so to see the worst case the maximumis
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Fig. 2. Convergence check for the modal solutionGH : L = 7:0 cm,
W = 2:0 mm, a = 7:28 cm, xd = 6:0 cm, andyd = 0:0 cm.

used in the convergence check. The check is shown in Fig. 2,
where it is found that using nine modal terms is good enough
for the current antenna parameters.

With reference to Fig. 2, several resonances are excited due
to the slot displacement . Their resonance modes are labeled
in the figure. For the slot resonance, the calculated resonant
frequency (zero reactance) is 2.12 GHz, which is 5% higher
than the value of 2.02 GHz obtained from the MoM solution of
the open slot. As the cavity alters the slot’s energy distribution,
the difference between the cavity-backed and open-slot results
is expected. It is worth mentioning that the cavity resonances
at zero reactance are not caused by the cavity alone but also
by the slot, i.e., they are forced resonances. To determine the
resonances caused solely by the cavity, one should look for
the natural resonances, which occur at the minimum resistance
points [7]. At the natural resonances of a spherical cavity, the
tangential electric field on the equatorial plane is
zero (or becomes extremely weak in the slot region due to
the presence of the slot). This is, in fact, the reason why the
presence of the ground plane cannot eliminate the modes. The
vanishingly small electric field in the slot weakens the coupling
between the slot and the cavity, causing the resistance to be
so small. The cavity’s (natural) resonant frequencies can be
predicted from their eigen values [21, p. 270]. The predicted
and calculated resonant frequencies (min resistance) of the
various resonant modes were compared and perfect agreement
between them was found. The result using the (TE) single-
mode approximation [12] was plotted in the same figure
but a large discrepancy found even around the TE-mode
resonance. This is because the fields inside the cavity are now
strongly affected by other resonant modes, which have been
neglected in the single-mode theory. Therefore, one should use
the rigorous solution if the slot has a rather large offset.

Fig. 3 shows the input impedance as a function of frequency
for cm. The slot is located at the center of the cavity

. As can be observed from the figure, good
agreement between theory and experiment is obtained. The
error may be caused by the conductor loss which has been
neglected in the present theory. Two resonances are observed;
the first one is caused by the slot, while the second one by the
cavity TE mode. Note that for now only component

Fig. 3. Measured and calculated input impedance against frequency for
a = 6:25 cm:L = 7:0 cm,W = 2:0 mm, xd = 0:0 cm, andyd = 0:0 cm.

TABLE I
THE MEASURED AND CALCULATED RESONANT FREQUENCIES FOR

a = 6:25; 7:28; AND 8:73 CM. OTHER PARAMETERS ARE THE SAME

AS FIG. 3. (a) THE SLOT RESONANCE. (b) THE CAVITY RESONANCE

(a)

(b)

exists; all TM modes disappear, as expected. Moreover, the
degenerate TE and TE modes also disappear at this
particular slot position. Two other cases of and

cm were calculated and measured. It was found that
the cavity radius mainly affects the cavity resonance, as
expected; the larger the radius, the lower the cavity resonant
frequency and the higher the cavity peak resistance. Table I(a)
lists the measured and calculated resonant frequencies of the
slot resonance for the three cases and very good agreements
are obtained. From the table, it is found that the resonant
frequency shifts downward slightly for a larger cavity, which
is consistent with the fact that an antenna of larger size has
a lower resonant frequency. Table I(b) gives the measured
and calculated resonant frequencies of the cavity resonances.
Both the natural (min resistance) and forced (zero reactance)
resonances are considered. Note that their resonant frequencies
are decreased with increasing, which is to be expected. The
natural resonant frequencies were predicted using
and the results were in perfect agreement with the calculated
values. For ease of comparison, the single-mode result is
also plotted in Fig. 3. Observe that the single-mode result
is so accurate that it coincides with that using the rigorous
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(a)

(b)

Fig. 4. Calculated input impedance against frequency forL = 5:0; 7:0,
and 9:0 cm: W = 2:0 mm, a = 7:28 cm, xd = 0:0 cm, andyd = 0:0

cm. (a) Input resistance. (b) Input reactance. Lines: rigorous solution. Dots:
single-mode approximation.

solution, showing an extremely fast convergence of when
. This allows one to use the single-mode

approximation in the antenna design for this particular slot
location.

Fig. 4(a) and (b) shows the calculated input resistance
and reactance, respectively, of the antenna configuration for

cm with cm and .
Measurements were done to verify the calculations and good
agreements between them were found. However, for clarity
only the calculated results are shown in the figures. With
reference to the figures for both the slot and cavity resonances,
the peak impedances and resonant frequencies increase with
decreasing . It was found that the slot length has a larger
influence on the slot resonance than on the cavity, as expected.
The single-mode results are also shown in the same figures for
easy comparison and they agree very well with the rigorous
results. This shows that the accuracy of the single-mode theory
depends on the slot location rather than the cavity size or the
slot length.

The measured and calculated input resistance with
cm is shown in Fig. 5. With reference to the figure, the offset

retrieves the degenerate cavity TE and TE modes.
From the theory, the resonant frequency (min. resistance) of

Fig. 5. Measured and calculated input resistance against frequency with an
slot offsetyd = 3 cm: L = 7:0 cm, W = 2:0 mm, a = 7:28 cm, and
xd = 0:0 cm.

the degenerate TE and TE modes is 3.78 GHz, which is
very close to the measured value of 3.75 GHz (0.8% error).
These values agree very well with the predicted value of 3.78
GHz using . For ease of comparison, the single-
mode result is also shown in the same figure. Note that the
single-mode theory does not account for the degenerate TE
and TE modes, as expected. Moreover, the single-mode
theory is less accurate than the rigorous solution. Therefore,
if the slot has an offset , one should use the rigorous
solution for accurate results.

Fig. 6(a) shows the magnitude of the magnetic current (or
the aperture -field) in the slot around the slot resonance.
Due to symmetry of the current, only the positive half

is shown. As can be observed from the figure,
the current has the largest amplitude at the slot resonance
( GHz) as expected. The amplitude is decreased
significantly at and GHz ( 0.3 GHz beyond
the resonance) and further decreased at and
GHz ( 0.6 GHz beyond the resonance). The inset of the
figure shows the normalized magnetic current. With reference
to the inset, the current shows a waveform at the resonant
frequency (1.99 GHz), as expected. The normalized current
waveform is stretched up and down at the higher and lower
frequencies, respectively. Fig. 6(b) shows the magnitude of the
magnetic current in the slot around the cavity resonance. Like
the slot-resonance case, the magnetic current is strongest at
the resonant frequency (zero reactance) of 3.12 GHz, beyond
which the amplitude of the current becomes smaller. It is
interesting to note that at the natural resonance (
GHz), the amplitude of the magnetic current is relatively small.
The normalized magnetic current is shown in the inset, where
it is observed that the trend of the current is similar to that of
the slot-resonance case.

Fig. 7 shows the phases of the magnetic currents of Fig. 6
at and GHz. With reference to the figure,
the phases are zero at for GHz (slot resonance)
and GHz (cavity forced resonance), causing the input
impedance to be purely real at these frequencies. The phases
are decreased gradually along the slot. On the other hand, the
phase of the current is 90at for GHz (slot
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(a)

(b)

Fig. 6. Calculated magnitude of the equivalent magnetic current in the slot
for a = 7:28 cm. Other parameters are the same as Fig. 3. (a) Around the
slot resonance. (b) Around the cavity resonance.

Fig. 7. Calculated phase of the equivalent magnetic current of Fig. 6 at the
slot resonance and at the cavity natural and forced resonances.

natural resonance). This implies that, at this frequency, the
energy of the antenna is reactive and cannot be radiated, as
is reflected in the fact that the input resistance is almost zero
at this frequency. It is interesting to note that there is a 180
phase change at , hence, forming two parts of
the current (totally three parts for the whole slot) which are
of opposite directions. Unlike the other two cases (

and GHz) in which the magnetic currents are able to
radiate energy, the magnetic current at GHz cannot
have a net radiation as the far fields radiated by the antiphase
currents are canceled out.

VI. CONCLUSION

The input impedance of the hemispherical cavity-backed
slot antenna has been studied theoretically and experimentally.
The Green’s function technique together with the method of
moments have been used to solve the problem. The first few
fundamental TE and TM modes of the cavity have been found
and their excitation discussed. Furthermore, discussions on
the forced and natural resonances of the cavity have been
addressed. The effects of the cavity size, the slot length, and
the slot offset on the input impedance have been studied, and
very good agreement between theory and experiment has been
obtained. Furthermore, the variations of the magnetic current
around the slot and cavity resonances have been discussed.

The convergence of the modal solution has been investi-
gated. Moreover, the present rigorous theory has been com-
pared with the (TE ) single-mode theory. The latter is
accurate only when the slot is located at the center of the
cavity, where the TE mode is strongly excited. At other
slot locations, the fields inside the cavity are severely affected
by other resonant modes and the rigorous theory should be
used instead. The result is similar to that previously found for
the hemispherical dielectric resonator antenna [14].
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