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Theory and Experiment of the
Hemispherical Cavity-Backed Slot Antenna

K. W. Leung, Member, IEEEand K. Y. Chow

Abstract—The hemispherical cavity-backed slot antenna is were combined by equating the input power to the power en-
studied theoretically and experimentally. The exact magnetic tering the cavity plus that radiating into the half-space. In this
field Green's function of the cavity is derived rigorously and — eihog a single piecewise sinusoidal (PWS) term was used to
expressed in a form convenient for numerical computation. The del h field. Such ion is iustified onl
moment method is used to find the equivalent magnetic current moae t e aperture fie " uc a_n assuml_o“?” Is justifie On. y
in the slot and, hence, the input impedance of the antenna at relatively low frequencies and is not valid in general. Galejs
configuration. The effects of the cavity size, of the slot length, [3] and Hadidi and Hamid [4] used the Green’s function tech-
and of the slot offset on the input impedance are studied and njgue to find the input admittance/impedance of the rectangular

very good agreement between theory and experiment is obtained. .\ iv hack slot antenna. Instead of considering the conserva-
The variation of the magnetic current around the slot and cavity ’

resonances are discussed. Comparisons between the rigoroudion of the complex power, they enforced the boundary condi-
solution and the single-mode theory are given and the limitation tion of the magnetic field across the slot and formulated an in-

of the single-mode theory is discussed. tegral equation for the unknown magnetic current (or aperture
field) in the slot. The magnetic current and, hence, the input
|. INTRODUCTION admittance/impedance, were then found using the variational

HE SLOT antenna has been an important subject fg}ethod [3] or the moment method (MoM) [4]. This approach is

many years. It offers several advantages such as Jgre fle_xible than the prgvious one in tha_t the accuracy of 'Fhe

profile, light weight, easy fabrication, and high-power cap _agnetlc current can be improved by adding more basis (trial)
bility. These features make the slot antenna very suita ngctlons. C_)f course, when adelta—gap source s used to model
for airborne applications. An open slot antenna cut in j e eXC|tat|c_)n, the numper of basis function cannot be too
infinite ground plane has the simplest structure and is e %ﬂe or a divergent solution r_esults [101, [11_]- Apart from the
to analyze via the Booker relationship [1]. However, the oper orous_theory, Long [5_] carried out extens_|ve measurements
slot antenna radiates equally from both sides and, thus, limfi@M Which a mathematical model was derived [6].
the application. A remedy to the problem is to cover the back | "€ cavity has long been concentrated on the rectangular
of the slot by a metallic cavity, the so-called cavity-backet@Pe [2]-[7]. Recently, Let al. [8] studied the cylindrical
slot antenna [2]-[8]. By using the cavity, the radiation of th¥€Son- They calculated the Input impedance using the_ com-
antenna is restricted to the front side only and the radiati}f* Poynting theo_rem a_nd verified th_e resu_lts by e_xperlment.
efficiency on the side is increased. Moreover, as the caviy2t€ly, @ new configuration, the hemispherical cavity-backed
backed slot antenna has relatively weak mutual coupling Pt @ntenna, was considered for the cavity;iEmode [12]
the array configuration, it is a suitable candidate for a Iarg?ié'ng the single-mode theory [13]-[16]. In this paper, the
antenna-array system. emispherical _qawty—backed slot antenna is analyzed rigor-

Owing to the presence of the cavity, the symmetry upd?‘r‘SW and venﬂed_ by measurements. The Green’s func_t|on
which the Booker relationship depends is destroyed and fgProach [3]-{4] is used to formulate the problem, which
analysis becomes more complicated. Cockrell [2] employédl Solved using MoM. The Green's function for the upper
the complex Poynting theorem to calculate the input admft@l-space has been well studied and will not be discussed
tance of the rectangular cavity-backed slot antenna. He caléfy-detail. For the cavity part, the mode-matching method
lated the input admittance by separating the electromagnd@é] 1S used to derive the magnetic field Green's function
fields into parts external and internal to the cavity. While th@gorously. To enhance the numerical efficiency, the modal
external part had been studied in [9], the internal part w&8lution of the Green’s function is represented as a sum of
obtained by expanding the cavity’s field in modes of an idef{le Particular and homogeneous solutions [18]. Physically,
hollow waveguide. The waveguide was then shorted by a cdhe particular solution accounts for the source radiating in an
ducting plane at one end and by a conducting plane containigoounded medium, whereas the homogeneous solution for

the slot at the other end. Finally, the two parts of the solutidh® boundary discontinuity. We will use the physical argument
to solve the problem arising from the slowly convergent
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Fig. 1. The geometry of the hemispherical cavity-backed slot antenna. Gdnvenience, one obtains
Top view. (b) Side view.

-2 N
Furthermore, the effects of the cavity size, of the slot lengtiy2 Z Vi //[Gf(“”% ' y) + Gelw,y; 2,y )] fu(y') dS
and of the slot offset on the input impedance are investigated. "=! So

While studies of the cavity-backed slot antenna were usually = §(y — yo)- (5)
concentrated on the slot resonance, some discussions on the

cavity resonance are also addressed in this paper. The first {@¥ing the Galerkin’s procedure the following matrix equation
fundamental cavity TM and TE modes are considered and thgjrobtained:

excitations discussed. Finally, we will discuss the variation of
the magnetic current around the slot resonance as well as the Yoonl[Va] = [lf (yo)} nom=1,2-- N (6)
cavity resonance. L 27 ’ ’ B

[l. FORMULATION where
The geometry of the hemispherical cavity-backed slot an-

—_vf c
tenna is shown in Fig. 1, where the slot of lendthand of Youn = Yo + Yo ()
width W is cut from an infinite ground plane. Beneath the Ye = __12/// Fm@)Gala, w2’ 1) fuly) S’ dS
slot is a hemispherical cavity of radius The slot has offsets w '

. . . S S
x4 and yq from the y axis andz axis, respectively. In the v

following formulation, the fields are assumed to vary harmon-
ically ase’*, which is suppressed. Furthermoréz, y, ) and . - .
7 (z',4/, ") refer to the field and source points, respectivel _nd ﬁl :IJi[ Ot[hc' T(Ij tSOI\ée )‘tct)r the mafr')g?"]’ I 1'/56 req:'lretd
Since only the slender slgkoW <« 1, W « L) is considered 0 ca Cl: a:: the sfo admi am?"_’;t - "ml:r. ""ll' Irtsh

in this paper, we assume that the equivalent magnetic curr}éﬁt ev,a uate the free-space acmi anég,.. involves the
M, in the slot is a function of only and excited ag = yo. To reen’s functionGy which has been well studied and given
begin with, we enforce the boundary condition of the magnetti)é/

field across the slof> = 0)

(8)

a —j (& L ¢ Ik R °
HY — (—H) = Iob(y — o) (1) /= mo(a—yﬁ ) IR ©
where the superscripts and ¢ denote the fields on the upper . > . )
half plane and inside the cavity, respectively, afdis the WhereR = V(e — ') + (y —y')? is the distance /between
terminal current of the excitation source. We then invok&e field and source points on the ground pléne- 2" = 0).
image theory so that the free-space and the spherical Ca\l:?g,_ceynjin simply represent the self and mutual admittances,
instead of the half-space and the hemispherical cavity, a8ich are coordinate independent, we will calculaif, as

considered. It follows from (1) that if the slot were located at the center of the coordinate system.
Then by using the equivalent radius = W/4 [19], the
//[Gf(a:,y; ) + Ge(z,y; 2, y)[—2My (v)] dS admittanceY,/,, can be easily found from the knowledge of
s the cylindrical dipole. Note tha® ; has a singularity occurring
— Io8(y — o) 2) at ¥ = 7', causing a numerical problem in performing the
numerical integration. To avoid this difficulty, the distance
where GGy and G. are the free-space and spherical-cavity® is replaced byR' = /(y — %)% + a2 and the resulting

Green'’s functions, respectively, arfy is the surface of the Green’s function is the so-called “reduced kernel.” In this case,
slot. In (2), M, has been multiplied by-2,” where the factor Y,Z. can be written in the Richmond form [20], which can be
of two accounts for the effect of the ground plane and thmplemented numerically in a straightforward manner. In the
minus sign ensures that the tangential field is equal on eawxt section, we will derive the cavity Green's functic
side of the slot region. rigorously from which the cavity admittancg;,, is found.
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[ll. DERIVATION OF THE CAVITY GREEN'S FUNCTION G, Arp - AP (cost’) ..
. o . . Gy, == Z Z Ay ———— a0’ By
To begin with, image theory is used so that an equivalent 1m0
problem of a magnetic current flowing inside a spherical cavity x (cos B) cosm(p — ¢ ) (kor YW (kor)  (17)
is obtained. To comply with the geometry of the cavity, the 1 o< n
magnetic currentl/, on the ground planéz’ = 0 or ¢ = Gy = T SN arfan, Pl (cos )Py
7 /2) is first decomposed into its spherical componeits= n=1m=1
M, sing’ and M, = M, cos ¢'. SincelM,, can excite TE to (COS 9) sinm(¢p — ¢ )J! (ko) (kor) (18)
and TM tor modes, both the electric potential functié?ﬂ dP" !
4 GATIL _ Tl\Td (COS )Pn
and the magnetic potential functlmj\[ are required to repre- M, = Z Z nm a0 n
sent all possible fields it excites. On the other hand, however, n=1m=0 .
one electric potential functiot’y; alone is sufficient for the x (cos §) cosm(p — ¢')Jn(kor')Ju(kor)  (19)

M, case asM, can excite TE tor modes only. Note that
when the slot is aligned with thg axis (a diameter), we havewhere
¢’ =m/2 or 37 /2 so thatd, = 0 and only M, remains. In

the following derivation, we use the lettessand 4 to denote Gy, = —J€o (Al (n —m)! -m (20)
the particular and homogeneous solutions, respectively. 2r n(n+1) (n+m)!
d,. = A”“;‘f; . 2(” j; 1) . E”;m;: (1)
. m n(n n+m)!
A. Green’s Functiongzs; and G4 o
_ _ A _J1 form>0 22)
Particular Solutions ™ =39 form =0
— Jmo g/ . . .
Gat! E:(Jn;nA”mP (oo B)e™ @, (hor Y n(kor) 4y o = —HP(kea)/Jn(koa) and o™ =
(10) —H,(LQ)/(koa)/J,’L(koa) are the TE and TM modes reflection
o n coefficients, respectively, at the cavity boundary. Note that if
G’,?;f = Z Z Dy P (cos 0)e? ™ ®,, (kor' YU, (Kor) the cavity was not present, there was no reflected wave and,
 n=0m=-—n therefore,o'® = o™ = 0. In this case, the homogeneous
(11) solutions disappear and only the particular solutions remain,
where which is to be expected. It is interesting to note that when
) Julkor”), >0 the denominators oix™® and o™ are set to zero, one
@ (kor') = {ffr(f)(km”) <y (12)  obtains the characteristic equations of the TE and TM modes,
Do ’ o respectively, as given in [21, pp. 269-271]. Finally the
U, (kor) = {jn(k( ()”)’ ! 27, (13) Green’s functiongz4; and G4 are given by
L (kor), <
Homogeneous Solutions Gf\} _ GMT,, + GFT, (23)
Gyt =" > BumP(cos0)e™Jy(kor)  (14) Gf, = GM”’ + Gt (24)
n=0m=—n
G =5 S BumPy(cos )™ J,(kor) (15) B. Green’s Functiont7j;
n=0m=—n Following the procedure given in [21, pp. 267—269], one

In (10)—(15),P7*(z) is the associated Legendre function of thebtains the following differential equation for the particular
first kind with orderm and degree. and J,, (x) and B ()  solution GM”“ of Gjy

are the spherical Bessel function of the first kind and the

spherical Hankel function of the second kind, respectively. ) —eo 8(r —r)6(6 — 6))8(¢p — ¢')

Both of them are of orden and of Schelkunoff type [21, (V +ko)TT = 2 5ind - (25)

p. 268]. All other symbols have the usual meanings. The

unknown modal coefficientst,,,,, and D,,,,, are determined Equation (25) was solved [11] and the result is given by
from the boundary conditions at the source poiht= 7’

Frp

(E4, He and Hy are continuous buk, is discontinuous by a Fop _ 1 — m N pm
surface magnetic curreiit’,), whereas the modal coefficients M 7 2 z_:o z_:ognmp (cos @) P} (cos §)
By and E,,., determined from the boundary condition at the S ’, )
cavity surface(Fy = E, = 0 atr = a). Using the techniques x cosm(@ — ¢)@n(kor’)Wn(kor) (26)
of [17], the coefficients are obtained as follows:
where
GM = 7sin 9’ Z Z anan I3 (08 0) P —jeo  (n—m)!
n=1lm=1 Jnm = . T - (271 =+ 1) (27)

X (COS 0)sinm(p — ¢ )P, (kor’ ), (kor) (16) 2rApko  (n+m)!
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By matching the boundary conditions on the cavity surface, V. EVALUATIONS OF Y,,, AND INPUT IMPEDANCE

the homogeneous solution is obtained as follows: From (7), (8), and (30), we have
oo n f H
Gl = 5y 3 S g Py cost )Py (cos) = B 2
n=0m=0 where Y, is given by (8) with3 = H. It was found that
x cosm(p — ¢ ) (kor”) T (ko). (28) for the frequency range we are concerned with two basis
functions of f1(y) = sin ko(L/2 — |y|) and f2(y) = ko(L/2—
Finally, the Green’s functiorGﬁT is given by ly|) cos ko(L/2—|y|) are sufficient for the MoM convergence.
It should be mentioned that for the particular choicefofy)
Gfﬁ = G 4+ GFH (29) andf>(y), one may calculat¥,/,, by using the simple formula
given in [23], which requires no numerical integrations at all.
C. Green’s Functiord, In addition, as the homogeneous solutiGhy is a smooth

and quickly convergent function, the computation of the input
impedance is very efficient.
The input impedance of the cavity-backed slot antenna is

After the Green’s function&'f; , G}; , andGjy, are found,
the cavity Green’s functiods.. is obtained easily by following

the procedure of [22]. It was found that the particular SOIUt'O@iven by

of GG, is a slowly convergent series of Hankel function. This

causes a problem as the amplitudes of higher order Hankel Ty = Yo _ Vo (33)
functions are too large to handle numerically. To tackle the Io

problem, recall that the particular solution simply representsyghere

1 directed magnetic field due to#directed magnetic point ratW/2

current in an unbounded medium. This is exactly giverdhy Vo = _/ E.(x,y0)dx = My(yo)W  (34)
the free-space Green'’s function. Therefagg(z = 2’ = 0 or a—W/2

6 = ¢ = m/2) can be written as follows: is the terminal voltage. From (3), (33), and (34), we have

G, =Gy + Gy (30) Zin = Ky(yo) = Vifi(yo) + Vafa(wo).
where V. MEASURED AND COMPUTED RESULTS
) To verify the theory, measurements were carried out using
G — -1 smd) sm(/) Z «Bn(n + 1)(2n +1) the image technique [5], [8]. Three quarter-spherlcal cavities
drwpoko - of radii a = 6.25, 7.28, and8.73 cm were fabricated. The half-
o slot of widthW /2 = 1 mm was cut in the edge of a thin copper
X Fufeos(é = ¢f )) (IW )J (Ror) plate. The edg/e is then butted up against an aluminum plate,
1 cos d)/ sin ¢ Z aTE 2+ 1) which serves as an image plane. A coaxial probe of radius 0.63
dropg 17 o mm was used to excite the half slot. The measurements were
AP, (cos(¢ — ¢)) -, . taken using an HP8510C network analyzer, with the reference
X a6/ Sy (kor") S (kor) plane set at the coaxial aperture using the port extension. By
, using the image technique, the measured input impedance is
__1  sin¢ COS‘7’ Z TE(9p 4 1) one-half of that of the original configuration (the whole slot
47“0#0 rr'? without the image plane) [5], [8]. In this paper, the results are
AP, (cos(¢p — ¢')) - s of the whole slot case.
96 I (kor") I3, (kor) The convergence of the modal Green’s funct@p is first
, examined by varying the number of modal terms. It is worth
_ weo  cosg'cosd Z v 2” (@2n+1) mentioning that the number of modal term required €&y
drky rr! n(n+1)

to converge depends on the slot position. For example, when
x P! (cos(¢ — ¢'))J, (km )T (kor) the slot is aligned with a cavity’s diameter (e.gq = 0),

all TM modes cannot be excited because of lacking the
M, component. Consequently, all TM modal terms can be

ko cos d)’ COS P = Z e (2n+1)

47“*’“0 n(n +1) neglected without affecting the accuracy of the solution. In
P (cos(¢p — ¢’)) 5 particular, when the slot is located at the center of the cavity
PP T (kor')J;, (kor) (31) (ry = yg = 0), not only all TM modes, but also some

higher order TE modes are eliminated. When this happens, all
and Gy has been given in (9). Note thét. is reciprocal ini¥ TM modal terms together with the corresponding TE modal
and+’, as expected. In deriving (31), the double-summatiomerms can be omitted in the numerical solution. Obviously, the
have been reduced to the single-summations by using #wution Gy converges most quickly when; = ¢y, = 0 and
addition theorem for Legendre polynomials [21, p. 292]. Ithe convergence is slowed down for other slot locations. It
this paper, the rigorous solution will be compared with theas found that the offset,; has a stronger effect thayy on
single-mode theory [12]. the convergence, so to see the worst case the maximuis
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Fig. 2. Convergence check for the modal solutiGi;: L = 7.0 ¢m, Fig. 3. Measured and calculated input impedance against frequency for
W =2.0mm,a =728 cm,zq = 6.0 cm, andyg = 0.0 cm. a=625cmL=70cmW =20mm,axy =0.0 cm, andyy = 0.0 cm.
used in the convergence check. The check is shown in Fig. 2, M c TABLEFL -

P . . . HE MEASURED AND CALCULATED RESONANT FREQUENCIES FOR
where it is found that using nine modal terms is good enough |, _' 557 25 anp 8.73 om. OTHER PARAMETERS ARE THE SAME
for the current antenna parameters. As FiG. 3. (a) THE SLoT REsONANCE (b) THE CAvITY RESONANCE

With refer_ence to Fig. 2, se_veral resonances are excited dugg— Stot, (zero reactance) (GHz)
to the slot displacement,. Their resonance modes are labeled , ., Calootaned IV Pe— orror (%)
in the figure. For the slot resonance, the calculated resonant = = — X
frequency (zero reactance) is 2.12 GHz, which is 5% higher7'2g 1‘9;) 1'97 1'02
than the value of 2.02 GHz obtained from the MoM solution of 8'71 1'94 1'92 1'04
the open slot. As the cavity alters the slot’s energy distribution ' . :
the difference between the cavity-backed and open-slot results (@)
is expected. It is worth mentioning that the cavity resonances
at zero reactance are not caused by the cavity alone but aksdis Cavity f, (min. resistance) (GHe) Cavity f (zero reactance) (GHz)
by the slot, i.e., they are forced resonances. To determine th@m | Calculated | Mcasured | crror (%) | Calculated | Measured | error (%)
resonances caused solely by the cavity, one should look forzs 3.43 338 148 3.63 3.61 053
the natural resonances, which occur at the minimum resistances 2.95 2.95 0.00 312 312 0.00
points [7]. At the natural resonances of a spherical cavity, thg 73 246 245 041 263 2.64 038
tangential electric field on the equatorial plage = 0) is
zero (or becomes extremely weak in the slot region due to ()

the presence of the slot). This is, in fact, the reason why the
presence of the ground plane cannot eliminate the modes. Eixésts; all TM modes disappear, as expected. Moreover, the
vanishingly small electric field in the slot weakens the couplindegenerate Thk; and Tks; modes also disappear at this
between the slot and the cavity, causing the resistance togagticular slot position. Two other cases @f= 7.28 and
so small. The cavity’s (natural) resonant frequencies can 8§3 cm were calculated and measured. It was found that
predicted from their eigen values [21, p. 270]. The predictdde cavity radiuse mainly affects the cavity resonance, as
and calculated resonant frequencies (min resistance) of thepected; the larger the radiasthe lower the cavity resonant
various resonant modes were compared and perfect agreenfirmafuency and the higher the cavity peak resistance. Table 1(a)
between them was found. The result using the(TEsingle- lists the measured and calculated resonant frequencies of the
mode approximation [12] was plotted in the same figurdot resonance for the three cases and very good agreements
but a large discrepancy found even around thg;T#node are obtained. From the table, it is found that the resonant
resonance. This is because the fields inside the cavity are rfosgquency shifts downward slightly for a larger cavity, which
strongly affected by other resonant modes, which have bdsenconsistent with the fact that an antenna of larger size has
neglected in the single-mode theory. Therefore, one should asdower resonant frequency. Table I(b) gives the measured
the rigorous solution if the slot has a rather large offsgt  and calculated resonant frequencies of the cavity resonances.
Fig. 3 shows the input impedance as a function of frequenBpth the natural (min resistance) and forced (zero reactance)
for a = 6.25 cm. The slot is located at the center of the cavityesonances are considered. Note that their resonant frequencies
(za = ya = 0). As can be observed from the figure, goodre decreased with increasingwhich is to be expected. The
agreement between theory and experiment is obtained. Tatural resonant frequencies were predicted ukjag= 4.493
error may be caused by the conductor loss which has bemrd the results were in perfect agreement with the calculated
neglected in the present theory. Two resonances are observedijes. For ease of comparison, the single-mode result is
the first one is caused by the slot, while the second one by tiso plotted in Fig. 3. Observe that the single-mode result
cavity TE;;; mode. Note that for now onlyW/,. component is so accurate that it coincides with that using the rigorous
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Fig. 5. Measured and calculated input resistance against frequency with an
slot offsety; = 3 cm: L = 7.0 cm, W = 2.0 mm, « = 7.28 cm, and
rqg = 0.0 cm.

the degenerate by, and Tk2; modes is 3.78 GHz, which is
very close to the measured value of 3.75 GHz (0.8% error).
These values agree very well with the predicted value of 3.78
GHz usingkoa = 5.76. For ease of comparison, the single-
mode result is also shown in the same figure. Note that the
single-mode theory does not account for the degeneraig TE
and Tks; modes, as expected. Moreover, the single-mode
theory is less accurate than the rigorous solution. Therefore,
if the slot has an offse; # 0, one should use the rigorous
solution for accurate results.

Fig. 6(a) shows the magnitude of the magnetic current (or
the apertureE-field) in the slot around the slot resonance.

Due to symmetry of the current, only the positive hélif <

Fig. 4. Calculated input impedance against frequency foe 5.0, 7.0, . -
and9.0 cm: W = 2.0 mm,a = 7.28 cm, 24 = 0.0 cm, andy, = 0.0 y < L/2) is shown. As can be observed from the figure,

cm. (a) Input resistance. (b) Input reactance. Lines: rigorous solution. Dofie current has the largest amplitude at the slot resonance

single-mode approximation. (f = 1.99 GHz) as expected. The amplitude is decreased

significantly atf = 1.69 and 2.29 GHz (0.3 GHz beyond

solution, showing an extremely fast convergencé:gf when the resonance) and further decreased at 1.39 and 2.59
xq = yq = 0. This allows one to use the single-modé€sHz (£0.6 GHz beyond the resonance). The inset of the
approximation in the antenna design for this particular slfigure shows the normalized magnetic current. With reference
location. to the inset, the current shows\d4 waveform at the resonant

Fig. 4(a) and (b) shows the calculated input resistané®quency (1.99 GHz), as expected. The normalized current
and reactance, respectively, of the antenna configuration Yeaveform is stretched up and down at the higher and lower
L = 5.0,7.0,9.0 cm with ¢ = 7.28 cm andzy = yq = 0. frequencies, respectively. Fig. 6(b) shows the magnitude of the
Measurements were done to verify the calculations and gowégnetic current in the slot around the cavity resonance. Like
agreements between them were found. However, for claritye slot-resonance case, the magnetic current is strongest at
only the calculated results are shown in the figures. Withe resonant frequency (zero reactance) of 3.12 GHz, beyond
reference to the figures for both the slot and cavity resonancetich the amplitude of the current becomes smaller. It is
the peak impedances and resonant frequencies increase witbresting to note that at the natural resonante=( 2.95
decreasing.. It was found that the slot length has a larger GHz), the amplitude of the magnetic current is relatively small.
influence on the slot resonance than on the cavity, as expecfBue normalized magnetic current is shown in the inset, where
The single-mode results are also shown in the same figuresifdas observed that the trend of the current is similar to that of
easy comparison and they agree very well with the rigorotise slot-resonance case.
results. This shows that the accuracy of the single-mode theoryFig. 7 shows the phases of the magnetic currents of Fig. 6
depends on the slot location rather than the cavity size or thef = 1.99,2.95, and3.12 GHz. With reference to the figure,
slot length. the phases are zerogt= 0 for f = 1.99 GHz (slot resonance)

The measured and calculated input resistance wite 3.0 andf = 3.12 GHz (cavity forced resonance), causing the input
cm is shown in Fig. 5. With reference to the figure, the offs@énpedance to be purely real at these frequencies. The phases
yq retrieves the degenerate cavity shE and Tko; modes. are decreased gradually along the slot. On the other hand, the
From the theory, the resonant frequency (min. resistance)pifase of the current is 9Gat y = 0 for f = 2.95 GHz (slot
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and 3.12 GHz) in which the magnetic currents are able to
radiate energy, the magnetic currentfat 2.95 GHz cannot
have a net radiation as the far fields radiated by the antiphase
currents are canceled out.

VI. CONCLUSION

The input impedance of the hemispherical cavity-backed
slot antenna has been studied theoretically and experimentally.
The Green’s function technique together with the method of
moments have been used to solve the problem. The first few
fundamental TE and TM modes of the cavity have been found
and their excitation discussed. Furthermore, discussions on
the forced and natural resonances of the cavity have been
addressed. The effects of the cavity size, the slot length, and
the slot offset on the input impedance have been studied, and
very good agreement between theory and experiment has been
obtained. Furthermore, the variations of the magnetic current
around the slot and cavity resonances have been discussed.

The convergence of the modal solution has been investi-
gated. Moreover, the present rigorous theory has been com-
pared with the (TE;;) single-mode theory. The latter is
accurate only when the slot is located at the center of the
cavity, where the TlE; mode is strongly excited. At other
slot locations, the fields inside the cavity are severely affected
by other resonant modes and the rigorous theory should be
used instead. The result is similar to that previously found for
the hemispherical dielectric resonator antenna [14].
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