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Radiation Due to a Convex Curvature Discontinuity
of a Dielectric-Coated Perfect Conductor

David H. Monteith and Robert G. Olsen

Abstract—Surface waves radiate energy at discontinuities in the
curvature of the guiding structure. By reciprocity, surface waves
will be excited by plane waves incident upon such a discontinuity.
Here, the problem of the radiation of a surface wave on a
flat dielectric-coated perfect conductor incident upon an abrupt
change to a dielectric-coated cylindrical conductor with a large
radius of curvature is considered. The problem is formulated as
an integral equation over the aperture of the discontinuity. Since
the change in curvature is modest, an approximate perturbation
solution to the integral equation is derived and the radiated field
due to the discontinuity is found. This radiated field reduces to
published results for an impedance surface approximation when
that approximation is valid. The problem of mode conversion and
associated radiation near higher mode cutoffs is also studied. It is
found that near mode cutoffs, the higher order mode dominates
the radiation pattern and causes the overall radiation pattern
due to the discontinuity in curvature to be narrow and end fire.
Away from cutoff, when all of the propagating bound modes
are more tightly bound to the surface, the radiation pattern is
less narrow and less end fire. For very tightly bound modes
the pattern is nearly uniform. For dielectrics characterized by
small permitivities, the changes in radiation pattern should be
measurable.

Index Terms—Electromagnetic radiation, electromagnetic scat-
tering.

I. INTRODUCTION

BOUND modes of open waveguides radiate energy at
irregularities such as an abrupt change in curvature [1].

By reciprocity, a plane wave incident upon such an irreg-
ularity will excite a bound mode. An important problem is
to determine the extent of this coupling and if it is affected
by operating close to a higher mode cutoff frequency of the
waveguide.

A few authors have considered what occurs at an abrupt
change in curvature. Most notably, Weston [2], [3] and Senior
[4] solved for the fields near the junction of two electrically
large parabolic perfectly conducting cylinders and from this
they also solved for the scattered field due to the junction
discontinuity. Shevchenko [1] and Kuester and Chang [5],
extended the problem to an impedance surface, solving for
the radiation due to a straight impedance surface abruptly
changing to a convex curved impedance surface characterized
by a large radius of curvature.

To determine how operation close to a higher order mode
cutoff frequency affects coupling, a more complex structure
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Fig. 1. The problem geometry.

must be considered. The structure considered in this paper is a
dielectric-coated perfect electric conductor with an abrupt but
modest change in curvature. The solution to the problem is
formulated as an integral equation over the discontinuity aper-
ture. An approximate solution of this integral equation when
the change in radius is modest is developed. This solution is
used to compare the radiated field of the coated surface to
that predicted using the impedance surface approximation and
to look at the radiated field of the coated surface when the
operating frequency is near higher mode cutoffs.

II. PROBLEM STATEMENT

The problem is to solve for the radiation due to a TM surface
wave incident upon an abrupt convex curvature discontinuity
of a dielectric-coated perfect conductor. The two-dimensional
(2-D) problem is considered.

The problem geometry is shown in Fig. 1. In general, both
sides of the discontinuity could be curved, but for simplicity,
one side was chosen to be flat. The dielectric is assumed to
be homogeneous, isotropic, and linear and is characterized by
permitivity and permeability and thickness. The
region above the dielectric is also homogeneous, isotropic, and
linear and is characterized by the constitutive parameters
and . The radius of curvature of the curved section is.
To avoid the necessity of dealing with a second discontinuity
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in curvature, it is assumed that the flat section ranges from
to . It is also assumed that the curved section

ranges from to in a kind of Riemann surface
of which only finite angles of lie in the physical plane [6].
This artifice is similar in intent to the assumption of infinite
extent of a straight waveguide in an excitation problem and
assures that none of the scattered fields are reflected from some
obstacle further along the structure [5].

The incident field is a TM surface wave supported
by an infinite planar dielectric-coated perfect conductor. By
reciprocity, the solution also applies to the excitation of
surface waves by plane waves incident upon the curvature
discontinuity. Of special interest is the large radius case. A
time dependence of is assumed where is
the angular frequency and is the frequency in Hertz.

III. PROBLEM FORMULATION

Examination of the problem geometry, Fig. 1, shows that the
abrupt curvature discontinuity can be used to define an semi-
infinite aperture on the plane and . An integral
equation for the unknown fields across the aperture can be
formulated in a manner similar to Rayleigh and Sommerfeld’s
formulation of an integral equation to solve for diffraction due
to a finite aperture [7].

A. Integral Equation Formulation

The derivation of the integral equation begins by applying
the 2-D Green’s identity (1) to the regions on either side of
the aperture. This identity is a statement of reciprocity for the
scalar fields and [8]

(1)

where

in region

in region

The contours , surface areas , and outward nor-
mals of the regions being considered are shown in
Fig. 2.

To identify the functions and , the Green’s functions in
the straight and curved regions and , respectively, are
postulated. These Green’s functions satisfy the inhomogeneous
wave equation, the boundary condition on the perfect electric
conductor, the radiation condition and the boundary conditions
at the surface of the dielectric coating in the regionsand ,
respectively. For each region and , there are four Green’s
functions [9]. One for each permutation of the field point
and the source point inside the dielectric coating and above
the dielectric coating.

Rayleigh and Sommerfeld showed that the problem could
be simplified without limiting its generality by introducing

Fig. 2. The regionsS andC.

modified Green’s functions and as defined in below
[7], [10]:

(2)

where

implies

The simplification comes about because the derivative of the
modified Green’s functions with respect toevaluated on the
aperture is zero.

Now consider the total magnetic field in the two regions.

• In region

(3)

• In region

(4)

These magnetic fields satisfy the homogeneous Helmholtz
equation and the boundary conditions. It should be remem-
bered that is not arbitrary. It also satisfies the boundary
condition and the Helmholtz equation in region. Hence,

, , and satisfy the boundary conditions and
also satisfies the radiation condition.

At this point, the quantities and in the Green’s identity
(1) for each side of the aperture are defined as follows:

• In region define

(5)

• In region define

(6)
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Applying the boundary condition, the radiation condition,
and using the Helmholtz equation and the inhomogeneous
wave equation, the Green’s identity becomes as follows.

• In region

(7)

• In region

(8)

These equations can be further simplified by noting that
on the aperture .

For ease of notation, the quantity is defined as

(9)

Thus, is proportional to the unknown tangential
electric field at the aperture. In the current problem, the
incident field is known, the tangential electric field on
the perfect conductor is zero, and the scattered fields satisfy
the radiation condition. Thus, by the uniqueness theorem [6],
once is determined, the fields everywhere are uniquely
determined.

To determine , continuity of tangential and
across the aperture are enforced. This results in the following
Fredholm integral equation of the first kind for the unknown

.

(10)

where

and is the known quantity defined as

(11)

Since in the given problem the change in curvature is small,
the integral equation (10) is written in a perturbation form. The
coated surface on one side of the aperture is straight and on
the other it is curved with a large radius of curvature. As the
radius of curvature of a cylinder becomes infinite the Green’s
function for the cylinder will approach the Green’s function
for the planar surface [11]. Because approaches , it
is convenient to write as plus some correction that
approaches zero as approaches infinity. Two possible ways
to calculate this perturbation are through the use of a large
argument expansion of [10] or through the use of regular
perturbation theory [13]. The second approach is much easier
to implement. The use of the perturbation form will allow
easier calculation of the small changes in the fields that are

expected to be associated with the small change in curvature
in the present problem.

Equation (10) can be solved to determine the unknown
on the aperture and from this the fields everywhere can be
determined by using (7) and (8).

B. Perturbation Formulation

Regular perturbation theory is used to derive a perturbation
series representation of the cylindrical Green’s function. In
this procedure, the cylindrical coordinate system is defined
in terms of a local coordinate systemand . and are
shown in Fig. 2 and are defined in (12) and (13) in terms of
the cylindrical coordinates and , which are shown in Fig. 1.

(12)

(13)

where

In a small region near the aperture, the local coordinate system
and approaches the rectangular coordinate systemand

. This region can be determined by comparing, and ,
leading to the conditions in the following:

(14)

(15)

The integration in the integral equation (10) extends to
infinity and this causes an apparent contradiction with (14).
Fortunately, at large distances from the surface, ap-
proaches [11] and the difference between the two vanishes.
Under these conditions, the second integral of the integral
equation can be truncated. Thus, as long as the perturbation
equation is accurate out to a distance where the difference
between and is negligible, then (14) will not be
violated. The difference between and is also negligible
at points far from the surface . This, along with (12)
and (14), leads to the final restriction on the perturbation series

(16)

To derive the perturbation form of the Green’s functions,
they are first expanded as a perturbation series in terms of the
variable

(17)

(18)

These series will be valid as long as the conditions of (14)–(16)
are satisfied. Substituting these series into the integral equation
(10) results in the perturbation form of the integral equation
(19)

(19)
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A mode-matching technique is used to solve the integral
equation. Thus, the Green’s functions are written in terms
of eigenfunctions so that the orthogonality relationships and
completeness of the eigenfunctions can be used.

is written in terms of the eigenfunctions and

(20)

where satisfies the cylindrical wave equation for
discrete eigenvalues, , and satisfies
the equation for the continuous spectrum of eigenvalues

[12]. represents the discrete modes and
represents the continuous modes.

is an unknown constant and is an unknown
function. These unknowns must be determined so that the
Green’s function will satisfy the source conditions (21) and
(22) at [6]

(21)

(22)

To derive the perturbation form of the eigenfunctions, the
eigenfunctions and the discrete values are expanded in a
perturbation series. The perturbation forms of the eigenfunc-
tions can then be found by applying the perturbed coordinate
system to the cylindrical wave equation, taking the Fourier
transform of the wave equation with respect toand then sub-
stituting the perturbation series expansions of the eigenfunc-
tions and discrete eigenvalues into the equation. This results
in a set of recursive equations for the discrete eigenfunctions
and another set of recursive equations for the continuous
eigenfunctions. These equations with the use of the boundary
conditions can be solved successively for higher order terms
of the perturbation expansion of the eigenfunctions.

After solving these equations, and are still unknown.
Furthermore, each higher order discrete and continuous mode
will add one further unknown. Thus, the zero order continuous
and discrete mode each has one unknown, the first-order modes
each have two unknowns and so on. In order to determine these
unknowns, the source conditions on the Green’s functions (21)
and (22) must be applied.

The perturbation forms of the Green’s functions expressed
in terms of the perturbation form of the eigenfunctions are
shown in (23) and (24). The eigenfunctions are presented in
[9]

(23)

(24)

The following mode orthogonality relationships are used in
the solution of the integral equation:

(25)

(26)

(27)

where

The following integrals incorporating the zero- and first-
order modes are also used:

(28)

(29)

(30)

These integrals are not equal to zero because the zero- and
first-order modes are not orthogonal.

Finally, the incident field can be written in terms of
the mode functions

(31)

C. Integral Equation Solution

The modes for the straight surface—the zero-order
modes—form a complete set [12]. Therefore, the the unknown
[ in the integral equation (10)] can be expressed as a
summation of these modes

(32)

As was done before, the unknowns and are expanded
in a perturbation series

(33)

(34)

The above equations are substituted into the integral equa-
tion and the orthogonality relationships are used to find the



1224 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 8, AUGUST 1998

unknowns , , , and

(35)

(36)

(37)

(38)

The zero-order solution corresponds to the radius of cur-
vature approaching infinity. In other words, the geometry
becomes an infinite plane with no discontinuity in curvature. In
this case, the incident field will propagate across the aperture
without any disruptions. Thus, as expected, is zero.

D. Fields

The field is calculated using (7) and (8). This results
in the following equations which are valid for and

, respectively.

(39)

(40)

As expected, the zero-order term is an expression for an infinite
straight surface.

The far-field pattern can be calculated by using saddle-point
integration [6]. This results in (41). It should be noted that
the radiation field is a first-order quantity in the perturbation
variable

(41)

where

IV. RESULTS

Fig. 3 is a polar plot of the radiation pattern due
to an incident zero-order mode on the curvature discontinuity
for three different frequencies. is multiplied
by the radius of curvature of the curved section as
defined in (42).

(42)

The parameters for the plot are , , ,
, and cm. Results for three different values of

are plotted where is the frequency normalized by the cutoff
frequency of the first mode as defined in (43)

(43)

For , ; for , ; and
for , . Thus, as increases, the magnitude
of the incident field must also increase so that all three of the
examples can appear on the same plot.

For the examples shown in Fig. 3, the frequency is less
than half the first-mode cutoff frequency. For these cases, the
maximum magnitude of the radiated field decreases as the
frequency increases. This is because the incident field becomes
more tightly bound to the surface at higher frequencies so that
when the discontinuity is encountered less energy is radiated.
It is also clear from Fig. 3 that as the frequency increases the
angle of the the main lobe maximum direction increases. The
reason for this can be understood in the following way. The
fields on the aperture , radiate into the region

. At low frequencies, the field is loosely bound and
spread out over the aperture. The radiation pattern for such a
field is narrow and near theaxis. For higher frequencies, the
mode is more tightly bound, confined to the region near the
conductor and, therefore, the radiated energy is more spread
out. As the frequency approaches a higher mode cutoff the
above noted trends in direction and magnitude become more
complicated as will be shown below.

Before proceeding to what occurs near higher mode cutoffs,
the coated surface results are compared to published results
for the similar problem of curvature changes in an impedance
surface. Shevchenko [1] and Kuester and Chang [5] have
solved this problem. It can be analytically shown that when
the coated surface approximates an impedance surface, the
solution for the coated surface reduces to their solution for an
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Fig. 3. A polar plot ofĤz(�) for the coated surface solution. The parameters for the example plotted are:"ra = 4; �ra = 1; "rb = 1; and�rb = 1.
Three scaling factors are used. For!̂ = 0:25, Iinc

0
= 2:85; for !̂ = 0:35, Iinc

0
= 17:4; and for !̂ = 0:45, Iinc

0
= 45.

Fig. 4. The maximum magnitude of the main lobe ofĤz(�) for the coated surface solution and the impedance surface solution as a function of!̂. The
parameters for the example plotted are�ra = 1, "rb = 1, �rb = 1, and Iinc

0
= 1.

impedance surface [9]. The conditions needed for the coated
surface to approximate an impedance surface are that the
thickness of the coating be small , where is the
wavelength in the dielectric and that the dielectric constant of
the coating be large. When these conditions are met, the
surface impedance is given by [14, eq. (44)]

(44)

Fig. 4 is a comparison of the maximum magnitude of the
main lobe of the radiated field (42) as calculated using
the impedance surface solution and the coated surface solution.
These quantities are plotted as a function of the normalized

frequency . Fig. 5 shows the angle (in radians) where this
main lobe maximum occurs as a function of the normalized
frequency. The parameters for the plot are , ,

, and cm. The calculations are done for ,
1.25, 4, and 64.

For , less than about 0.5, the greatest difference between
the impedance surface solution and the coated surface solu-
tion, is in the magnitude plot. The angle plots follow each
other fairly closely until is closer to 0.5 and then diverge
dramatically.

It is known that as the thickness of the coating increases the
impedance surface approximation becomes less accurate [14].
Because of this the two solutions diverge for larger values
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Fig. 5. The direction of the maximum magnitude of̂Hz(�) for the coated surface solution and the impedance surface solution in radians as a function
of !̂. The parameters for the example plotted are�ra = 1, "rb = 1, �rb = 1, and I inc

0
= 1.

Fig. 6. The maximum magnitude of the main lobe ofĤz(�) for the coated surface as a function of!̂. The parameters for the example plotted in these
figures are�ra = 1, "rb = 1, �rb = 1, t = 1 cm, Iinc

0
= 1, Iinc

1
= 0, Iinc

2
= 0, Iinc

3
= 0.

of . It is also known that as the dielectric constant of the
coating becomes larger the impedance surface approximation
becomes more accurate. Thus, for the impedance
surface and coated surface results diverge at about ,
for they diverge at about , and for
they diverge at about . It is important to note, though,

that the coated surface results and impedance surface results
match when the impedance surface approximation is valid.

Figs. 6 and 7 are plots, with respect toof the maximum
value of the radiated field and the direction of the
maximum lobe of the radiated field, respectively. The incident
field only consists of the TM surface wave . The
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Fig. 7. The direction of the main-lobe maximum of̂Hz(�) for the coated surface as a function of!̂. The parameters for the example plotted in these
figures are�ra = 1, "rb = 1, �rb = 1, t = 1 cm, I inc

0
= 1, Iinc

1
= 0, Iinc

2
= 0, Iinc

3
= 0.

Fig. 8. A polar plot of the radiation pattern. The parameters for the example plotted in these figures are!̂ = 2:13, "ra = 1:25, �ra = 1, "rb = 1,
�rb = 1, t = 1 cm, Iinc

0
= 1, Iinc

1
= 0, Iinc

2
= 0, Iinc

3
= 0.

other parameters for the plot are , , ,
and cm. Curves for five different values of , 1.25,
2, 4, 16, and 64, are shown.

As in Fig. 3 for , the main-lobe maximum tends
to become smaller and the angle of the maximum radiation
becomes larger as the frequency becomes higher. For

, however, higher order bound modes are excited by the
discontinuity. For instance, the discontinuity causes cross
coupling of energy between the TMincident field and the
TM field. This cross coupling is mathematically expressed
in (36). Since both the TM and TM fields exist in the
aperture, they both radiate into the region . Because
the TM field is less tightly bound near its cutoff, it radiates

a narrow pattern primarily at small angles and dominates
the radiation pattern. This small angle of radiation explains
why the direction of the maximum angle of radiation is
small near cutoff, as shown in Fig. 7. Between and

the behavior is a continuous transition between single
mode behavior and the behavior just above cutoff. This could
probably be explained with a leaky wave model. Note further
that this behavior repeats itself as passes through higher
order cutoff frequencies.

The magnitude plot (Fig. 6) shows another interesting char-
acteristic. For small values of (approximately )
the magnitude increases near higher mode cutoffs,

and for larger values of it increases midway
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between higher mode cutoffs. At intermediate values of
(approximately ) the magnitude increases both at
the mode cutoffs and midway between mode cutoffs. These
magnitude patterns are due to the phase relationships of the
fields at the aperture of the curvature discontinuity.

Fig. 8 is a polar plot of the magnitude of . The
parameters for the plot are , , ,

, cm, and . The incident field
only consists of the TM surface wave but was chosen so
that the TM , TM , and TM modes could be supported by
the surface. Because the surface supports higher order modes
and there is cross coupling of energy into these modes at
the discontinuity, these higher order modes will contribute to
the radiation pattern. Therefore, the radiation pattern is more
complicated in this case than it was in the the single-mode
case in Fig. 3.

V. CONCLUSION

The radiated field caused by a surface wave incident upon
an abrupt but modest change in curvature of a dielectric-coated
perfect conductor was found by formulating the problem as an
integral equation. The integral equation was solved recursively
through the use of regular perturbation theory. For thin coat-
ings, this solution agreed with Shevchenko and Kuester and
Chang’s solution for an impedance surface. As expected, as the
thickness of the surface increased the coated surface solution
diverged from the impedance surface solution. For the example
above, this divergence became large for frequencies above half
the cutoff frequency of the first mode. It may be possible to
improve the impedance surface solution through the use of
higher order impedance boundary conditions [14]–[16], but
these are still limited to a relatively thin coating. In order
to examine what occurs as the cutoff of the higher order
modes is approached and surpassed, the coated surface must
be examined.

Modes tightly bound to the surface produce a wide radiation
pattern. Modes loosely bound to the surface produce a narrow
endfire radiation pattern. As the cutoff of the higher order
modes is approached, energy is cross coupled into the higher
order mode. Near cutoff, the higher order mode is loosely
bound to the surface and, therefore, has a narrow endfire
radiation pattern. This narrow pattern dominates the overall
radiation pattern.

When is small the magnitude near cutoff is large enough
that the above mentioned trends should be measurable.
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