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Radiation Due to a Convex Curvature Discontinuity
of a Dielectric-Coated Perfect Conductor

David H. Monteith and Robert G. Olsen

Abstract—Surface waves radiate energy at discontinuities in the X
curvature of the guiding structure. By reciprocity, surface waves
will be excited by plane waves incident upon such a discontinuity.
Here, the problem of the radiation of a surface wave on a g, M
flat dielectric-coated perfect conductor incident upon an abrupt b
change to a dielectric-coated cylindrical conductor with a large p
radius of curvature is considered. The problem is formulated as
an integral equation over the aperture of the discontinuity. Since H0
the change in curvature is modest, an approximate perturbation 1\ ,.* ¢
solution to the integral equation is derived and the radiated field 0
due to the discontinuity is found. This radiated field reduces to 3\ €, Ha y
published results for an impedance surface approximation when -t
that approximation is valid. The problem of mode conversion and
associated radiation near higher mode cutoffs is also studied. It is
found that near mode cutoffs, the higher order mode dominates
the radiation pattern and causes the overall radiation pattern
due to the discontinuity in curvature to be narrow and end fire.
Away from cutoff, when all of the propagating bound modes
are more tightly bound to the surface, the radiation pattern is R
less narrow and less end fire. For very tightly bound modes
the pattern is nearly uniform. For dielectrics characterized by
small permitivities, the changes in radiation pattern should be
measurable.

”
Perfect Conductor

Index Terms—Electromagnetic radiation, electromagnetic scat- Fig. 1. The problem geometry
tering. o '

must be considered. The structure considered in this paper is a

dielectric-coated perfect electric conductor with an abrupt but
OUND modes of open waveguides radiate energy atodest change in curvature. The solution to the problem is
irregularities such as an abrupt change in curvature [fprmulated as an integral equation over the discontinuity aper-

By reciprocity, a plane wave incident upon such an irredure. An approximate solution of this integral equation when

ularity will excite a bound mode. An important problem ighe change in radius is modest is developed. This solution is

to determine the extent of this coupling and if it is affectedsed to compare the radiated field of the coated surface to

by operating close to a higher mode cutoff frequency of thhat predicted using the impedance surface approximation and

waveguide. to look at the radiated field of the coated surface when the

A few authors have considered what occurs at an abrugerating frequency is near higher mode cutoffs.
change in curvature. Most notably, Weston [2], [3] and Senior
[4] solved for the fields near the junction of two electrically Il. PROBLEM STATEMENT

large parabolic perfectly conducting _cyhnders and fr(_)m thls The problem is to solve for the radiation due to a TM surface
they also solved for the scattered field due to the junction

discontinuity. Shevchenko [1] and Kuester and Chang [ ave incident upon an abrupt convex curvature discontinuity

. ) f a dielectric-coated perfect conductor. The two-dimensional
extended the problem to an impedance surface, solving iar

. . . -D) problem is considered.
the radiation due to a straight impedance surface abrup yTh)epprobIem geometry is shown in Fig. 1. In general, both

changing to a convex curved impedance surface character%%jes of the discontinuity could be curved, but for simplicity,
by a large radius of curvature. . ; o
: . : ne side was chosen to be flat. The dielectric is assumed to
To determine how operation close to a higher order moge : : : . .
€ homogeneous, isotropic, and linear and is characterized by

cutoff frequency affects coupling, a more complex Strucwrﬁermitivity eoe, and permeabilityios, and thickness. The

region above the dielectric is also homogeneous, isotropic, and

I. INTRODUCTION
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in curvature, it is assumed that the flat section ranges from

y =010y — —oco. It is also assumed that the curved section I Y
ranges from¢ = 0 to ¢ — oo in a kind of Riemann surface Region S — Regi

. . L . . n egionC .
of which only finite angles of) lie in the physical plane [6]. / Ag S A
This artifice is similar in intent to the assumption of infinite ¢ ¢
extent of a straight waveguide in an excitation problem and _ g, M, Lsc x
assures that none of the scattered fields are reflected from somg H;w 0
obstacle further along the structure [5]. k ol s 3

The incident field ™ is a TM surface wave supported £ 1-Y__ € Ba.___________ I

by an infinite planar dielectric-coated perfect conductor. BY  perfect Conductot s *
reciprocity, the solution also applies to the excitation of

surface waves by plane waves incident upon the curvature

discontinuity. Of special interest is the large radius case. A

time dependence afxp (jwt) is assumed where = 27 f is

the angular frequency anflis the frequency in Hertz.

Ill. PROBLEM FORMULATION

Examination of the proplem geometry, Fig. 1, shpws that trlyla 2. The regionss and C'
abrupt curvature discontinuity can be used to define an semp
infinite aperture on the plang = 0 andz > —¢. An integral
equation for the unknown fields across the aperture can medified Green’s function&rs and G¢. as defined in below
formulated in a manner similar to Rayleigh and Sommerfeld[g], [10]:

formulation of an integral equation to solve for diffraction due

to a finite aperture [7]. 5c(7.0) = Gsc(p,p') + Gs,c (P, Fim) 2

A. Integral Equation Formulation where
The derivation .of thg integral equatiqn begins.by applying P =ald, + y'd, implies ﬁ’m =2'd, —y'a,.

the 2-D Green’s identity (1) to the regions on either side of

the aperture. This identity is a statement of reciprocity for thEhe simplification comes about because the derivative of the

scalar fieldsy) and ¢ [8] modified Green'’s functions with respectgbevaluated on the
aperture is zero.

a g
j{ <z/;a—i) - ¢a—:f> dt = / [WV2p — pVlda (1) Now consider the total magnetic field in the two regions.
4 A

e In region S
where
_ _ inc scat
in regionS:f:fS:ESR—i-fsp—i-fsc H.=H.s = zS +HZS 3)
A=As e In region C
n=1s
inregionC: £ =4c =Lbeor + fop + s H. = H.c. (4)
A= Ao

—

These magnetic fields satisfy the homogeneous Helmholtz
i = fc. equation and the boundary conditions. It should be remem-

bered thatH " is not arbitrary. It also satisfies the boundary
The contours4s,c), surface areagds,c), and outward nor- qngition and the Helmholtz equation in regich Hence,
mals (s.c) of the regions being considered are shown '@Izs, Hir%c’ and H>%** satisfy the boundary conditions and
Fig. 2,' , , , ) _H3@ also satisfies the radiation condition.

To |d§:nt|fy the funcUona/;'and ¢, the Green’s functlons N At this point, the quantitiegr and¢ in the Green’s identity
the straight and curved regioliss and Gic, respectively, are 1) for each side of the aperture are defined as follows:
postulated. These Green'’s functions satisfy the inhomogene(gLPs
wave equation, the boundary condition on the perfect electrice In region S define
conductor, the radiation condition and the boundary conditions .
at the surface of the dielectric coating in the regiéhandC, ¥ =G5 .
respectively. For each regiosiand C, there are four Green’s ¢=H,s— HY = H®"
functions [9]. One for each permutation of the field pojnt _ .
and the source poirit’ inside the dielectric coating and above * [N region ¢ define
the dielectric coating. =G

Rayleigh and Sommerfeld showed that the problem could c
be simplified without limiting its generality by introducing ¢=H.c. (6)

()
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Applying the boundary condition, the radiation conditionexpected to be associated with the small change in curvature
and using the Helmholtz equation and the inhomogeneausthe present problem.
wave equation, the Green’s identity becomes as follows. Equation (10) can be solved to determine the unkngut)

« In region S on the aperture and from this the fields everywhere can be

) determined by using (7) and (8).
[ (02 g { Hsl) - HE) <
se\ Oy Hs(pim) = H5 (Fim) 420 B Perturbation Formulation
(7) Regular perturbation theory is used to derive a perturbation
series representation of the cylindrical Green’s function. In
this procedure, the cylindrical coordinate system is defined
_/ <G* 3Hzc> di’ — {Hz (7) y=0 ®) in terms of a local coordinate systegnands. x and s are
oo \C Oy H.c(Pim) y<0. shown in Fig. 2 and are defined in (12) and (13) in terms of
the cylindrical coordinateg and¢, which are shown in Fig. 1.

These equations can be further simplified by noting that

e In region C

on the aperturers ~ = 2Gsc. % =1+&y (12)
For ease of notation, the quantif{z’) is defined as R =s (13)
H.
flz") = 0 f . (9) where
9y y'=0 1
Thus, f(z') is proportional to the unknown tangential $= R

electric field at the aperture. In the current problem, the a small region near the aperture, the local coordinate system
incident field A2 is known, the tangential electric field ony and s approaches the rectangular coordinate systeamd
the perfect conductor is zero, and the scattered fields satigfyThis region can be determined by comparings andx, ¥
the radiation condition. Thus, by the uniqueness theorem [fdading to the conditions in the following:
once f(«') is determined, the fields everywhere are uniquely x
determined. ‘E‘ <1 (14)
To determine f(z’), continuity of tangentialEZ and H b < 1. (15)
across the aperture are enforced. This results in the following
Fredholm integral equation of the first kind for the unknown The integration in the integral equation (10) extends to
). infinity and this causes an apparent contradiction with (14).
oo Fortunately, at large distances from the surfaée; ap-
P(z) + 2 Ks(z,2')f(z") da’ proached{s [11] and the difference between the two vanishes.
—t Under these conditions, the second integral of the integral
= / / N equation can be truncated. Thus, as long as the perturbation
+/ [Ke(w,2) = Ks(@, )] (@) da’ = 0 (10) equation is accurate out to a distance where the difference
between K~ and Ks is negligible, then (14) will not be
where violated. The difference betwedtic andK s is also negligible
Kso(r,a') = Gs.o(x, 02, 0) at points far from the §urfaclep — 00, This, along with (12) .
’ ’ and (14), leads to the final restriction on the perturbation series

—t

and ®(x) is the known quantity defined as

inc

H .
20(z) = {—2/ Gsa_~/s dz’ + ;‘g“} . (11)
lse oy y=y'=0

1. 16
coal< (16)
To derive the perturbation form of the Green’s functions,

L . . . re first expan rturbation series in terms of th
Since in the given problem the change in curvature is Sma:/@er?/agleeg st expanded as a perturbation series in terms of the

the integral equation (10) is written in a perturbation form. The
coated surface on one side of the aperture is straight and on Ko = Ko+ K+ 2Ky +0(€3) a7

the other it is curved with a large radius of curvatéteAs the Ks = K. (18)
radius of curvature of a cylinder becomes infinite the Green'’s

function for the cylinder will approach the Green’s functiomhese series will be valid as long as the conditions of (14)—(16)
for the planar surface [11]. Becaug&- approache<7s, it are satisfied. Substituting these series into the integral equation
is convenient to writeG< as Gs plus some correction that (10) results in the perturbation form of the integral equation
approaches zero ds approaches infinity. Two possible wayg(19)

to calculate this perturbation are through the use of a large 00

argument expansion @ [10] or through the use of regular () +2 [ Kol x)f(x)dx

perturbation theory [13]. The second approach is much easier oo_t

to implement. The use of the perturbation form will allow +¢ Ki(x, X)) f(xXVdx' +0(€?) =0.  (19)

easier calculation of the small changes in the fields that are —t



MONTEITH AND OLSEN: RADIATION DUE TO DISCONTINUITY OF DIELECTRIC-COATED PERFECT CONDUCTOR 1223

A mode-matching technique is used to solve the integral K, (x,x’) = ZAEL[\I/,LO(X)\IJM(X’) + W1 () Uro(x)]
equation. Thus, the Green’s functions are written in terms n
of eigenfunctions so that the orthogonality relationships and

= 2 /
completeness of the eigenfunctions can be used. +/0 Aol 1) Ta (X' %)

K¢ is written in terms of the eigenfunctiong.,,(x) and + U1 (x, 1) Wo (X', 75)] dve.- (24)
Ve lx; 1)
The following mode orthogonality relationships are used in
Ke(x:x') =Y Al Ucn(x)¥eon(X) the solution of the integral equation:
oo b 1
+/ AZ(w)¥e(x, ) ¥e (X, w) dyw  (20) Cromo = . R(x)¥no(X)¥mo(x) dx = ménm
0 - netn
- o . (25)
where ¥, (x) satisfies the cylindrical wave equation for oo
discrete eigenvalues,, = k2, — 2, and ¢ (x,vs) satisfies Croo = / R(x)¥no(x)Wo(x)dx =0 (26)
the equation for the continuous spectrum of eigenvalies -
k2, —v* [12]. Wen(x) represents the discrete modes and  Cpo = RO)Yo (v, X)%o (M, X) dx
Ve (x,v) represents the continuous modes. —t
A,%- is an unknown constant and?(v,) is an unknown - Z—WFDl“Né(% — ) 27)
function. These unknowns must be determined so that the b

Green’s function will satisfy the source conditions (21) ang are
(22) atx = x' [6] .
{— —t<x <0

% x > 0.

R(x) =
Gepo P pmprta = Gelps Dlpmp—ar A—0 (21 %)
, , The following integrals incorporating the zero- and first-
IGc(p, p') _ 9Gc(p.p') _ =1 A _ . order modes are also used:
dp dp pmp—n P

p=p+A 00
(22) Coas = [ RO)TwGOWL 00 dx 20 (28)
—t
To derive the perturbation form of the eigenfunctions, the Chio :/ RO)Vn1(x)Wo(v,x)dx #0  (29)
eigenfunctions and the discrete valugs are expanded in a _t
perturbation series. The perturbation forms of the eigenfunc- e
tions can then be found by applying the perturbed coordinate Cnom1 = RO a0 (X)¥mi(x) dx # 0. (30)

—t
system to the cylindrical wave equation, taking the Fourier

transform of the wave equation with respecttand then sub- These integrals are not equal to zero because the zero- and

stituting the perturbation series expansions of the eigenfurigst-order modes are not orthogonal.

tions and discrete eigenvalues into the equation. This resultginally, the incident fieldH”s can be written in terms of

in a set of recursive equations for the discrete eigenfunctioti® mode functions

and another set of recursive equations for the continuous ine B ine vy

eigenfunctions. These equations with the use of the boundary H$(x,y) = Zln ¢ Lo(2)-

conditions can be solved successively for higher order terms "

of the perturbation expansion of the eigenfunctions.
After solving these equationgl,. and A,, are still unknown. .

Furthermore, each higher order discrete and continuous modd e modes for the straight surface—the zero-order

will add one further unknown. Thus, the zero order continuolf@odes—form a complete set [12]. Therefore, the the unknown

and discrete mode each has one unknown, the first-order mobldg) in the integral equation (10)] can be expressed as a

each have two unknowns and so on. In order to determine th§sg'mation of these modes

unknowns, the source conditions on the Green’s functions (21) = (a,b) e (a,b)

and (22) must be applied. () =D 60,57 (x) +/0 Blw)¥o ™ (v, x) dve. (32)
The perturbation forms of the Green’s functions expressed "

in terms of the perturbation form of the eigenfunctions args was done before, the unknowfis and3(~,) are expanded

shown in (23) and (24). The eigenfunctions are presentediina perturbation series

9]

(31)

C. Integral Equation Solution

/ 2 ’ Br = Bro +E&Bn1 + 0(52) (33)
Kolex') = 2 Au¥ao) Tno(x) Bw) = folm) + EBu(m) + OE?). (34)

+ /Oo A2(v) %o (x, 1) Wol(X s 1) do (23) The above equations are substituted into the integral equa-
0 tion and the orthogonality relationships are used to find the
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unknownsgs,o, Sn1, Bo(v), and Bi(v,) wherey < 0
Bro = _j’/OnIriLm (35) B. = Ag(%)(l/cnl,o + 19, Cro,1)
Bni = —Von Z I A A, Yo = kysin()
m ve = —ky cos(0)
X [VOrnOrnO,nl + VOnCnO,rnl] (36) -
Bo(ve) =0 @7 v >0
Prlm) = Z VoL A2 () B = A2(%)(=1Cn1,0 + 10nCno 1)
n Yo = kb sin(6
X [I/Cnl,O(’Yb) + VOnCnO,l(’Vb)]- (38) - ( )
vs = ky cos(8).
The zero-order solution corresponds to the radius of cur-
vature R approaching infinity. In other words, the geometry IV. RESULTS

b infinite pl ith no di tinuity i ture. In _. . I -
ecomes an infinite plane with no discontinuity in curvature. In Fig. 3 is a polar plot of the radiation patteffl. (¢)| due

this case, the incident field will propagate across the aperttg(r)ean incident zero-order mode on the curvature discontinuity

without any disruptions. Thus, as expectgi() is zero. for three different frequenciesd. () is H.(r,6) multiplied

by the radius of curvature of the curved sectiin= % as

D. Fields defined in (42). ¢
The field H,(x) is calculated using (7) and (8). This results
in the following equations which are valid fay < 0 and lffz(9) :} MejkerZ(T 9). (42)
s > 0, respectively. EV 2 ’
y <0

The parameters for the plot atg, = 4, e = 1, g4 = 1,
b . ive g (@b) . ) ey = 1, andt = 1 cm. Results for three different values &f
H M (z,y) = Z Le o9 07 + & ZI,‘,‘;CA,,,A,,,, are plotted where is the frequency normalized by the cutoff
" " ) frequency of the first mode as defined in (43)
>< L& rn,Crn, n + 14 nCn m C_JVO'rly\Pna’
[ 0 0,nl 0 0, 1] 0 ) wt\/w )
W=

+&Ie / AL () Cro(m) .
0

, For & = 0.25, Iin® = 2.85; for & = 0.35, Ii™ = 17.4; and
+ 10nCro,1 (W) ¥o (v, 2)e’™Y d’yb} +0(&%)  for & = 0.45, Il*° = 45. Thus, asb increases, the magnitude
of the incident field must also increase so that all three of the
(39) examples can appear on the same plot.
For the examples shown in Fig. 3, the frequency is less
than half the first-mode cutoff frequency. For these cases, the
() _ iney, (@) —jvons . e maximum magnitude of the radiated field decreases as the
HP(x8) = Z 1"V e +&\J ZIm Andm frequency increases. This is because the incident field becomes
" "o more tightly bound to the surface at higher frequencies so that
X [0mCmo,n1 — YonCrno,mi | UG e 7von when the discontinuity is encountered less energy is radiated.
i ) i 00 It is also clear from Fig. 3 that as the frequency increases the
+ IZ’T‘C‘Pnl(X)G_M”S> + QIKC/ AZ2(w)  angle of the the main lobe maximum direction increases. The
0 reason for this can be understood in the following way. The

s >0

X [=vCh10(1) + 100 Cro,1 ()] fields on the aperturg = 0, = > —t radiate into the region
e ) y > 0. At low frequencies, the field is loosely bound and
x Wo(ys, 2)e’™ dyy o + O(E7). (40) spread out over the aperture. The radiation pattern for such a

field is narrow and near the axis. For higher frequencies, the
As expected, the zero-order term is an expression for an infinfte@de is more tightly bound, confined to the region near the
straight surface. conductor and, therefore, the radiated energy is more spread
The far-field pattern can be calculated by using saddle-poimit. As the frequency approaches a higher mode cutoff the
integration [6]. This results in (41). It should be noted thatbove noted trends in direction and magnitude become more
the radiation field is a first-order quantity in the perturbatiopomplicated as will be shown below.

variable £ = % Before proceeding to what occurs near higher mode cutoffs,
the coated surface results are compared to published results

H.(r,0) ~ &j /% ZIL“C{B<>[%€¢1 cos(Yqt) for the similar problem of curvature changes in an impedance

U surface. Shevchenko [1] and Kuester and Chang [5] have

) . solved this problem. It can be analytically shown that when
— j¥agy sin(yet)] e ket E . (41) the coated surface approximates an impedance surface, the

934 solution for the coated surface reduces to their solution for an
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Fig. 3. A polar plot ofﬁ;(a) for the coated surface solution. The parameters for the example plotted,are: 4; pira = 1; 6,4 = 1; andp,p = 1.
Three scaling factors are used. Eor= 0.25, Ig"® = 2.85; for & = 0.35, I§"° = 17.4; and for& = 0.45, I"° = 45.
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Fig. 4. The maximum magnitude of the main Iobelfﬁ(ﬂ) for the coated surface solution and the impedance surface solution as a functionTbé
parameters for the example plotted are, = 1, ¢, = 1, g, = 1, and I = 1.

impedance surface [9]. The conditions needed for the coafeglqguency®. Fig. 5 shows the angle (in radians) where this
surface to approximate an impedance surface are that thain lobe maximum occurs as a function of the normalized
thickness of the coating be small — 0, where A is the frequency. The parameters for the plot are = 1, &, = 1,
wavelength in the dielectric and that the dielectric constant pf, = 1, and¢ = 1 cm. The calculations are done fey,,

the coatinge,, be large. When these conditions are met, the25, 4, and 64.

surface impedancs, is given by [14, eq. (44)] For &, less than about 0.5, the greatest difference between
600 the impedance surface solution and the coated surface solu-
Yo = —Jj tan(vyaot)- (44) tion, is in the magnitude plot. The angle plots follow each

a

other fairly closely untilo is closer to 0.5 and then diverge
Fig. 4 is a comparison of the maximum magnitude of th@ramatically.

main lobe of the radiated fielf . (6) (42) as calculated using It is known that as the thickness of the coating increases the

the impedance surface solution and the coated surface solutiorpedance surface approximation becomes less accurate [14].

These quantities are plotted as a function of the normalizB&cause of this the two solutions diverge for larger values
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Fig. 5. The direction of the maximum magnitude E’L(G) for the coated surface solution and the impedance surface solution in radians as a function
of @. The parameters for the example plotted are, = 1, &, = 1, p,p = 1, and I = 1.
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Fig. 6. The maximum magnitude of the main IobeI&Sf;(G) for the coated surface as a function ®f The parameters for the example plotted in these
figures areprq = 1, 6,5 = 1, ppp = 1, t = 1 cm, I} = 1, I} = 0, I3 = 0, I} = 0.

of &. It is also known that as the dielectric constant of ththat the coated surface results and impedance surface results
coating becomes larger the impedance surface approximatioatch when the impedance surface approximation is valid.
becomes more accurate. Thus, fgr = 1.25 the impedance  Figs. 6 and 7 are plots, with respectdoof the maximum
surface and coated surface results diverge at abost0.1, value of the radiated field?.(6) and the direction of the

for .., = 4 they diverge at about = 0.3, and fore,., = 64 maximum lobe of the radiated field, respectively. The incident
they diverge at about = 0.5. It is important to note, though, field only consists of the T surface waveli* = 1. The
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1.4

Angle Of Maximum |[H,®) | (radians)

Fig. 7. The direction of the main-lobe maximum éf;,(e) for the coated surface as a function ®f The parameters for the example plotted in these
figures areprqe = 1,60 = 1, upp = 1, ¢t = 1 cm, [?¢ = 1, I} = 0, I3 = 0, I3 = 0.

003
o~

0.025—+-

0.03

Fig. 8. A polar plot of the radiation pattern. The parameters for the example plotted in these figudes=a®13, ¢, = 1.25, pr0 = 1, g0y = 1,
pey = 1,t = 1 cm, Iitc = 1, [ine = 0, 1ine = 0, Iine = 0.

other parameters for the plot ayg, = 1, &, = 1, 11, = 1, a narrow pattern primarily at small angles and dominates

andt = 1 cm. Curves for five different values af.,, 1.25, the radiation pattern. This small angle of radiation explains

2, 4, 16, and 64, are shown. why the direction of the maximum angle of radiation is
As in Fig. 3 foro < 0.5, the main-lobe maximum tendssmall near cutoff, as shown in Fig. 7. Betwegn= 0.5 and

to become smaller and the angle of the maximum radiatidn= 1.0 the behavior is a continuous transition between single

becomes larger as the frequency becomes higher.aFor mode behavior and the behavior just above cutoff. This could

1.0, however, higher order bound modes are excited by theobably be explained with a leaky wave model. Note further

discontinuity. For instance, the discontinuity causes cro#ist this behavior repeats itself ds passes through higher

coupling of energy between the TiMncident field and the order cutoff frequencies.

TM; field. This cross coupling is mathematically expressed The magnitude plot (Fig. 6) shows another interesting char-

in (36). Since both the Tyl and TM; fields exist in the acteristic. For small values of., (approximatelys,, < 2)

aperture, they both radiate into the regign> 0. Because the magnitude increases near higher mode cuta¥fs—=

the TM; field is less tightly bound near its cutoff, it radiated, 2,3,---, and for larger values of,, it increases midway
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between higher mode cutoffs. At intermediate values,Qf [2] V. H. Weston, “The effect of a discontinuity in curvature in high-

(approximatelye,, = 4) the magnitude increases both at ;rsgu%gy 1sgcgzttering,’1RE Trans. Antennas Propagatvol. 10, pp.
the mode cutoffs and midway between mode cutoffs. Thesg, , “The effect of a discontinuity in curvature in high-frequency

magnitude patterns are due to the phase relationships of the scattering—Part II,"IEEE Trans. Antennas Propagatcol. AP-13, pp.

] i Ui 611-613, July 1965.
fields at the aperture of the curvature discontinuity. [4] T.B. A Senior, “The diffraction matrix for a discontinuity in curvature,”
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