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Reducing the Phase Error for Finite-Difference
Methods Without Increasing the Order

John W. Nehrbass, Jovan O. Jéytand Robert LeeMember, IEEE

Abstract—The phase error in finite-difference (FD) methods is error causes a phase error as the wave propagates through the
related to the spatial resolution and thus limits the maximum grld gnd The propagating wave accumulates phase error at every
size for a desired accuracy. Greater accuracy is typically achieved grid point. Thus, this type of error can become a limiting factor

by defining finer resolutions or implementing higher order meth- f | ically | f . in hiah
ods. Both these techniques require more memory and longer or electrically large structures of geometries contain hig

computation times. In this paper, new modified methods are @ cavities. Typically, one reduces the numerical dispersion
presented which are optimized to problems of electromagnetics. error by either choosing a finer grid or a higher order FD

Simple methods are presented that reduce numerical phase error scheme. However, both finer grids and higher order schemes
without additional processing time or memory requirements. imply larger memory requirements and greater computation

Furthermore, these methods are applied to both the Helmholtz . . . .
equation in the frequency domain and the finite-difference time- fiMe. Relatively little effort has been devoted to the reduction

domain (FDTD) method. Both analytical and numerical results Of these errors by less costly and more innovative ways
are presented to demonstrate the accuracy of these new methods[11]-[14]. In this paper, we present a systematic approach to
Index Terms—eFinite-difference methods. modify traditional FD methods (in both the time and frequency
domains) to minimize the numerical dispersion error without
increasing the computation costs. Furthermore, we consider
. INTRODUCTION simple methods to reduce errors which occur at material
HERE exists a rich history of finite-difference (FD)interfaces.
techniques that have been applied to the disciplinesin the FD approximation of Maxwell's equations, the nu-
of mathematics and science. In essence, FD is a techniguoerical wave number is dependent on the grid spacing and
that replaces derivatives in a governing set of differentitthe physical wave number. In addition, the numerical wave
equations with difference approximations obtained by samumber is anisotropic, i.e., it is dependent on the direction
pling functions at discrete locations. The first electromagnetice wave propagates through the grid. When examining the
(EM) FD method was introduced to the electromagnetic®ntral difference approximation (Cartesian coordinates) of
community in 1966 by Yee [1] and was implemented in ththe Helmholtz equation, a numerical dispersion analysis for
time domain. Since this first introduction, the FD method has propagating plane wave reveals that the numerical wave
greatly matured and gained wide acceptance. While manyrmfmber is always greater than the physical wave number
the present electromagnetic (EM) FD techniques are adapfed all angles of propagation. This paper demonstrates that
from methods in other disciplines, this paper shows thby appropriately modifying the traditional central difference
these traditional methods can be greatly improved if they ageefficients of the Helmholtz equation approximation, the
optimized specifically for electromagnetic models. effects of numerical dispersion can be greatly reduced. In fact,
When one uses computational methods to study electthe coefficients are chosen such that the average phase error,
magnetic wave problems, the two major sources of error aseer all angles of propagation, is zero. This concept is also
boundary errors and numerical dispersion errors. Boundasytended to the finite-difference time-domain (FDTD) method.
errors are generated when changes in material properties ocisibbtain a zero average phase error at a specified frequency,
or when an artificial termination is placed at the outer boundattye wave velocity is changed such that the average numerical
of the problem domain. Even when boundaries contribute onljave number (over all propagation angles) is equal to the
a small fraction of the total problem, the contributing effectghysical wave number. With a judicious choice of frequency
can be significant. Over the past 30 years, a considerafde the optimization, we can obtain an improvement over a
amount of effort has been devoted to reducing the error |atge bandwidth. The beauty of this concept is that current FD
the outer boundary [2]-[8]; however, there has been very liti®des based on the traditional FD methods can be modified by
effort made to reduce the error caused by material boundarigfly changing one or two lines in the computer codes. Thus,
for electromagnetic problems. the vast wealth of FDTD tools developed over the past 30 years
Numerical dispersion error in finite methods has receivesén be significantly improved with only trivial modifications.
considerable attention [9], [10]. This numerical dispersion The remainder of this paper is organized as follows.
The next section presents optimal FD equations for the
Manuscript receiveq January 23, 19_97; revised December 29, 1997.  Helmholtz equation in one, two, and three dimensions. The
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is done for the two-dimensional (2-D) case. The derivation f f f
for the three-dimensional (3-D) case is straightforward; only A 8 é X
the final 3-D equations are presented. In addition to reducing ;’ o b

the phase error, we present a scheme for matching the FD _ _ ' '
equations at 2-D material boundaries. These ideas are di§p!- A three-point stencil for a 1-D problem using a regular grid.
extended to the FDTD method. Finally, numerical verifications

are presented along with some conclusions. central difference approximation. The new FD approximation
of the Helmholtz equation can now be approximated as
Il. OPTIMAL FINITE-DIFFERENCE EQUATIONS fi+ fo—(w— k2R fy  2coskh — (w — k2h2)
FOR THE HELMHOLTZ EQUATION % = % (A+ B)
()

A. The 1-D Helmholtz Equation

Consider the 1-D Helmholtz equation applied to a homog
neous medium in the absence of boundaries, given by

nd is identically satisfied whemw = k2h? + 2 cos(kh).
ote that by merely changing the normalized center node
differencing coefficient fron2to 2 cos(kh) + k*h?, the new

d?f(x) 2 0 (1) approximation becomes numerically dispersionless.
dz2 +hf(2) = Comparing the two center node differencing coefficients
wherek is the wave number. Traditionally, the finite difference  Standard FD center coefficietw)2 (8)

approximation of the above equation is achieved by replac- Corrected ED center coefficiefits) 2 LR + E2h2
ing the second-order derivative with the central difference ()2 cos(kh) +

_ 4
approximation which is given as =2+ 0(h%) ©)
Y flz+h)—2f(x)+ f(z—h) one notices that they differ only in the fourth-order term. The
() = n2 : (2)  corrected FD method achieves a more accurate solution than

I . h N the conventional method by reducing the numerical dispersion
Substituting (2) into (1) produces the FD approximation Qlgects- therefore, in the rest of this paper, we will refer to this
the Helmholtz equation given as new method as the reduced dispersion (RD) FD method in the

d? f(z) y f1+ fa— (2= K2R3 f, frequency domain and RD FDTD in the time domain.
< dz2 +k f($)> = h2 Motivated by the above analysis, we seek to develop a FD
#=0 +O(h?) 3) approximation for the Helmholtz equation which has better

accuracy than the standard central difference approximation
where fo, f1, and f, are the values of (z) sampled at the for_ wave problems in 2-D and 3-D. In achieving the_se goals,
locations as shown in Fig. 1. Notice that this provides ' IS desirable to keep the same number of sampling nodes
second-order accurate solution. Further/if:) represents a with the same formulation, change only the center stencil FD
Taylor series expansion of an arbitrary function, the abow@efficient, reduce the discretization and numerical dispersion
provides the most accurate approximation of the Helmhof®for, and maintain second order accuracy. The next two
equation while samplingf(z) at only three discrete loca- sections present solutions for the optimal coefficients required
tions. This approximation however does suffer from numericl theé 2-D and 3-D FD approximations of the Helmholtz
dispersion errors. If one now usespriori information by €duation.
assumingf(z) to be equal to the general solution of the 1-D _
Helmholtz equation, given as B. The 2-D Helmholtz Equation
ik In this section, a 2-D wave problem for a homogeneous
_ jkx jkx ’
f(z) = Ae”™ + Be (4) medium in the absence of boundaries is considered. This

a more accurate approximation can be obtained. InsteadP&pblem is modeled by the 2-D Helmholtz equation and is
using the central difference approximation for the second-ord@¥€n as

derivative, let us approximaté”(z) as 9?2 9?2
() m L) w0l @)+ fw = 1) Z 2z
h? where againk is the wave number. For this problem it is
_ 2cos(kh) —w F(x) 5y helpful to consider the standard five-point stencil in 2-D as
h? illustrated in Fig. 2. We can study numerical dispersion effects
where the coefficientw is to be optimized. The analytical Py launching a plane wave into the computation domain and
solution of f”(x) is predicting how well the numerical method models the plane
wave. Using the standard central difference approximation
F'(@) = =k f(2). (6) (w = 2) for both second order derivative®%/9z* and

8% /0y?) and exciting the region by the plane wave
Therefore, we observe that for this case, an optimal value of/ v g g y P

w is w = 2 cos(kh) + k2h? and notw = 2 as was used in the fla, y) = k(@ cos bty sinf) (11)
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Fig. 2. A five-point stencil for a 2-D problem using a regular grid.
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yields the relationship

an(‘Tv y) an(‘Tv y) k2 y=0 .
922 + ayQ + f(x’ y) |x=0 Fig. 3. Standard and corrected phase error for a plane wave wrsus

it ot fat+ fa— (4= KR fo
+Res (12)
o Solving forw in the above, one can compare the two center

h?
where fo, f1, f2, f3, and fy are the values of the plane WavenOOIe coefficients for the 2-D case

sampled at the locations as defined in Fig. 2. The 2-D case Standard FD center coefficietw)4 (19)
produces a second-order accurate residual term given as Corrected FD center coefficiefits) 4Jo(kh) + k*h?
_ 2cos(khcos®) + 2cos(khsinf) — (4 — k*h?) =4+ O(h*) (20)

Res(6) 2

(13) Wwhere Jo(x) is the zeroth-order Bessel function of the first
kind. Once again, they differ in only the fourth-order term.
which can be expanded as Notice that the residual term associated with the RD FD

method (Res’
Res(8) = O(h%) = Ry + Ry cos(46) + Ro cos(8% 6) + - --. (Res)

(14) Res’(ﬁ) = O(hQ) = Ry cos(46) + Ra cos(86) +---  (21)

The application of (12) implies that the condition has no isotropic compone(i;). Fig. 3 graphically illustrates
the improvement. Notice that in addition to reducing the phase
fitfotfatfai—(E—Ehr)fo=0 (15) error for all angles of incidence, we have introduced twice

) o ) as many zero crossings. In other words, the phase error will
must be ideally satisfied for some numerical plane wave  pecome minimized twice as often in the corrected case as for
the standard case. Furthermore, the phase error has now both a
positive and negative component, thus allowing the possibility
The percent error in magnitude of the numerical plane wa®é error cancellation instead of an absolute cumulative error.
without boundary conditions is very small. A more significant _
factor is the difference in phase between the numericaly. The 3-D Helmholtz Equation
phase error in degrees per wave length is defined as the absence of boundaries is considered by using the 3-D

Phasé f(\)) — Phasef())) = 360+ (1 — k/k).  (17) Helmholtz equation, given as

2 2 _

Notice that the residual term, and thus the phase error per Vi@ g, 2) By, 2) =0 (22)
wavelength, is now anisotropic with respect to how the wavghere is the wave number. Applying the modified second-
propagates through the grid. order accurate CD approximation to the Laplacian operator

Like the 1-D case, we seek to reduce the phase error \j¢Ids the FD approximation
using the modified CD equation and optimizing Notice )
that we only modify the central nodg,) weight, as allowing ~ Vi/ (%, 4, 2) =[f( +h, y, 2) + f(& = h, y, 2)

~

f(.’IZ', y) — Aeﬂ;(ac cos 8+y sin@). (16)

the weights on the other nodég; f>f3f1) to be dissimilar + flax,y+h,2)+ f(z,y—h, 2)
would imply a biased direction of propagation. Since the 2-D + flx+h, y, 2+ h)+ flz, y, z— h)
phase error is now anisotropic, no choicexofvill completely 1

remove its effect. One can however remove the isotropic —wf(z,y, Z)]ﬁ- (23)

part of the residual o) by a proper choice ofw, which

is equivalent to minimizing the average phase error over &lince a plane wave traveling at an any arbitrary argley)
possible angles. To findh, we must solve exactly solves (22), the error associated with the FD approx-

) imation can be minimized by selecting «a such that the

/ 2[cos(kh cos 6) + cos(kh sin6) — (w — k>h?/2)] db average error over all ang_lgé, ¢) for a pla}ne wave is zero.
0 When comparing the traditional central difference coefficient
=0. (18) to the optimal coefficient for a 3-D plane wave that propagates
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in an unbiased direction, we again notice changes in the fourth
order:
Standard central difference coefficignt)6 (24)
Corrected coefficientw)6;o(kh) + k*h?
=6+ O(h*). (25)

jo is the zeroth-order spherical Bessel function of the first
kind. Notice that for all three dimensions, the new optimizedg- 4. Edge boundary value problem.
coefficient used in approximating the second-order derivative

converges to the conventional coefficientds — 0. Thus \yhereas for the TE casél(, E.., andE,), we apply continuity
the numerical solution converges to the exact solution Wity g directly and continuity of the tangential electric field
second-order accuraa9(h?): through a proper specification on the normal derivativéiof
(26)Thus, continuity of eithet®, or H, implies that4, = By,
Ag = By, andAg = Bs.
A second-order accurate difference equation is needed to
solve for the normal derivative at the boundary. The analytical

New CD weight Conventional CD weight

3D casew = (kh)? + 65o(kh) Jim w =6

2D casew = (kh)? + 4Jo(kh) lim w =4 solution for the derivative of a plane wave is given as
kh—0
1D casew = (kh)? + 2 cos(kh) lim w=2 (27) aﬁeﬂf"'m = jkyodBH) (30)
i y
while the general numerical FD approximation may be found

I1l. M ATERIAL INTERFACES as

In conventional methods, modeling the boundary between ) ) s
two dissimilar materials presents particular difficulties. WhenaAz + bAg + dAy = (ac™ " 4+ b+ de*o*) /B (31)
a Sa”?p"”g node lies on the boundary between two d'ﬁ?ref]ﬁe numerical solution matches the analytical solution “clos-
materials one must dgclde yvhgt vaIue_to use for tr_le constitu@l, | hena — —d andb = 0 which gives a residuaR(6)
parameters at the discontinuity. Typically, a weighted valur%I ation of
of the two materials is used, however this weighting reduces
second-order accurate methods to locally first-order accurate R(0) = ky, — 2dj sin(k,h). (32)
methods. This has the same effect as introducing artificial . ) ) .
reflections or placing an artificial source at the material digNc€%y = ksin(#) is a function of angle, and in general a
continuity. Since any error generated locally transmits throudffve May propagate in any direction without preference, the
and reflects from the discontinuous material boundaries,otimal value ofd is calculated by minimizing the residual as
contaminates the entire solution. 2 ]

In the RD FD method the boundaries are handled in a /0 R(8) sin 6d. (33)
special way that reduces the significance of these boundary
generated errors. Consider the 2-D boundary value problemldte sin(#) weight is chosen since the analytical solution has
Fig. 4 in which two different materialé 1, 11, andep, up) a sin(f) variation. Solving (33) gives a value of
are present. The concept of virtual nodes is used to handle k;
the discontinuity. The material is first virtually extended so d; = m
that it “appears” homogeneous as looking from each dielec-

tric material. Modeling each material separately yields théhereJi(x) is a first-order Bessel function of the first kind.
equations Using the above and enforcing the continuity of normal

directives, we obtain

TE caseupda(Ay — Az) = padp(By — Ba)
™ casechA(A4 — AQ) = CAdB(B4 — BQ). (35)

(34)

0= [Al + Ao+ Az + Ay — 4]0(]64}1)140] (28)
0 =[B1 + Bz + B3+ By — 4Jo(kgh)B] (29)

where ky = wy/pacs and kg = wy/nupep are the wave
numbers of the respective materials atgd B;, andf; are the
function values sampled at the locations as depicted in Fig.
Notice that these two equations are both second-order accurate, 0 — (w4 + wg)(f1 + f3) + 2wp fo + 2w fu
however there are now ten nodes used to model the problem

Combining all of the above vyields the desired difference
efuation as

when five were originally used. By enforcing continuity of the — dwpdo(kph) +wado(kah)) fo (36)
tangential electric and magnetic field values, one can derive bk

a single governing difference equation requiring five node TE casew; = ————

values. In the TM casef(., H,, andH,), we apply continuity A1 (kih) e

of E. directly and continuity of the tangential magnetic field TM casew; = hk; (37)

through a proper specification on the normal derivativé&of 40y (kih)e;
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Fig. 7. Phase error for different grid resolutions.

wherew is the angular frequency of the wave. For a uniform
mesh and a plane wave traveling at an arggWeith respect to
the grid (see Fig. 7) the numerical solution is

E= (§ cos @ — & sin 9)6”““” cos(@)ty sin(9)) gjonat (40)

where the 2-D wave numbeksandk are related by the FDTD
transcendental dispersion equation [15]

2

7 sin? <LAt> = sin? <ﬁfc cos 9) + sin? <ﬁfc sin 9)

Fig. 6. Solution for a corner value problem. At2y? 2 2 2
(41)

The final solution preserves the physical relations but becomelsere
first-order accurate. This accuracy is greatly improved com- At discrete time step size;
pared to the conventional method. Since it has already been, — 1/\/fe velocity of the wave;
shown that the coefficients for (28) and (29) are optimal, we j, numerical wave number.

will |Ilust_rate the d|ﬁgr_ence obtained for dlelectrlc_ |_nterface§n order to guarantee numerical stability, the Courant stability
when using the coefficients of (37) versus the traditional val ®ndition requires

of two. Fig. 5 shows the error obtained for both polarizations
when a plane wave is incident at a dielectric boundary at At < h (42)
some angled. The error is defined as the absolute value of ~ v/Np
the difference between tr_le complex rgferen(_:e squFion and _Wﬁere Np is the spatial dimension. For 2-DV = 2) the
complex calculated solution. As we will see in Section V, th'auantity VU is defined as
error may be the dominant one in the solution.

This idea is extended to corner boundary value problems. U — vat 2 (43)
Fig. 6 illustrates a corner where four different dielectrics com- K
bine. By enforcing continuous tangential fields between adjaith the condition0 < ¥ < 1 satisfying numerical stability
cent materials, the following difference equation is formed: requirements. Using the above, the dispersion relationship in

2-D is rewritten as

0 =(wa +wB)fz + (wp +we) f2 + (we +wp) fr 9 b -
+ (wp +wa)fi — 2lwado(kah) +wpJo(kph) 2 sin® <E 2) = sin® <_ 7.7 cos 9)
—‘erJ()(l{Jch) +wDJO(/€Dh)]f0. (38)

+ sin? h EW sin 6 (44)
The extension to 3-D can be similarly derived. Ak ’
The phase error, which is/2 periodic, is illustrated in
IV. OPTIMAL FDTD COEFFICIENTS Fig. 7 for various spatial resolutions. When solving the tran-

In this section we use the FDTD method to approximagcendental equation (44) férat a given angle € [0, 7 /2]
our solution. The first part of this study concentrates o€ may observe that the best results are always obtained at
optimizing the FDTD coefficients at a single frequency. Th& = 7/4, while the worst results are obtained tat= 0 and
effects of these changes over a band of frequencies is thef?- R
discussed. Consider a 2-D TM polarized steady state planelhe dispersion equation is exactly solveld = k) when
wave propagating in free space in the absence of boundéry 7/4 and ¥ = 1. At all other angleg/ and values of?,

conditions. The analytical solution, assuming=ap(jwt) time the numerical value of exceeds the physical value. The effect
variation, is of lowering+ causes the phase error curve to shift even farther

. ' . ' from zero. Sincefc/k > 1 for all 8, it is desirable to lower the
E = () cosf — & sin §)e M@ cos(®)Fy sin(8)) it (39)  numerical wave number such that the average value over all
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@ is equal to the physical wave numbéy).(Ideally, we want 0.30 . No Boundary Correction

to shift the phase error curve to have a zero average value.ss.. s BRI | 7 Boyndary Correction ?
Observe that we can reduce th&) relation by replacing Wetzen0 025 f\ !
the numerical value used to approximatewith a slightly - w=920 T o0 ’\ ﬂ\ \ ‘ l\_
larger numerically compensated propagation velogityas M0 6‘ o N,. \ ,‘\ ;/ \
u GOIs I b N

Ve = UpV. 45 - n Hlpsesam P \ | | U AA ?
T (45) — 0.10 ,‘[\\f R M\ f\/ It

. . . . N AR R PR R Y

The optimal value of. is chosen such that the new dispersion | I”“ L, oos Il V CYL \[ ) \
curve k.(6) is equal tok in the average sense, i.e., —_— L221620 ﬂrdwhw%ﬂ, -“%.\?i
L g e | 000 ™02 04 06 08 1

k ]A{c(g) do. (46) u Normalized Circumfrence (x)

T or
T Jo Fig. 8. Errors observed along the scatterer’s boundary.
Note that by increasing to v., the dispersion curve is not
only shifted, but its shape becomes slightly more isotropic. It . , ,
can be shown that for a grid spacing @/ < 1/5), v, can the interface, we use the special FD equation developed in

be found in closed form as Section [lII. _
Fig. 8 illustrates the error generated when calculating the

. wiph results for these three cases. The error is defined as the absolute
V2 ; :
V2 value of the difference between calculated and reference field
L L : values. In the figure, the error is plotted versus the normalized
z/)\/sin2 <_7r cOS 9) + sin? <_7r sin 9) circumference around the boundary of the scatterer. Starting at
A A o=r/8 the lower right corner of the scatterer = 0), and proceeding
(47)  clockwise around circumference of the scatterer, the results are
Similarly, a closed form solution for the 3-D case can be fourigentified and the errors calculated.

as shown in (48) at the bottom of the page. Although the aboveThe value of the solution on the surface of this dielectric
relations are derived at only a single frequency, the phase ers@icture is between zero and two; therefore, it is clear that

”U,,, =

is reduced over a wide bandwidth. there is significant error when the standard FD method is
used. From the figure, it is also apparent that the solution is

V. NUMERICAL VERIFICATIONS only somewhat improved when the homogeneous Helmholtz

difference equation is corrected and vastly improved when the

A. Helmholtz Scattering Example boundary finite difference equations are also corrected. In the

réext section we illustrate how these concepts can be applied

This section is intended to provide further support for th the time-domain formulations.

previously derived statements. The first example we consiégr
is a dielectric cylinder . = 4) in the shape of a cavity
(Fig. 8). The cylinder is excited by a TE-polarized plane wavd FDTD Corrected Examples

traveling to the right with the incident fieldd! having a In this section the effects of correcting the FDTD equations
magnitude of one. First-order absorbing boundary conditioase demonstrated. Two different examples are chosen to help
are placed along the truncation boundaries. The magnetigoport the concepts presented thus far. In the first example,
field H, is calculated and compared to a reference solutiom,parallel plate wave guide filled with free space (see Fig. 9)
which is obtained with a fine spatial resolution of 40 nodes used. A TE modulated Gaussian pulse is launched at the
per freespace wavelength. The results are then recalculad@eéning of the wave guide where the field values are calculated
by three different methods. For each of these methods, thethe center of the waveguide, 5 cm from the opening. For
spatial resolution is reduced to only 20 nodes per freespabes problem the cell size is chosen to b¢h = 12 at 6
wavelength. In the first method, we use the central differen@Hz. Both the standard FDTD method and the RD FDTD
weights as applied to the Helmholtz equation. In the secomtethod are for 6 GHz. The phase errors per wavelength in the
method the corrected RD weights are used at all the nodes wstilution for these two method are illustrated in Fig. 9. At the
no special treatment done at the dielectric interfaces (mateudasign frequency of 6 GHz, the corrected method shows over
properties at the interface are averaged). In the third methadthree times reduction in phase error. At lower frequencies,
we continue to use the corrected weights when we are ma¢ notice that the new method does better than the standard
considering the nodes at the dielectric interfaces; however, foethod up to a certain frequency. At this frequency and lower

p=4mw /27

(i)

z/)\/sin2 <§7r cos 9) + sin? <§7r sin § cos d)) + sin? <§7r sin € sin d))
6=r/8

(48)

”U,,, =
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A/ h=12 at 6 GHz .
w=2/3
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Froquency (GHz) Fig. 11. Transmission coefficien,;, for a dielectric block placed in a

Fig. 9. A comparison of the phase error per wavelength generated wiRayallel plate waveguide. The dashed line represents the reference solution.
calculating for the fields inside a parallel plate waveguide. The solid lines represent the absolute value of the difference between the
computed solution and the reference solution.

Is11)
T

Gaussian pulse whose parameters are chosen such that there
is significant spectral content from dc to 4 GHz. The excitation
is assumed to be a TEM wave. As the pulse hits the dielectric
: L » block, energy is scattered in all directions and the reflected
uz_vké.f;réﬁ;...ﬁéd ............... — R e /-1 and transmitted waves are no longer TEM. We next recompute
e T T A O A A N the reflection and transmission coefficiets and.S,; using
spatial resolutions of/15 and A\/30 at 4 GHz for both the
FDTD method and the RD FDTD method. We can obtain a
good approximation of the error by taking the absolute value
of the difference of each method with the reference solution
: over a frequency range from dc to 4 GHz as shown in Fig. 11.
° ' T e 0 ¢ *  As expected, the RD FDTD method gives better results
Fig. 10. Reflection coefficier;; for a dielectric block placed in a parallel than the FDTD method for both spatial resolutions near the
plate waveguide. The dashed line represents the reference solution. The sgéigsign frequency of 4 GHz. The RD FDTD method also
'S'gleustigf]p;ze?r:etr'rzf:gioc':tio‘ﬁt'i‘éi.Of the difference between the compyledas petter results at lower frequencies down to at least 2
GHz. Below 2 GHz the two methods vary in which method

. . graduces less error; however, notice that the magnitude of the
in the spectrum, for these angles of propagation, the standar X
rors at the lower frequencies are much smaller and thus less

el
method does better. However, the phase error of the corrected .. . .
! |%n|f|cant. Also observe that the improvement is better for
method never exceeds the maximum phase error generateﬁ1 t o - : -

. ."the transmission coefficient than for the reflection coefficient
the design frequency. Also, recall that at lower frequenme&, .

. . e to the fact that we evaluafs, at a location farther from
waves travel shorter distances with respect to the wavelen )
and therefore errors at lower frequencies are not expecte(%l
be as significant.
The geometry chosen for the second example is shown in

Fig. 11. Since phase error accumulates as the wave propagates, V1. COMPUTATIONAL SAVINGS
the improvement can be better appreciated for electricallyOne can view the effect of the reduced dispersion scheme
large structures. For this example, a simple dielectric blockiis two ways. The first is to compare the accuracy that one
placed symmetrically inside the center of a 5-cm-wide parallebtains with the improved method over the original method
plate waveguide filled with free space and the reflectton when both are applied to the same grid. The second way is
and transmissiory,; coefficients are calculated. The relativeéo determine the computational savings that one obtains with
dielectric constant of the block is chosen gs = 4. The the new method relative to the old for a given accuracy. The
length and width of the block is fixed at 50 and 2 cmijrst approach is presented in the previous section. The second
respectively, which is equivalent to 6.7 and 0.27 free-spaapproach is presented in this section.
wavelengths at 4 GHz. A ten-cell-thick parabolic conductive Let us consider the finite difference frequency domain
profile PML absorber is placed at each end port in order toethod. For the 2-D case, the RD FD method with a grid
truncate the problem domain. Without the dielectric blockpacing of\/8 produces the same average phase error as the
present, reflections from the PML absorber are observedstandard FD method with a grid spacing’of20. The memory
be at least 80 dB below the incident wave. A referen@avings is approximately a factor of 6.25. The speedup in
solution for this problem is calculated with a spatial resolutiocomputation time is dependent on the matrix method used.
of A/h = 60 at 4 GHz. The structure is illuminated by aFor a direct sparse solver, the computational complexity for

0.3F

0.25

Magnitude

R E R

8 excitation thanS;;, thus giving the wave more distance
0 accumulate phase error.
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2-D problems isN!> where N is the number of unknowns, [4] R. Higdon, “Absorbing boundary conditions for difference approxima-

while for an iterative solver such as the conjugate gradient tions to the multidimensional wave equatioMath Comp.vol. 47, pp.
N o nal ox h : 437-459, Oct. 1986.
method, the computational complexity A where M is [5] Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting

the number of iterations needed for the solution to converge. boundary for transient wave analysi§tientia Sinica (Ser. Ayol. 27,

In generalM is dependent odV. For the direct and iterative . PP. 1063-1073, Oct. 1984. .
- e [6] J. Berenger, “A perfectly matched layer for the absorption of electro-
solver, we expect the RD FD method to b&and6.25P times magnetic waves,'Computational Phys.yol. 114, pp. 185-200, Oct.

faster, respectively, than the conventional FD method, where 1994.

. . . . 7] W.C.Chew and W. H. Weedon, “A 3-D perfectly matched medium from
P is the ratio of the number of iterations of the new metho modified Maxwell's equation with stretched coordinatellicrowave

over the number of iterations for the conventional FD method.  opt. Technol. Lett.yol. 7, pp. 599-604, Sept. 1994,
For the 3-D case, the RD FD method with a grid spacing of] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly

matched anisotropic absorber for use as an absorbing boundary condi-
A/11 produces the same average phase error as the CONVEN- ion » |EEE Trans, Antennas Propagatiol, 43, pp. 1460-1463, Dec.

tional FD method with a grid spacing of/20. The memory 1995,

savings is approximately a factor of 6. For the 3-D case th&®! R. Lee and A. C. Cangellaris, “A study of discretization error in the
. | lexi fthe i . hod . h finite element approximation of wave solutiontEE Trans. Antennas
computational complexity of the iterative method remains the Propagat.,vol. 40, pp. 542-549, May 1992.

same; however, the computational complexity of the direfto] A. C. Cangellaris and R. Lee, “On the accuracy of numerical wave

- 2 i simulations based on finite methods,”Electromagn. Waves Applicat.,
solver is nowN ._Thus, the computz_:ltlonal speedup of_ the RD vol. 6 no. 12, pp. 1635-1653, 1993,
FD method relative to the conventional FD method is 36 fqi1] A. Taflove, Computational Electrodynamics the Finite-Difference Time-

the direct sparse solver agd® for the iterative solver. Domain Method. Norwood, MA: Artech House, 1995.

. o : 2] J. B. Cole, “A high accuracy FDTD algorithm to solve microwave
A similar analysis is carried out for the FDTD method at* bropagation and scattering problems on a coarse gHEEE Trans.

¥ = 0.5 and at the frequency for which the reduced dispersion  Microwave Theory Techyol. 43, pp. 2053-2058, Sept. 1995.
optimization is done. For the 2-D case, the RD FDTD methdd?3l , “A nearly exact second-order finite-difference time-domain wave
. . . ' propagation algorithm on a coarse gridGomput. Phys.yol. 8, no. 6,

with a grid spacing _of>\/9 produces the same average phase pp. 730-734, 1994,

error as the conventional FDTD method with a grid spacing @f4] M. F. Hadi, M. Piket-May, and E. T. Thiele, “A modified FDTD

A/20. The memory and computational savings are a factor of 9 (24) scheme Ig[hm:gr?"”gRg'ecg:gg'r'é’sfrgzpslt”éccf“mrgstwgregtirgohmggise
. uracy,” i u. V. . ut. Y

ar_ld 11, r_espectl_vely. For the 3-D case, the RD FDTD method Monterey, CA, Mar. 1996, vol. 2, pp. 1023-1030.

with a grid spacing of\/12 produces the same average phages] K. S. Kunz and R. J. Luebberghe Finite Difference Time Domain

error as the conventional FDTD method with a grid spacing Method for Electromagnetics.Boca Raton, FL: CRC, 1993.

of A/20. The memory and computational savings are a factor

of 4.6 and 7.7, respectively.
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