
1194 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 8, AUGUST 1998

Reducing the Phase Error for Finite-Difference
Methods Without Increasing the Order

John W. Nehrbass, Jovan O. Jevtić, and Robert Lee,Member, IEEE

Abstract—The phase error in finite-difference (FD) methods is
related to the spatial resolution and thus limits the maximum grid
size for a desired accuracy. Greater accuracy is typically achieved
by defining finer resolutions or implementing higher order meth-
ods. Both these techniques require more memory and longer
computation times. In this paper, new modified methods are
presented which are optimized to problems of electromagnetics.
Simple methods are presented that reduce numerical phase error
without additional processing time or memory requirements.
Furthermore, these methods are applied to both the Helmholtz
equation in the frequency domain and the finite-difference time-
domain (FDTD) method. Both analytical and numerical results
are presented to demonstrate the accuracy of these new methods.

Index Terms—Finite-difference methods.

I. INTRODUCTION

T HERE exists a rich history of finite-difference (FD)
techniques that have been applied to the disciplines

of mathematics and science. In essence, FD is a technique
that replaces derivatives in a governing set of differential
equations with difference approximations obtained by sam-
pling functions at discrete locations. The first electromagnetic
(EM) FD method was introduced to the electromagnetics
community in 1966 by Yee [1] and was implemented in the
time domain. Since this first introduction, the FD method has
greatly matured and gained wide acceptance. While many of
the present electromagnetic (EM) FD techniques are adapted
from methods in other disciplines, this paper shows that
these traditional methods can be greatly improved if they are
optimized specifically for electromagnetic models.

When one uses computational methods to study electro-
magnetic wave problems, the two major sources of error are
boundary errors and numerical dispersion errors. Boundary
errors are generated when changes in material properties occur
or when an artificial termination is placed at the outer boundary
of the problem domain. Even when boundaries contribute only
a small fraction of the total problem, the contributing effects
can be significant. Over the past 30 years, a considerable
amount of effort has been devoted to reducing the error at
the outer boundary [2]–[8]; however, there has been very little
effort made to reduce the error caused by material boundaries
for electromagnetic problems.

Numerical dispersion error in finite methods has received
considerable attention [9], [10]. This numerical dispersion
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error causes a phase error as the wave propagates through the
grid. The propagating wave accumulates phase error at every
grid point. Thus, this type of error can become a limiting factor
for electrically large structures of geometries contain high

cavities. Typically, one reduces the numerical dispersion
error by either choosing a finer grid or a higher order FD
scheme. However, both finer grids and higher order schemes
imply larger memory requirements and greater computation
time. Relatively little effort has been devoted to the reduction
of these errors by less costly and more innovative ways
[11]–[14]. In this paper, we present a systematic approach to
modify traditional FD methods (in both the time and frequency
domains) to minimize the numerical dispersion error without
increasing the computation costs. Furthermore, we consider
simple methods to reduce errors which occur at material
interfaces.

In the FD approximation of Maxwell’s equations, the nu-
merical wave number is dependent on the grid spacing and
the physical wave number. In addition, the numerical wave
number is anisotropic, i.e., it is dependent on the direction
the wave propagates through the grid. When examining the
central difference approximation (Cartesian coordinates) of
the Helmholtz equation, a numerical dispersion analysis for
a propagating plane wave reveals that the numerical wave
number is always greater than the physical wave number
for all angles of propagation. This paper demonstrates that
by appropriately modifying the traditional central difference
coefficients of the Helmholtz equation approximation, the
effects of numerical dispersion can be greatly reduced. In fact,
the coefficients are chosen such that the average phase error,
over all angles of propagation, is zero. This concept is also
extended to the finite-difference time-domain (FDTD) method.
To obtain a zero average phase error at a specified frequency,
the wave velocity is changed such that the average numerical
wave number (over all propagation angles) is equal to the
physical wave number. With a judicious choice of frequency
for the optimization, we can obtain an improvement over a
large bandwidth. The beauty of this concept is that current FD
codes based on the traditional FD methods can be modified by
only changing one or two lines in the computer codes. Thus,
the vast wealth of FDTD tools developed over the past 30 years
can be significantly improved with only trivial modifications.

The remainder of this paper is organized as follows.
The next section presents optimal FD equations for the
Helmholtz equation in one, two, and three dimensions. The
one-dimensional (1-D) case is presented to demonstrate the
concepts which motivated this paper. The major derivation
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is done for the two-dimensional (2-D) case. The derivation
for the three-dimensional (3-D) case is straightforward; only
the final 3-D equations are presented. In addition to reducing
the phase error, we present a scheme for matching the FD
equations at 2-D material boundaries. These ideas are also
extended to the FDTD method. Finally, numerical verifications
are presented along with some conclusions.

II. OPTIMAL FINITE-DIFFERENCEEQUATIONS

FOR THE HELMHOLTZ EQUATION

A. The 1-D Helmholtz Equation

Consider the 1-D Helmholtz equation applied to a homoge-
neous medium in the absence of boundaries, given by

(1)

where is the wave number. Traditionally, the finite difference
approximation of the above equation is achieved by replac-
ing the second-order derivative with the central difference
approximation which is given as

(2)

Substituting (2) into (1) produces the FD approximation of
the Helmholtz equation given as

(3)

where and are the values of sampled at the
locations as shown in Fig. 1. Notice that this provides a
second-order accurate solution. Further, if represents a
Taylor series expansion of an arbitrary function, the above
provides the most accurate approximation of the Helmholtz
equation while sampling at only three discrete loca-
tions. This approximation however does suffer from numerical
dispersion errors. If one now usesa priori information by
assuming to be equal to the general solution of the 1-D
Helmholtz equation, given as

(4)

a more accurate approximation can be obtained. Instead of
using the central difference approximation for the second-order
derivative, let us approximate as

(5)

where the coefficient is to be optimized. The analytical
solution of is

(6)

Therefore, we observe that for this case, an optimal value of
is and not as was used in the

Fig. 1. A three-point stencil for a 1-D problem using a regular grid.

central difference approximation. The new FD approximation
of the Helmholtz equation can now be approximated as

(7)

and is identically satisfied when .
Note that by merely changing the normalized center node
differencing coefficient from to , the new
approximation becomes numerically dispersionless.

Comparing the two center node differencing coefficients

Standard FD center coefficient (8)

Corrected FD center coefficient

(9)

one notices that they differ only in the fourth-order term. The
corrected FD method achieves a more accurate solution than
the conventional method by reducing the numerical dispersion
effects; therefore, in the rest of this paper, we will refer to this
new method as the reduced dispersion (RD) FD method in the
frequency domain and RD FDTD in the time domain.

Motivated by the above analysis, we seek to develop a FD
approximation for the Helmholtz equation which has better
accuracy than the standard central difference approximation
for wave problems in 2-D and 3-D. In achieving these goals,
it is desirable to keep the same number of sampling nodes
with the same formulation, change only the center stencil FD
coefficient, reduce the discretization and numerical dispersion
error, and maintain second order accuracy. The next two
sections present solutions for the optimal coefficients required
in the 2-D and 3-D FD approximations of the Helmholtz
equation.

B. The 2-D Helmholtz Equation

In this section, a 2-D wave problem for a homogeneous
medium in the absence of boundaries is considered. This
problem is modeled by the 2-D Helmholtz equation and is
given as

(10)

where again, is the wave number. For this problem it is
helpful to consider the standard five-point stencil in 2-D as
illustrated in Fig. 2. We can study numerical dispersion effects
by launching a plane wave into the computation domain and
predicting how well the numerical method models the plane
wave. Using the standard central difference approximation
( ) for both second order derivatives ( and

) and exciting the region by the plane wave

(11)
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Fig. 2. A five-point stencil for a 2-D problem using a regular grid.

yields the relationship

(12)

where , and are the values of the plane wave
sampled at the locations as defined in Fig. 2. The 2-D case
produces a second-order accurate residual term given as

(13)

which can be expanded as

(14)

The application of (12) implies that the condition

(15)

must be ideally satisfied for some numerical plane wave

(16)

The percent error in magnitude of the numerical plane wave
without boundary conditions is very small. A more significant
factor is the difference in phase between the numerically
calculated wave and the analytical wave. In this paper, the
phase error in degrees per wave length is defined as

Phase Phase (17)

Notice that the residual term, and thus the phase error per
wavelength, is now anisotropic with respect to how the wave
propagates through the grid.

Like the 1-D case, we seek to reduce the phase error by
using the modified CD equation and optimizing. Notice
that we only modify the central node weight, as allowing
the weights on the other nodes to be dissimilar
would imply a biased direction of propagation. Since the 2-D
phase error is now anisotropic, no choice ofwill completely
remove its effect. One can however remove the isotropic
part of the residual ( ) by a proper choice of , which
is equivalent to minimizing the average phase error over all
possible angles. To find , we must solve

(18)

Fig. 3. Standard and corrected phase error for a plane wave versus�.

Solving for in the above, one can compare the two center
node coefficients for the 2-D case

Standard FD center coefficient (19)

Corrected FD center coefficient

(20)

where is the zeroth-order Bessel function of the first
kind. Once again, they differ in only the fourth-order term.
Notice that the residual term associated with the RD FD
method

(21)

has no isotropic component . Fig. 3 graphically illustrates
the improvement. Notice that in addition to reducing the phase
error for all angles of incidence, we have introduced twice
as many zero crossings. In other words, the phase error will
become minimized twice as often in the corrected case as for
the standard case. Furthermore, the phase error has now both a
positive and negative component, thus allowing the possibility
of error cancellation instead of an absolute cumulative error.

C. The 3-D Helmholtz Equation

The 3-D wave problem for a homogeneous medium in
the absence of boundaries is considered by using the 3-D
Helmholtz equation, given as

(22)

where is the wave number. Applying the modified second-
order accurate CD approximation to the Laplacian operator
yields the FD approximation

(23)

Since a plane wave traveling at an any arbitrary angle
exactly solves (22), the error associated with the FD approx-
imation can be minimized by selecting a such that the
average error over all angles for a plane wave is zero.
When comparing the traditional central difference coefficient
to the optimal coefficient for a 3-D plane wave that propagates
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in an unbiased direction, we again notice changes in the fourth
order:

Standard central difference coefficient (24)

Corrected coefficient

(25)

is the zeroth-order spherical Bessel function of the first
kind. Notice that for all three dimensions, the new optimized
coefficient used in approximating the second-order derivative
converges to the conventional coefficient as . Thus
the numerical solution converges to the exact solution with
second-order accuracy :

New CD weight Conventional CD weight (26)

3D case

2D case

1D case (27)

III. M ATERIAL INTERFACES

In conventional methods, modeling the boundary between
two dissimilar materials presents particular difficulties. When
a sampling node lies on the boundary between two different
materials one must decide what value to use for the constituent
parameters at the discontinuity. Typically, a weighted value
of the two materials is used, however this weighting reduces
second-order accurate methods to locally first-order accurate
methods. This has the same effect as introducing artificial
reflections or placing an artificial source at the material dis-
continuity. Since any error generated locally transmits through
and reflects from the discontinuous material boundaries, it
contaminates the entire solution.

In the RD FD method the boundaries are handled in a
special way that reduces the significance of these boundary
generated errors. Consider the 2-D boundary value problem of
Fig. 4 in which two different materials , and
are present. The concept of virtual nodes is used to handle
the discontinuity. The material is first virtually extended so
that it “appears” homogeneous as looking from each dielec-
tric material. Modeling each material separately yields the
equations

(28)

(29)

where and are the wave
numbers of the respective materials and, , and are the
function values sampled at the locations as depicted in Fig. 4.
Notice that these two equations are both second-order accurate,
however there are now ten nodes used to model the problem
when five were originally used. By enforcing continuity of the
tangential electric and magnetic field values, one can derive
a single governing difference equation requiring five node
values. In the TM case ( , , and ), we apply continuity
of directly and continuity of the tangential magnetic field
through a proper specification on the normal derivative of,

Fig. 4. Edge boundary value problem.

whereas for the TE case ( , , and ), we apply continuity
of directly and continuity of the tangential electric field
through a proper specification on the normal derivative of.
Thus, continuity of either or implies that ,

, and .
A second-order accurate difference equation is needed to

solve for the normal derivative at the boundary. The analytical
solution for the derivative of a plane wave is given as

(30)

while the general numerical FD approximation may be found
as

(31)

The numerical solution matches the analytical solution “clos-
est” when and which gives a residual
relation of

(32)

Since is a function of angle, and in general a
wave may propagate in any direction without preference, the
optimal value of is calculated by minimizing the residual as

(33)

The weight is chosen since the analytical solution has
a variation. Solving (33) gives a value of

(34)

where is a first-order Bessel function of the first kind.
Using the above and enforcing the continuity of normal
directives, we obtain

TE case

TM case (35)

Combining all of the above yields the desired difference
equation as

(36)

TE case

TM case (37)
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Fig. 5. Boundary error for optimal and standard coefficients.

Fig. 6. Solution for a corner value problem.

The final solution preserves the physical relations but becomes
first-order accurate. This accuracy is greatly improved com-
pared to the conventional method. Since it has already been
shown that the coefficients for (28) and (29) are optimal, we
will illustrate the difference obtained for dielectric interfaces
when using the coefficients of (37) versus the traditional value
of two. Fig. 5 shows the error obtained for both polarizations
when a plane wave is incident at a dielectric boundary at
some angle . The error is defined as the absolute value of
the difference between the complex reference solution and the
complex calculated solution. As we will see in Section V, this
error may be the dominant one in the solution.

This idea is extended to corner boundary value problems.
Fig. 6 illustrates a corner where four different dielectrics com-
bine. By enforcing continuous tangential fields between adja-
cent materials, the following difference equation is formed:

(38)

The extension to 3-D can be similarly derived.

IV. OPTIMAL FDTD COEFFICIENTS

In this section we use the FDTD method to approximate
our solution. The first part of this study concentrates on
optimizing the FDTD coefficients at a single frequency. The
effects of these changes over a band of frequencies is then
discussed. Consider a 2-D TM polarized steady state plane
wave propagating in free space in the absence of boundary
conditions. The analytical solution, assuming an time
variation, is

(39)

Fig. 7. Phase error for different grid resolutions.

where is the angular frequency of the wave. For a uniform
mesh and a plane wave traveling at an anglewith respect to
the grid (see Fig. 7) the numerical solution is

(40)

where the 2-D wave numbersand are related by the FDTD
transcendental dispersion equation [15]

(41)

where

discrete time step size;
velocity of the wave;
numerical wave number.

In order to guarantee numerical stability, the Courant stability
condition requires

(42)

where is the spatial dimension. For 2-D ( ) the
quantity is defined as

(43)

with the condition satisfying numerical stability
requirements. Using the above, the dispersion relationship in
2-D is rewritten as

(44)

The phase error, which is periodic, is illustrated in
Fig. 7 for various spatial resolutions. When solving the tran-
scendental equation (44) for at a given angle
one may observe that the best results are always obtained at

, while the worst results are obtained at and
.

The dispersion equation is exactly solved when
and . At all other angles and values of ,

the numerical value of exceeds the physical value. The effect
of lowering causes the phase error curve to shift even farther
from zero. Since for all , it is desirable to lower the
numerical wave number such that the average value over all
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is equal to the physical wave number (). Ideally, we want
to shift the phase error curve to have a zero average value.

Observe that we can reduce the relation by replacing
the numerical value used to approximatewith a slightly
larger numerically compensated propagation velocityas

(45)

The optimal value of is chosen such that the new dispersion
curve is equal to in the average sense, i.e.,

(46)

Note that by increasing to , the dispersion curve is not
only shifted, but its shape becomes slightly more isotropic. It
can be shown that for a grid spacing of , can
be found in closed form as

(47)
Similarly, a closed form solution for the 3-D case can be found
as shown in (48) at the bottom of the page. Although the above
relations are derived at only a single frequency, the phase error
is reduced over a wide bandwidth.

V. NUMERICAL VERIFICATIONS

A. Helmholtz Scattering Example

This section is intended to provide further support for the
previously derived statements. The first example we consider
is a dielectric cylinder ( ) in the shape of a cavity
(Fig. 8). The cylinder is excited by a TE-polarized plane wave
traveling to the right with the incident field having a
magnitude of one. First-order absorbing boundary conditions
are placed along the truncation boundaries. The magnetic
field is calculated and compared to a reference solution,
which is obtained with a fine spatial resolution of 40 nodes
per freespace wavelength. The results are then recalculated
by three different methods. For each of these methods, the
spatial resolution is reduced to only 20 nodes per freespace
wavelength. In the first method, we use the central difference
weights as applied to the Helmholtz equation. In the second
method the corrected RD weights are used at all the nodes with
no special treatment done at the dielectric interfaces (material
properties at the interface are averaged). In the third method,
we continue to use the corrected weights when we are not
considering the nodes at the dielectric interfaces; however, for

Fig. 8. Errors observed along the scatterer’s boundary.

the interface, we use the special FD equation developed in
Section III.

Fig. 8 illustrates the error generated when calculating the
results for these three cases. The error is defined as the absolute
value of the difference between calculated and reference field
values. In the figure, the error is plotted versus the normalized
circumference around the boundary of the scatterer. Starting at
the lower right corner of the scatterer , and proceeding
clockwise around circumference of the scatterer, the results are
identified and the errors calculated.

The value of the solution on the surface of this dielectric
structure is between zero and two; therefore, it is clear that
there is significant error when the standard FD method is
used. From the figure, it is also apparent that the solution is
only somewhat improved when the homogeneous Helmholtz
difference equation is corrected and vastly improved when the
boundary finite difference equations are also corrected. In the
next section we illustrate how these concepts can be applied
to the time-domain formulations.

B. FDTD Corrected Examples

In this section the effects of correcting the FDTD equations
are demonstrated. Two different examples are chosen to help
support the concepts presented thus far. In the first example,
a parallel plate wave guide filled with free space (see Fig. 9)
is used. A TE modulated Gaussian pulse is launched at the
opening of the wave guide where the field values are calculated
at the center of the waveguide, 5 cm from the opening. For
this problem the cell size is chosen to be at 6
GHz. Both the standard FDTD method and the RD FDTD
method are for 6 GHz. The phase errors per wavelength in the
solution for these two method are illustrated in Fig. 9. At the
design frequency of 6 GHz, the corrected method shows over
a three times reduction in phase error. At lower frequencies,
we notice that the new method does better than the standard
method up to a certain frequency. At this frequency and lower

(48)
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Fig. 9. A comparison of the phase error per wavelength generated when
calculating for the fields inside a parallel plate waveguide.

Fig. 10. Reflection coefficientS11 for a dielectric block placed in a parallel
plate waveguide. The dashed line represents the reference solution. The solid
lines represent the absolute value of the difference between the computed
solution and the reference solution.

in the spectrum, for these angles of propagation, the standard
method does better. However, the phase error of the corrected
method never exceeds the maximum phase error generated at
the design frequency. Also, recall that at lower frequencies,
waves travel shorter distances with respect to the wavelength
and therefore errors at lower frequencies are not expected to
be as significant.

The geometry chosen for the second example is shown in
Fig. 11. Since phase error accumulates as the wave propagates,
the improvement can be better appreciated for electrically
large structures. For this example, a simple dielectric block is
placed symmetrically inside the center of a 5-cm-wide parallel
plate waveguide filled with free space and the reflection
and transmission coefficients are calculated. The relative
dielectric constant of the block is chosen as . The
length and width of the block is fixed at 50 and 2 cm,
respectively, which is equivalent to 6.7 and 0.27 free-space
wavelengths at 4 GHz. A ten-cell-thick parabolic conductive
profile PML absorber is placed at each end port in order to
truncate the problem domain. Without the dielectric block
present, reflections from the PML absorber are observed to
be at least 80 dB below the incident wave. A reference
solution for this problem is calculated with a spatial resolution
of at 4 GHz. The structure is illuminated by a

Fig. 11. Transmission coefficientS21 for a dielectric block placed in a
parallel plate waveguide. The dashed line represents the reference solution.
The solid lines represent the absolute value of the difference between the
computed solution and the reference solution.

Gaussian pulse whose parameters are chosen such that there
is significant spectral content from dc to 4 GHz. The excitation
is assumed to be a TEM wave. As the pulse hits the dielectric
block, energy is scattered in all directions and the reflected
and transmitted waves are no longer TEM. We next recompute
the reflection and transmission coefficients and using
spatial resolutions of and at 4 GHz for both the
FDTD method and the RD FDTD method. We can obtain a
good approximation of the error by taking the absolute value
of the difference of each method with the reference solution
over a frequency range from dc to 4 GHz as shown in Fig. 11.

As expected, the RD FDTD method gives better results
than the FDTD method for both spatial resolutions near the
design frequency of 4 GHz. The RD FDTD method also
gives better results at lower frequencies down to at least 2
GHz. Below 2 GHz the two methods vary in which method
produces less error; however, notice that the magnitude of the
errors at the lower frequencies are much smaller and thus less
significant. Also observe that the improvement is better for
the transmission coefficient than for the reflection coefficient
due to the fact that we evaluate at a location farther from
the excitation than , thus giving the wave more distance
to accumulate phase error.

VI. COMPUTATIONAL SAVINGS

One can view the effect of the reduced dispersion scheme
in two ways. The first is to compare the accuracy that one
obtains with the improved method over the original method
when both are applied to the same grid. The second way is
to determine the computational savings that one obtains with
the new method relative to the old for a given accuracy. The
first approach is presented in the previous section. The second
approach is presented in this section.

Let us consider the finite difference frequency domain
method. For the 2-D case, the RD FD method with a grid
spacing of produces the same average phase error as the
standard FD method with a grid spacing of . The memory
savings is approximately a factor of 6.25. The speedup in
computation time is dependent on the matrix method used.
For a direct sparse solver, the computational complexity for
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2-D problems is where is the number of unknowns,
while for an iterative solver such as the conjugate gradient
method, the computational complexity is where is
the number of iterations needed for the solution to converge.
In general is dependent on . For the direct and iterative
solver, we expect the RD FD method to beand times
faster, respectively, than the conventional FD method, where

is the ratio of the number of iterations of the new method
over the number of iterations for the conventional FD method.

For the 3-D case, the RD FD method with a grid spacing of
produces the same average phase error as the conven-

tional FD method with a grid spacing of . The memory
savings is approximately a factor of 6. For the 3-D case the
computational complexity of the iterative method remains the
same; however, the computational complexity of the direct
solver is now . Thus, the computational speedup of the RD
FD method relative to the conventional FD method is 36 for
the direct sparse solver and for the iterative solver.

A similar analysis is carried out for the FDTD method at
and at the frequency for which the reduced dispersion

optimization is done. For the 2-D case, the RD FDTD method
with a grid spacing of produces the same average phase
error as the conventional FDTD method with a grid spacing of

. The memory and computational savings are a factor of 9
and 11, respectively. For the 3-D case, the RD FDTD method
with a grid spacing of produces the same average phase
error as the conventional FDTD method with a grid spacing
of . The memory and computational savings are a factor
of 4.6 and 7.7, respectively.

VII. SUMMARY

In this paper, we present an alternative way of obtaining
a FD equations for the wave equation in both the frequency
and time domain. The new FD equations are based on an
optimization of the FD coefficient for plane waves propagating
through the grid. The resulting solutions have less phase error
than the standard FD methods. Thus, with the new method one
can use a coarser grid than the standard FD methods while
maintaining the same accuracy. Because the new FD method
contains less phase error, we refer to it as a reduced dispersion
or RD FD method. The RD FD method has been demonstrated
both in the frequency and time domain. The results shown in
this paper demonstrate the computational savings that one can
achieve relative to the standard FD methods. Because of its
simplicity, it can be easily implemented into current FD codes
without much effort.
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