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Effect of Terrain on Path Loss in Urban
Environments for Wireless Applications

Leonard Piazzi and Henry L. Bertoni,Fellow, IEEE

Abstract—Path-loss prediction algorithms for advanced wire-
less communication system planning have long considered the
effect of electromagnetic propagation over buildings between
the base station and subscriber. This phenomena is particularly
important in residential areas, where the houses are typically a
few stories high. For the most part, the buildings were assumed
to lie on level terrain, although shadowing effects by terrain
in the absence of buildings has been included. Previous works
have offered a number of methods to quantitatively determine
these effects from path profiles. This study examines propagation
over buildings when the buildings are located on terrain features
(hills). The buildings, which are represented by a series of
absorbing half screens, are assumed to lie in rows that are
equally spaced along parallel streets, with the streets running
perpendicular to the terrain slope. Numerical results are obtained
using successive repetition of the Kirchhoff–Huygens approx-
imation. A phenomenological model based on ray optics for
diffraction over a smooth surface is proposed as a way to interpret
the numerical results. The dependence of model coefficients on
terrain parameters are obtained from the numerical results.

Index Terms—Propagation, terrain factors, urban areas.

I. INTRODUCTION

CITIES are frequently built on undulating terrain or on
rolling hills so that radio propagation may be simul-

taneously affected by both buildings and terrain. Based on
measurements taken in Japan using very high base-station
antennas, Okumura [1] accounted for terrain variability in a
statistical sense through the use of a field strength correction
factor and increased variability. However, this approach does
not allow for the evaluation of the signal at specific locations
even when the terrain is known. For portions of the terrain that
are not shadowed, Lee [2] introduced the concept of effective
antenna height to account for the actual terrain variation. When
lower base-station antennas are used, even undulating hills
may give rise to terrain blockage in some locations. While
shadowing by hills in the absence of buildings has been studied
[3]–[6], the combined effects of buildings and terrain does not
appear to have been treated in the literature. In this study,
we consider propagation over buildings on various terrain
profiles in order to estimate the signal variability that terrain
can introduce.

Away from the high-rise core of the city, base-station
antennas for mobile radios are typically above or near to the
rooftops of the surrounding buildings. In this case, propagation
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is thought to take place over the buildings and for flat
terrain has been modeled by multiple forward diffraction past
rows of buildings [7]–[11]. These models represent each row
of buildings as an absorbing knife edge and via analytic
or numerical techniques determine the loss associated with
multiple forward diffraction over the knife edges. In order to
model the path loss for the case of buildings on rolling hills,
we assume the streets and, hence, the rows of buildings are
oriented perpendicular to the plane of curvature of the hills, as
shown in side view in Fig. 1, which is also assumed to be the
plane of propagation. For mobiles located on the up slope of
hills visible to the base station, as indicated by positionin
Fig. 1, the path loss can be found using the theory previously
derived for flat terrain if the angle of incidence on the rooftops

in that theory is replaced by the angle to the local tangent
plane, as indicated in Fig. 1. This method is equivalent to using
an effective antenna height, as discussed by Lee [2]. However,
these results do not apply when terrain shadowing occurs, such
as at locations and in Fig. 1.

Shadowing by hills in the absence of buildings has been
modeled using absorbing knife edges [3] or dielectric wedges
[4], as shown in Fig. 2 or circular cylinders [5], [6], as shown
in Fig. 3. When an absorbing knife edge is used, the resultant
path-loss predictions tend to be overly optimistic since impor-
tant features of the terrain are omitted. The dielectric wedge
formulation attempts to more accurately portray the physical
properties of hills. Models utilizing diffraction over a circular
cylinder further refine the problem and have yielded accurate
results [5]. However, it is not clear how these methods apply
when buildings are located on top of the hills. No matter
the methodology, the results all indicate the importance of
using a model that takes into account the effects of terrain
blockage.

In this study, we assume the rows of buildings are of
uniform height and spacing but are located on terrain with
rolling hills, as suggested in Fig. 1. We first consider cylin-
drical and sinusoidal terrain variation. In order to treat the
forward diffraction, each row of buildings is modeled as an
absorbing knife edge. The field dependence above a knife edge
is given as a function of the field above the previous knife
edge and a direct numerical solution to the Kirchhoff–Huygens
approximation is performed. Utilizing this method, over 100
knife edges may be considered with acceptable computation
times. Fourier transform methods previously used to calculate
multiple diffraction past screens of uniform height [12] have
proven to be unworkable when there are large variations in the
effective screen height (as needed in this study) and previously
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Fig. 1. Rows of houses on rolling terrain. For areas
1 and
3 the angle with the local tangent may be used to determine the path loss.

Fig. 2. Illustration of diffraction by an isolated hill that is represented by an equivalent knife edge or dielectric wedge.

Fig. 3. Illustration of diffraction over a hill represented by a circular cylinder of radiusRh.

used analytic methods [10] are not applicable. The results we
obtain indicate that a cylindrical representation for the hills in
the terrain profile must be used, as opposed to single knife
edge at the hill peak, or else the resultant path-loss values are
too optimistic, particularly in the deep shadow of the hill.

The numerical techniques discussed above are too cum-
bersome to be incorporated into a cellular planning tool.
We, therefore, interpret the numerical results in terms of ray
optics in order to obtain a compact approximation. To make
this interpretation, we make use of the ray formulation for
diffraction over a smooth circular cylinder, which makes use
of a creeping ray that travels on geodesic path around the
cylinder. The field strength along the creeping ray decreases
exponentially with arc length traveled on the surface of the
cylinder with a decay factor that depends on the radius of
the cylinder. Excitation of the creeping ray by a source is
described by an excitation coefficient and subsequent radiation
into space by a launch coefficient, which are also dependent
upon the cylinder radius [13], [14]. It is interesting to note
that although the numerical method assumed a nonsmooth
surface over which the propagation occurs, the results are
similar to those of a creeping wave solution for smooth
cylinders.

In Section II, we develop the mathematical formalism used
to numerically evaluate the Kirchhoff–Huygens integrals for
forward diffraction past many absorbing half screens. Ex-
amples of the numerical results obtained for various hill
geometries are discussed in Section III. The creeping ray
formulation for propagation past a cylindrical hill is given
in Section IV and is shown to accurately described the nu-
merical results. Furthermore, fit equations are developed for
the creeping ray attenuation and diffraction coefficients. In
Section V, the creeping ray formulation is compared with
the numerical integration results for the case of buildings on

sinusoidal hills. Finally, in Section VI, we use the creeping ray
formalism to develop path-loss formulas that can be compared
with measurements or used by system designers.

II. M ODELING TERRAIN EFFECTS

Fig. 1 illustrates in cross-section rows of houses that are
equally spaced along parallel streets, with the streets running
perpendicular to the slope of the hills. In this example the
transmitting antenna is placed at the maximum height of the
terrain plus house height. For area in Fig. 1, the path
loss may be determined using the Walfisch–Ikegami model,
accounting for terrain slope by means of the local angle

. The path-loss ratio between isotropic antennas in watts
received/watts transmitted is then given by

(1)

The factor is the diffraction loss from the last rooftop before
the mobile down to the street and ) is the multiple screen
diffraction loss [10], which can be found from the polynomial
approximation [15]

(2)

over the range , where the dimensionless
parameter is given by

(3)

where is the separation between rows of buildings. For
, the previous rows of buildings have almost no

effect and .
In region , to account for the blocking effect of the terrain

between the subscriber and the transmitter, the path loss in
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Fig. 4. Illustration of houses on an isolated cylindrical hill having radius of curvatureRh.

(1) must be multiplied by an appropriate loss factor to
account for the intervening hill loss. Fig. 2 shows one model,
whereby the hill is replaced by an absorbing knife edge [3] or
a dielectric wedge [4]. In the absence of buildings on top of
the hill, the blockage may be modeled as a circular diffracting
cylinder, as in Fig. 3, whose radius best fits the hill curvature
[5], [6] in which case is now the diffraction loss for the
cylinder. The diffraction loss , is typically a function of the
cylinder radius and , which is the angle determined by the
two tangent lines to the cylinder—one from the transmitter and
the other from the rooftop before the mobile [16]. The value
of when houses are present on the hills does not appear to
have been previously considered. Similarly, the field reduction
in region of Fig. 1 has not been previously considered
and is even more complex than the other regions due to the
curvature of the ground.

A. Isolated Cylindrical Hill

To facilitate the description of the field variation in regions
and of Fig. 1, we first characterize the terrain variation

as that of an isolated cylindrical hill. To determine the effects
of an isolated hill we make use of the terrain profile illustrated
in Fig. 4. The height of the hill plus building height as a
function of the distance from the peak of the hill is given by

(4)

where is the hill radius and is the distance that the
center of curvature lies below the flat portion of the terrain.

The maximum slope orgradeof the hill occurs at and
is given by

grade (5)

Knowing the grade and the horizontal distance from the
peak to the foot of the hill, (6) can be solved for the equivalent
hill radius

grade (6)

This expression is used to choose realistic values for
in carrying out the numerical evaluation discussed below.
Examination of terrain elevation maps suggests that the radius
of curvature of rolling terrain is typically much larger than 1
km.

B. Numerical Evaluation of the Line Source Fields

Since the Fresnel zones in the ultrahigh frequency (UHF)
band out to a few kilometers are narrow, it is reasonable to
use a two-dimensional (2-D) model by assuming the geometry
in Fig. 4 to be uniform along . Propagation oblique to the
street grid can be accounted for by using the terrain profile
and spacing between rows of buildings as seen in the
vertical plane containing the transmitter and receiver. On flat
terrain this approach gives reasonable accuracy as compared
to measurements for planes making angles as much as 60
to the street grid [17]. With the assumption of a 2-D model,
the excess path loss due to the rows of buildings and terrain
will be the same for a point source and for the fields radiated
by a line source parallel to. Propagation of the line source
fields from the plane of one screen to the next is carried out
numerically using the Kirchhoff–Huygens approximation. In
this manner, we can account for diffraction past 100 or more
screens and, therefore, can account for houses on sinusoidal
and cylindrical terrain.

A uniform magnetic line source parallel to theaxis is
located at the position of the transmitter and radiates
a cylindrical wave having only a component of magnetic
field , which, for , is given by

(7)

This field is incident on the plane of the first knife edge.
Subsequently, the electric field incident on the plane of the

knife edge can be determined by the field above theth
knife edge using the approximate expression [18]

(8)

where

(9)

Here, is the separation between successive rows
of buildings. The lower limit of the integration is equal to
the height of the terrain at plus the building height .
The numerical evaluation of (8) is carried out as in [7], where
the integration is broken into discrete intervals over which
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Fig. 5. Illustration of the truncation areas above the knife edges.

the amplitude and phase of the integrand are approximated
by algebraic expressions that are integrated in closed form,
thereby converting the integration into a summation. However,
truncating the integration at a finite value ofdoes not follow
the approach used in [7] since in that study the window
function was tailored to the specific case of an incident plane
wave field directed down toward the screens.

To terminate the summation above some height
in the aperture of the knife edge, a window function is used
that rolls off the field above to zero in a continuous
fashion. For our case, the Kaiser–Bessel window function is
used. It is given as follows:

(10)

where

(11)

with

(12)

Here, is the straight line extending from the top of the
building at the peak of the hill to the farthest building included
in the calculation, as shown in Fig. 5. The integration aperture
must be large enough to account for the area through which
the fields propagate to the edge of the most distant screen. This
aperture width is measured in terms of the Fresnel width for
propagation from the source to the most distant edge. Thus,
we take the termination point to lie outside the boundary of an
ellipse drawn about a ray from the source to the screen.
For accurately finding the fields in the shadow zone behind
the hill, we have found it necessary to take the aperture to be
six times the maximum half width of the Fresnel zone or

(13)

The field rolloff width can be measured in terms of the
Fresnel width for propagation from one edge to the next. To
accurately find the fields in the shadow region, we have found
it necessary to use

(14)

Fig. 6. Screen profile for typical hill radius parameters.

This choice of and are found to give stable computational
results for the field at the top of successive half screens. When
there is not a significant screen height variation, as in the case
of flat terrain, the values of and maybe be reduced with
no effect on the computational accuracy.

III. N UMERICAL RESULTS FOR ACYLINDRICAL HILL

Numerical evaluation of the field due to a line source at
the tops of successive rows of buildings (half-screens) were
carried out for different horizontal separations between
the rows of buildings, different hill radii , and different
frequencies. The results for all cases are found to have similar
characteristics that lead to a simple characterization. The half
screens used to represent the rows of buildings for a typical
case are shown in Fig. 6. The houses are 7 m high and the
row separation is 50 m. In this figure, the base of the hill
occurs at m and the maximum grade is 10% so
that the hill radius is 10.0 km and its maximum height is 50
m. The transmitting antenna is located at m and
at a height equal to the maximum screen height of 57 m.

The results of the numerical evaluation are shown in Fig. 7
for the screen profile given in Fig. 6. The field strength in
decibels has a nearly linear variation on the back side of the hill
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Fig. 7. Field strength versus screen position distance for the screen profile
shown in Fig. 6.

(0–1000 m), where diffraction from rooftop-to-rooftop occurs
over a cylindrical-like surface. The minimum field strength
value occurs at 1000 m, which is the base of the hill. After
this point, the field strength increases out to about 3500 m,
after which it decreases slowly. The same type of variation is
found for all choices of hill radius , row separation and
frequency, and can be modeled by a creeping wave.

The rise in field strength after the hill is attributable to the
fact that the diffracted rays are now launched from points
higher up on the hill and, thus, experience less diffraction loss
before being launched. Immediately after the hill the foregoing
effect more than compensates for the usual inverse distance
dependence. However, for the rooftops far from the hill the
rays are launched from near to the top of the hill so that
the inverse distance dependence causes a decrease in signal
strength.

Fig. 7 shows the results obtained by considering forward
diffraction only and neglecting back diffraction from subse-
quent building rooftops. For buildings on flat terrain the back
diffracted signal is smaller than that arriving from forward
diffraction only. Because of the deep shadow at the base
of the hill, as seen in Fig. 7, it may be possible for back
diffraction from buildings on the flat terrain in Fig. 4 to fill
in the shadow. In order to estimate the significance of back
diffraction, we have evaluated the field at the base of the hill
due to back diffraction from the next row of buildings. The
uniform theory of diffraction (UTD) diffraction coefficient for
a finite conductivity 90 wedge was used, thereby allowing for
the observation point to lie in the transition region about the
shadow boundary of the reflected wave. The back diffracted
contribution was determined for various hill radii of interest
and, assuming a 10% terrain slope at the base of the hill,
was found to be approximately 16 dB less than the forward
diffracted field at the base of the hill for all hill radii studied.
Signals that are back diffracted from buildings further from the

Fig. 8. Excess path loss on the front end of the hill in Fig. 6.

base of the hill must pass back over the buildings between the
building in question and the base of the hill. Treating the back
diffracting edge as a equivalent line source, it is found that
the first row of buildings on the flat terrain gives the strongest
back diffraction contribution. Therefore, we conclude that the
back diffracted contributions are not significant for the cases
considered.

A. Ray Optics for Rooftops Within LOS

We have compared the numerical integration results with
the approximation (1) for those rooftops on the side of the hill
facing the base station. Fig. 8 shows the path loss in excess
of free-space loss obtained from the numerical results shown
in Fig. 7 for . For comparison, we have also
plotted using the local terrain angle. It is seen that the
ray method (1) is quite accurate up to the last few rooftops
before the top of the hill at . Note that for ,

given by (3) is greater than 1.0 and the approximation
that there is no excess path loss ( ) is used, which
is consistent with the numerical results. As we approach the
top of the hill approaches zero and using (2) proves to be
overly pessimistic by approximately 4 dB.

IV. CREEPING RAYS FOR NON-LOS ROOFTOPS

The creeping ray representation for the field diffracted by a
circular cylinder is shown in Fig. 9 for points outside of the
transition region centered on the shadow boundary. Unlike the
case of diffracting from absorbing screens for which the TE
and TM polarizations have the same path loss, in the case of a
conducting cylinder the two polarizations behave differently.

The asymptotic representation for the creeping ray field at
observation points behind the cylinder for an incident plane
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Fig. 9. Diffraction by a circular cylinder.

or cylindrical wave is [13]

(15)

Here, is the incident field at the excitation point and
is the distance from the launch point to the observation

point. The attenuation constants for TM polarization and
for TE polarization are given by

(16)

where the values of are found from the zeros of the Airey
function or its derivative. The first few terms for the
TE polarization are , , and .
The excitation coefficients are

(17)

where the values of for the TE polarization are functions
of and .

Note that the coefficients and are functions of
hill radius and frequency. Near the shadow boundary where

is small, the sum is slowly convergent, while deeper into
the shadow where the higher terms in the sum have decayed
more rapidly, a good approximation is obtained by keeping
only the term. The values of for TM polarization
are smaller than those for TE polarization and for it is
smaller by the factor 2.3.

A. Ray Optics for the Backside of the Hill

For simplicity in representing the results obtained from the
numerical integration, we retain only the first term in the
creeping ray representation. To find the attenuation coefficient

, we examine the field at the top of the screens on the back
side of the hill before the ray is launched. The field amplitude
at these points due to a line source at a distancefrom the
top of the hill is assumed to be of the form

(18)

The coefficients and are determined from the multiple
integration results, as shown in Fig. 7, by fitting the numerical
values at the farthest end of the hill. Because the values of

Fig. 10. Field strength predictions using the numerical and ray-optics ap-
proach on the back side of the hill in Fig. 6.

on the back side of the hill are much less than the hill radius,
the angle so that (18) predicts a linear variation of
the field in decibels, with . In Fig. 7 the variation with
of the field strength in decibels, at the top of the screens (as
obtained from the multiple integration) is seen to be nearly
linear indicating the dominance of the term in (15).
The deviation from linearity reflects the importance near the
shadow boundary of the terms in (15) having .

Fig. 10 shows a comparison of the field amplitude on the
back side of the hill obtained from the approximation of (18)
with the field computed by numerical integration. The location
of the minimum field strength value (1000 m) is seen from
(18) to result from the creeping ray that travels the greatest
distance around the cylinder. As we approach the peak of the
hill from the back side using the ray-optics method the result
is more optimistic than the numerical integration result. Had
more terms of the type shown in (15) been used to fit the
computed results, a better fit would have been obtained close
to the peak of the hill. It is also interesting to note that the
results using (2), as we approach the peak from the front side
are pessimistic rather than optimistic, as indicated in Fig. 10.
Moreover, for the first rooftop on either side of the peak the
magnitude of the error in decibels is similar.

The attenuation coefficient is a function of hill radius ,
frequency, and screen spacing. We have plotted from the
numerical integration results in Fig. 11 for a frequency of 900
MHz and screen separations of 50 and 100 m. For comparison,
the attenuation coefficient from (16) for diffraction of a TE
wave by a smooth hill [14] labeled “James” is also shown. The
values of found by fitting the numerical results are seen to be
displaced downward from for a smooth hill by an amount
that is nearly independent of , but varies approximately as
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Fig. 11. Exponent loss factor versus hill radius at 900 MHz computed
for d = 50; 100 m and the theory for a smooth cylinder from James [14].
Approximate fit given by (19) is plotted as the continuous curves passing
through the numerically computed points.

. Thus, we find the simple approximation

(19)

which reduces to the theoretical diffraction result over a
smooth hill for TE polarization [14] when . The
variation of predicted by (19) is indicated by the continuous
curves in Fig. 11, which are seen to give a good fit to the
values of obtained from the numerical results.

Fig. 12 shows versus hill radius for a frequency of 1800
MHz and for screen separations of 50 and 25 m. The values of

obtained from (19) are also indicated as continuous curves
and are again seen to be accurate over the hill radii studied. The
results in each case are consistent, noting from (16) that when
the frequency is doubled should increase by .
Figs. 11 and 12 indicate that this trend is indeed the case,
where the numerical results increase by an average factor of
1.24 or 2 when the frequency is doubled.

The excitation coefficient in (18) is found from the
fit to the numerical results and is plotted in Fig. 13 versus
hill radius for two values of frequency and screen separation
. The variation of with the various parameters may be

approximated by

(20)

The values of obtained from this expression are indicated
by the continuous curves in Fig. 13.

B. Ray Optics After the Hill

To model the signal at the rooftops on the flat terrain
following the hill in terms of creeping rays, we make use
of (15) keeping only the first term for the fields above the

Fig. 12. Exponent loss factor versus hill radius at 1800 MHz computed
for d = 25;50 m and the theory for a smooth cylinder from James [14].
Approximate fit given by (19) is plotted as the continuous curves passing
through the numerically computed points.

Fig. 13. CoefficientDH giving the fields on the back of the hill ford = 50

m. Approximate fit given by (20) is plotted as the continuous curves passing
through the numerically computed points.

flat terrain after the hill, as shown in Fig. 6. In order to
separate the effect of diffraction over the hill from the effect
of diffraction by the screens on the flat terrain following the
hill, we have separately computed the field for the case when
the only screens present are those on the hill, e.g., when the
screens for distances greater than 1000 m in Fig. 6 have been
removed. The numerical results for the field at the location
of the edges of the screens that were removed are shown in
Fig. 14 for the hill profile of Fig. 6, assuming a frequency of
900 MHz and a screen separation of 50 m.
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Fig. 14. Field-strength predictions using the numerical and ray-optics ap-
proach.

The ray-optical results obtained using the first term in (15)
are also shown in Fig. 14. We have used the value oftaken
from Fig. 11 and selected a value of to match the numerical
results when the launch angle is fixed at 1.7. Because this
coefficient is determined by fitting the ray-optics solution to
the numerical integration results at a point close to the base of
the hill, the ray-optical predictions deviate by a few decibels
from the numerical result at greater distances. It is believed
that had more terms been included in (15), the results would
more closely match.

Fig. 15 shows the variation of the ray-optics coefficient
used in the creeping ray formulation with hill radius for

different frequencies. The variation of with hill radius,
screen separation, and wavelength can be approximated by
the formula

(21)

This coefficient increases asincreases in a manner similar to
that given in (17). However, the magnitude of the coefficients
given in (17) are significantly larger than those given by (21).

In order to account for the presence of buildings on the flat
terrain after the hill (as in Fig. 4), the ray-optics formulation
of (15), which accounts for the multiple diffraction loss over
the buildings on the hill, must be augmented by in (2) to
account for multiple diffraction past the buildings on the flat
terrain. Using the angle shown in Fig. 9, we have computed
the field reaching the rooftops on the flat terrain and compared
these results with those obtained from numerical integration.
The field strength computed by these two methods for the
geometry of Fig. 6 are plotted in Fig. 16. The results in Fig. 16
are consistent with the computations shown in Fig. 14, for the
case when no buildings are present on the flat terrain. Again
improvement is possible with the addition of more terms in
(15). It is of interest to note that the differences between the

Fig. 15. CoefficientD1 versus hill radius ford = 50 m. Approximate
fit given by (21) is plotted as the continuous curves passing through the
numerically computed points.

Fig. 16. Field strength predictions using the numerical and ray-optics ap-
proach with the screens present on the flat terrain after the hill.

numerical integration results in Fig. 16 and those in Fig. 14
are indeed approximately equal to determined from (2).

V. SINUSOIDAL HILLS—SHAPE SENSITIVITY

It is also interesting to examine the effects of house place-
ment on a sinusoidal varying profile, not unlike Fig. 1. Fig. 17
illustrates the path profile for a sinusoidal varying terrain,
where the cylinder of Fig. 6 approximately fits the first peak
of Fig. 17. Fig. 18 shows the numerical results for this profile.
An interesting phenomena to note is that the minimum field
strength value does not correspond to the trough of the terrain
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Fig. 17. Screen profile for a sinusoid-like terrain path.

Fig. 18. Field-strength variation for a sinusoidal varying hill profile.

profile at 1500 m, but rather at the inflection point of the
terrain preceding the trough. This behavior is consistent with
the creeping ray interpretation since the field at the terrain
minimum is due to a ray that is launched from a point further
up the hill and, therefore, has experienced less exponential
loss then at the inflection point. Also, the second maximum of
the field strength does not correspond to second peak of the
terrain profile, but rather occurs before this point as a result
of diffraction by the previous screens. After the second peak,
the field strength again decreases linearly, as was previously
described.

Fig. 19 shows the ray optics and numerical solution for
some of the screens between the first and second peaks

Fig. 19. Field-strength predictions using the numerical and ray-optics ap-
proach.

indicated in Fig. 17. In order to do this, we replace the first
peak by a cylinder to determine the creeping ray loss and then
use the local angle determined by the terrain to find . The
result of using this method for screens near to the top of the
second peak unfortunately is an overly pessimistic prediction
for two reasons. First, the screens near the second peak are in
the transition region about the shadow boundary from the first
peak and, therefore, more terms are needed in (15) for more
accurate results. Second, at the top of the hill the results from
(2) are unusable becauseapproaches zero. The results match
closely on the second slope, but the ray-optics predictions are
pessimistic near the trough where the approximation for
is again inaccurate due to the small local angle. However, the
creeping ray approximation is sufficiently accurate for wireless
system planning at locations on the up slope of the shadowed
hill.

VI. PATH LOSS BETWEEN ISOTROPICANTENNAS

For the mobile-system design engineer, the efficient evalua-
tion of path loss between isotropic antennas is of particular
interest. In this regard, we generalize the previous results
for a line source by accounting for spreading of rays in the
direction perpendicular to the plane of incidence. At points on
the shadowed side of a hill such as locationin Fig. 1, the
path-loss ratio between received and transmitted power is

(22)

Assuming that vertical displacements are small compared to
the horizontal displacements, is the distance from the base
station to the mobile. Also, is the distance from the base
station to the hill along a ray that is just tangent to the hill.
The diffraction loss down to the mobile from the preceding
building is given by , and and are given by (20) and
(19) for the appropriate hill radius.
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For locations such as in Fig. 1 that are shadowed by a
previous hill, the path-loss ratio is

(23)

where is again the distance between the base station and
the mobile. Also, is as previously defined and is the
distance from the launch point on the hill to the building just
before the mobile. Here is the multiple diffraction loss
due to the rows of houses before the mobile andis obtain
from (21).

VII. CONCLUSIONS

This work has demonstrated that multiple diffraction past
absorbing half screens on a cylindrical path profile can be
parameterized as creeping ray behavior around a cylinder.
Consistent with the ray-optics formulation, we have deter-
mined necessary coefficients as a function of frequency, hill
radii, and screen separation. In the limit as the screen separa-
tion approaches zero, the exponential loss factorapproaches
that of TE diffraction by a smooth cylinder. The diffraction
coefficient is significantly smaller than that given by
the smooth cylinder formulations. The effects of considering
houses on the terrain profile is similar to adding a roughness
factor to the diffraction results for a smooth cylinder; that is,
for observations in the deep shadow, the path loss is greater
when the houses are considered. This is consistent with the
work in [19].

Using the fit equations given in this work the path loss
over buildings located on rolling terrain may be determined.
However, the results for sinusoidal hills show that the ray-
optics approach must be improved to handle the transition
region effects and the multiple diffraction effects at very small
angles .
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