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Electromagnetic Scattering from
3-D Curved Dielectric Bodies Using

Time-Domain Integral Equations
Martin D. Pocock, Michael J. Bluck, and Simon P. Walker

Abstract—A boundary integral equation (BIE) approach is
developed to calculate transient scattering from dielectric bod-
ies. The treatment is directly in terms of the E and H fields
rather than magnetic and electric currents. It employs curvilinear
(quadratic) modeling, which allows accurate representation of
arbitrarily shaped curved bodies. The treatment is isoparamet-
ric with the same quadratic representation of the spatial field
variation and with the temporal variation modeled by similar
quadratic elements. Integration employs high-order Gaussian
quadrature with special treatment of the singular and hypersin-
gular integrals that arise. The treatment is implicit, requiring the
solution of a sparse matrix equation at each timestep. This adds
only trivially to the cost at each timestep and, by freeing the
timestep from the constraint that it be smaller than the smallest
nodal spacing, can greatly reduce the number of timesteps that
must be employed. Additionally, it produces stable results without
resort to the averaging processes proposed elsewhere. Example
calculations of scattering from a sphere, a cube, and an almond
are presented and compared with earlier published transient
results and with results from a frequency domain treatment. Good
agreement and improved accuracy is found.

Index Terms—Electromagnetic scattering, transient scattering.

I. INTRODUCTION

I N this paper, we describe a boundary integral equation
(BIE) technique for the time-domain solution of scatter-

ing from three-dimensional (3-D) dielectric bodies. The BIE
method employed uses numerical treatments which are more
common in areas such as elastostatics, but are as yet little
used in electrodynamics. They include curvilinear modeling of
the geometry and isoparametric quadratic representation of the
field spatial and temporal variation with high-order Gaussian
quadrature and special integration techniques for singular
integrands. The treatment is implicit, both gaining considerable
computational economies and avoiding the stability problems
which explicit treatments exhibit.

A review of the range of methods used for electromagnetic
field modeling has been published by Miller [1]. Here we
are concerned with integral methods applied to 3-D time-
domain systems of which there are relatively few occurrences
in the literature [2]–[5] (compared to say integral-equation
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frequency-domain or finite-difference time-domain analyses).
Of these, a small number [6]–[8] have addressed dielectric
bodies.

In their paper, Mieras and Bennett (1982) [6] use a flat
facetted representation of the geometry coupled with piecewise
constant approximation of field and Green function. Integrals
over self patches were evaluated analytically. An explicit
solution scheme was used with the timestep constrained so that
the field at any location could be expressed as a summation
of known historical field values. Instabilities were observed.

In 1994, Rynne [7] presented computations of scattering
from dielectric targets using essentially the same numerical
formulation as Mieras and Bennett in 1982. Two techniques
are used in combination to suppress exponentially growing
instabilities. The natural approximation to the time derivative
of the form is replaced by the less
accurate . In addition, a retrospective
time averaging is applied. These
incorporations of earlier values reduce the accuracy somewhat,
but their use of information from an earlier timestep has the
effect of helping to cancel the oscillatory instability.

Also in 1994, Vechinski et al. [8] use the common
Rao–Wilton–Glisson elements [9] to represent geometry and
field. These are, again, planar triangles with enforced edge-
current continuity. Again, late-time stability is a problem and
an averaging technique is applied to suppress the instabilities.

As has been seen, the normal treatment in the time domain
is to force the equations to become explicit; that is, at each
time step, each unknown value can be written wholly in terms
of “known” values, which have been determined at previous
time steps. Besides leading to stability problems, this restricts
the choice of time-step size to less then the smallest spatial
discretization. In practice, it is often desirable to use a mesh
that is very fine over some portions of the body to model
sharp geometric variation (such as the NASA almond [10],
which will be used later as an example), while elsewhere the
mesh fineness is determined only by the need to represent
the field adequately. In such circumstances, explicit methods
require time steps to be constrained to suit this geometrical
refinement, rather than be small enough only to model the
temporal variation of the field. The consequence can be a
very marked increase in cost, which the more general implicit
approach avoids.

In formulating the integral equations, the equivalence prin-
ciple [11] is applied. This usually results in a matrix system
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Fig. 1. Notation used for dielectric bodies. The body parameters have
subscript “2” and the surrounding space “1”; the normaln is directed away
from the body andr andr0 represent two points on the body’s surfaceS.

in terms of tangential surface currents and and the
normal components of the- and -fields. Here, the integral
equations are formulated directly in terms of theand
fields. This use of the Cartesian components of the fields eases
agglomerating the matrix and vector coefficients.

In Section II we present the algebraic formulation.
Section III describes method for forming and subsequently
solving the matrix system. The effectiveness of the present
approach is demonstrated in Section IV, where a comparison
is made with previously published results.

II. A LGEBRAIC FORMULATION

The problem considered here consists of a (lossless,
isotropic) body with dielectric properties different from those
of the surrounding space. The notation used is represented
in Fig. 1: the body parameters have subscript “2” and the
surrounding space “1”; the normal is directed away from
the body and and represent two points on the body’s
surface .

Integral equations are derived from the Maxwell equations
[12]. The exterior region equations are

(1)

(2)

and the interior equations

(3)

(4)

Here, the retarded time is and is the solid
angle subtended at the field location withrepresenting region
one (exterior) or two (interior).

The integral equations are combined using the appropriate
interface conditions

(5a–d)

These interface conditions are used to eliminate (for example)
the interior fields (subscript “2”) from the right-hand-side
integral equations (3) and (4). The vector identity

is used to eliminate the interior
fields from the left-hand side of these equations. Thus, the
interior - and -field equations can be written in terms of
the exterior fields as

(6)

(7)

Several authors [6], [7] have discussed methods for combining
the exterior (1) and (2) and interior (6) and (7) equations.
In essence, these various alternatives comprise the addition
of some multiple of one equation to the other. Mieras and
Bennett [6] found a particular choice was required to help
suppress instabilities. We have found it sufficient simply to
add the equations with equal weights (and indeed have not
investigated alternatives.
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The equations to be discretised and subsequently solved are,
therefore

(8)

(9)

Equations (8) and (9) may be contrasted with Rynne [7, eqs.
(2.9) and (2.10)], where the more common surface electric
and magnetic currents are used. In addition, Rynne leaves the
choice of coupling weights free.

Discretization of the Integral Equations:This work is an
extension of the perfectly conducting BIE approach described
by Bluck and Walker [5]. We employ isoparametric quadratic
discretization with nine-noded Lagrangian elements and point
collocation. Temporally, piecewise quadratic interpolation is
used. The radial distance vector from theth spatial node (with
location ) to the coordinate location on the th spatial
element is written as

(10)

where is the th spatial shape function and is the
position vector of the th local node on the th spatial
element. The actual form of the spatial shape functions are
described in many finite-element texts.

The spatial variation of field over the element , at the
retarded time (where ) can be written as

(11)

Here, represents the field at the th node of spatial
element . The temporal variation of the field at the nodal
location can be described by

(12)

Here, is the temporal shape function and represents
the field at the th node of spatial element and the th
node of time element .

The number of time elements ago, identifying the temporal
element in which the retarded time falls, is given by

(13)

(where is the time step size) and the intrinsic time
coordinate is determined from

(14)

Integration over the quadratic elements is by Gaussian quadra-
ture. The number of quadrature points used per element can
be varied from four to over four hundred depending on the
geometry and accuracy required; 36 quadrature locations per
element have been used for the examples given later.

When the field node and source element coincide the
variation of the integrand is so rapid that special integration
techniques are required. Both weakly singular and
strongly singular kernels must be treated. (It is noted
that although the integral equations for perfectly conducting
bodies also contain order and singularities,
the is weakened to for smooth surfaces.) The
weakly singular kernels are integrated by a repartitioning tech-
nique based on Lachat and Watson [13]. For strongly singular,
“Cauchy principal value” integrations, a method incorporating
subtraction of the singularity via “tangent planes” has been
developed. This is an extension of the methods developed for
the treatment of these terms for perfect conductors [14].

The discretization is discussed more fully elsewhere [5],
[15], [16]. The discretized equations can be written as

(15)
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(16)

The summations are over the elements; (usually) for 36
quadrature locations,, over nine nodes per spatial element
and three per temporal element. The Jacobian of the transform
to the bi-unit square is and is the Gaussian quadra-
ture weight corresponding to Gauss location. Here,
represents the field at the th node of spatial element
and the th node of time element ago. The dependence on
parameterised quadrature locations and field location has been
suppressed for clarity. In full, the radial vector, for example
would be written as .

Formation and Solution of the Matrix System:We now ad-
dress the manipulations required to develop a soluble matrix
system from (15) and (16). To create a matrix which multiplies
the solution vector (of and fields) the following 3 3
matrices (tensors) are defined:

(17a–c)

Written in component form the [] matrix, for example, is

(18)

Using these matrices, the field (17) is written as below (and
the field (16) follows similarly):

(19)

As noted, the formulation here is directly in terms of the
and fields: the common formulation is for tangential

surface field ( and ) and normal scalar field ( and
) equations. Due to the - and -field formulation, each

of the unknowns can be written in terms of their Cartesian
components, which makes for easier combination into a matrix
system.

Writing the six-vector comprising the Cartesian components
of and as

(20)

the discretised integral equation can be written as

(21)

where is the amalgamation of the right-hand sides of (19)
and its -field equivalent.
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Implicitness and Stability:It can be seen from the integral
equations that the field at the present location and time is
calculated from the fields at points on the surface at the
relevant retarded times. Many of these retarded time values
will have been determined at previous time steps. It is only
the nearby field contributions that are influenced by as yet
undetermined field values. Nearby in this context means nodes
with associated Gauss point locations within the support of
the temporal shape function; that is, within a sphere of radius

of the field node.
Coefficients multiplying these known values are multiplied

by the corresponding retarded surface field values and added
to the incident field to obtain the right-hand-side vector for the
matrix system. Coefficients multiplying as yet unknown values
remain on the left-hand side, forming a sparse matrix. Solution
of this sparse system is performed at each time step. The
actual matrix solution is achieved at negligible computational
cost using an iterative solver. The dominant cost, just as with
the explicit approach, are the summations required to form
the right-hand sides of (21) at each timestep. These issues of
storage and operation requirements are discussed more fully
elsewhere [5], [16], [17].

It is observed that this implicit approach provides stability,
and we have found no need to apply the various stabilization
schemes [7], [8] noted above, which are used with the more
common explicit, “marching on in time” methods.

III. RESULTS

We present below several example results obtained with the
method described. The geometries used are a sphere, a cube,
and the NASA almond [10].

A. Sphere

Vechinski et al. [8] publish results for a dielectric sphere
and compare with an analytical result. The unit radius sphere is
centered at the coordinate origin and is of properties

. The incident pulse is described by

with and the initial wave origin set by
. The triad represent the unit vectors in

the coordinate directions.
Vechinskiet al. [8] use 138 Rao–Wilton–Glisson [9] patches

(a total of 207 edges) to describe the sphere and the surface
fields. The BIE results presented here use 24 nine-noded
quadratic quadrilateral elements (98 nodes).

We define the usual spherical-polar coordinate system
relative to the triad. Fig. 2 shows the

equivalent surface magnetic current, at , ,
and Fig. 3 shows the equivalent surface electric current
at , . Of the four surface currents presented
in Vechinski et al., these are the two which display greatest
differences between the computed and analytical results. It
can be seen from the graphs that the results using the BIE
code presented here are significantly more accurate. They are

Fig. 2. The equivalent surface magnetic current,M� at � = 90
�, � = 0

�

for pulsed excitation of a sphere. Comparison is made between the present
code, the results of Vechinskiet al. [8], and the analytical solution.

Fig. 3. The equivalent surface electric currentJ� at � = 90
�, � = 90

� for
pulsed excitation of a sphere. The present results and those of Vechinskiet
al. [8] are compared with the analytical solution.
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Fig. 4. Backscatteredx component ofE field from a cube. The present
results are compared with those of Vechinskiet al. [8].

not shown here, but good agreement was similarly obtained
for other orientations.

B. Cube

The results of transient scattering from a cube have also
been published by Vechinskiet al. [8] using the incident wave
described in Section III-A. The cube is centered on the origin,
has a side of unit length and has the same material properties
as the sphere. Meshes of 98 and 290 nodes, respectively,
were used by us with virtually indistinguishable results. The
backscattered-directed component of the field is shown in
Fig. 4 together with the results due to Vechinskiet al., which
comprise an inverse discrete Fourier transform (IDFT) of a
frequency-domain result and a marching on in time (MOT)
result. (Note that these results have been obtained by us
directly from the figures printed in their paper and are subject
to some error from this.)

The results are in reasonable agreement with Vechinksiet
al., though some differences are apparent, notably the late
peak, which is in better agreement with the MOT calculation
than the IDFT result. The reasons for this are unknown.

C. Almond

The NASA almond [10] presents a challenging application
for modeling: it has a very low head-on radar cross section
(RCS), smoothly curved geometry, and a sharp tip. The
RCS is dominated by creeping waves and so its computation
can be adversely affected by geometric distortions such as
“staircasing” or “facetting” produced by some modeling tech-
niques. While measurements on only a perfectly conducting

Fig. 5. Interior surface electric field magnitude at a point (�0.077,�0.02,
�0.01) on the almond for pulsed excitation. Inset: The mesh of the NASA
almond [10], comprising 132 quadratic quadrilateral elements.

version have been published, it thus, nonetheless, provides
an interesting challenge for the present time-domain dielectric
treatment.

The almond mesh comprising of 132 elements is shown
inset in Fig. 4 and is 0.252 m long. Material properties the
same as the Vechinskiet al. [8] sphere and cube results
cited above were used. The precise
configuration of this problem is described elsewhere [10].

It can be seen that near the tip the mesh is refined to
accurately model the geometry. An explicit method would
require a time-step size smaller than the temporal separation
of the nodes on the smallest element. The implicit method
presented here has no such limit and, thus, uses fewer (larger)
time steps, reducing computational costs.

Fig. 5 shows the component of the interior surface electric
field at ( 0.077, 0.02, 0.01) when the almond is illumi-
nated with a Gaussian pulse of half-height full-width equal
to 0.127 m, traveling in the direction and polarized. The
stability of the field for many transit times is clear.

A comparison between the time domain code and a
frequency-domain code [18] is presented in Fig. 6. A harmonic
excitation is used in the time-domain code, with the harmonic
incident wave directed and polarized in the direction,
and of frequency 1.19 GHz. The almond is approximately
one wavelength long at this frequency. The quasi-steady-state
(after several transit times) time-domain solution is extracted
for comparison with the frequency-domain code solution. The
results show the variation of the magnitude of theand
components of the interior electric field plotted against the
coordinate of a line of nodes from the tip to tail, across the
“top” of the almond. The upper and lower lines represent the

and components, respectively. Good agreement between
the time- and frequency-domain codes is apparent.

D. Costs and Timings

We will quote here actual run times and storage needs for
a particular case, along with an indication of how these will
scale with problem electrical size.
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Fig. 6. The magnitude of thex and z components of the interior surface
electric field along the top of the almond (aty = 0, z � 0 for x varying
along the length of the almond). Comparison between time-domain and
frequency-domain code results. Upper and lower lines represent thez and
x components, respectively.

For the sphere discretized with 98 nodes, 21 Mb was
required with an elapsed run time of 25 s on a DEC Alphasta-
tion 255 with a 233-MHz processor. Asymptotically, storage
requirements scale with electrical size to the fourth power and
run time to the fifth, although on this small problem some
lower scaling cost components actually dominate.

Storage can quickly become prohibitive. An alternative
approach is to recalculate all the coefficients of (21) at each
timestep, as they are needed. This occasions a one-off increase
in operations by a factor of about 20. In exchange, the
dominant storage requirement is eliminated. Using such an
approach, the same case had storage and run time requirements
of 6 Mb and 34 min, respectively. The reason for the factor
of 100 increase in run time in this example is because this
is a small problem where the single “frequency to the fourth”
matrix formation dominates the cost of the “in-core” case.
This ceases to be so for larger problems, where the multiplier
is the factor of 20 mentioned earlier. Storage now scales with
electrical size cubed (the field histories) and time (still) with
the fifth power. Electrical target sizes are primarily constrained
by what constitutes an acceptable run time.

IV. CONCLUSION

We have demonstrated the application of curvilinear,
isoparametric modeling to scattering from dielectric targets
in contrast to the flat facetting and constant or linear element
treatments normally employed. Additionally, an implicit

treatment is used. This seems to provide stability without
resorting to the averaging processes normally found necessary.
Further, by permitting free choice of timestep, it avoids the
large increases in computational cost attendant on constraining
the timestep to be smaller than the smallest nodal spacing.
Where we can compare, more accurate results than those
published elsewhere are obtained.
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