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Electromagnetic Scattering from
3-D Curved Dielectric Bodies Using
Time-Domain Integral Equations

Martin D. Pocock, Michael J. Bluck, and Simon P. Walker

Abstract—A boundary integral equation (BIE) approach is frequency-domain or finite-difference time-domain analyses).
developed to calculate transient scattering from dielectric bod- Of these, a small number [6]-[8] have addressed dielectric
ies. The treatment is directly in terms of the E and H fields bodies

rather than magnetic and electric currents. It employs curvilinear . .
(quadratic) modeling, which allows accurate representation of In their paper, Mieras and Bennett (1982) [6] use a flat

arbitrarily shaped curved bodies. The treatment is isoparamet- facetted representation of the geometry coupled with piecewise
ric with the same quadratic representation of the spatial field constant approximation of field and Green function. Integrals
variation and with the temporal variation modeled by similar  gver self patches were evaluated analytically. An explicit
quadratic elements. Integration employs high-order Gaussian gq)tion scheme was used with the timestep constrained so that
guadrature with special treatment of the singular and hypersin- . . .
gular integrals that arise. The treatment is implicit, requiring the the field at_any_ loca_t'on could be eXpr(_a?SQd as a summation
solution of a sparse matrix equation at each timestep_ This adds of known historical field values. Instabilities were observed.
only trivially to the cost at each timestep and, by freeing the In 1994, Rynne [7] presented computations of scattering
timestep fr(_)m the constraint that it be smaller than _the smallest from dielectric targets using essentially the same numerical
nodal spacing, can greatly reduce the number of timesteps that ¢ mjation as Mieras and Bennett in 1982. Two techniques
must be employed. Additionally, it produces stable results without . S . .
resort to the averaging processes proposed elsewhere. Exampleé?® used in_combination to SUppress exponeptlally growing
calculations of scattering from a sphere, a cube, and an aimond instabilities. The natural approximation to the time derivative
are presented and compared with earlier published transient of the form f/ = (f**1 — f*¥)/At is replaced by the less
results and with r_esults from afrequency domain treatment. Good accuratef’ = (fk+1 —f’“_l)/2At. In addition, a retrospective
agreement and improved accuracy is found. time averagingf* = (fk+1 +2fk+fk—1)/4 is applied. These

Index Terms—Electromagnetic scattering, transient scattering. incorporations of earlier values reduce the accuracy somewhat,
but their use of information from an earlier timestep has the
effect of helping to cancel the oscillatory instability.

Also in 1994, Vechinskiet al [8] use the common

N this paper, we describe a boundary integral equatigtho—Wilton—Glisson elements [9] to represent geometry and

(BIE) technique for the time-domain solution of scatterfield. These are, again, planar triangles with enforced edge-
ing from three-dimensional (3-D) dielectric bodies. The Bligyrrent continuity. Again, late-time stability is a problem and
method employed uses numerical treatments which are maggaveraging technique is applied to suppress the instabilities.
common in areas such as elastostatics, but are as yet littls has been seen, the normal treatment in the time domain
used in eleCtrOdynamiCS. They include curvilinear mOdeling ‘ig to force the equations to become exp||C|t' that is, at each
the geometry and isoparametric quadratic representation of {fige step, each unknown value can be written wholly in terms
field spatial and temporal variation with high-order Gaussiat “known” values, which have been determined at previous
quadrature and special integration techniques for singulghe steps. Besides leading to stability problems, this restricts
integrands. The treatment is implicit, both gaining considerabige choice of time-step size to less then the smallest spatial
computational economies and avoiding the stability problenggscretization. In practice, it is often desirable to use a mesh
which explicit treatments exhibit. that is very fine over some portions of the body to model

A review of the range of methods used for eleCtromagne%arp geometric variation (SUCh as the NASA almond [10]'
field modeling has been published by Miller [1]. Here weyhich will be used later as an example), while elsewhere the
are concerned with integral methods applied to 3-D timgnesh fineness is determined only by the need to represent
domain systems of which there are relatively few occurrencgfe field adequately. In such circumstances, explicit methods
in the literature [2]-[5] (compared to say integral-equatiofequire time steps to be constrained to suit this geometrical

_ _ _ _ riﬁnement, rather than be small enough only to model the
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Fig. 1. Notation used for dielectric bodies. The body parameters have R C2 ot R
subscript “2” and the surrounding space “1"; the normais directed away 4
from the body and- andr’ represent two points on the body's surfage ( )

n tems of angentil surace cutend and ) and he LTS 18 SRS WM S 1 oo, - e sele
normal components of thE- and H-fields. Here, the integral 9 ) T P greg
! . . one (exterior) or two (interior).
equations are formulated directly in terms of theand H The integral equations are combined using the appropriate
fields. This use of the Cartesian components of the fields eases gral €q 9 pprop
: . . interface conditions
agglomerating the matrix and vector coefficients.
In Section Il we present the algebraic formulation.
Section lll describes method for forming and subsequently 1~ (D1 —D») =0, n-(B1—-B2)=0
solving the matrix system. The effectiveness of the present n x (E; — E;) =0, nx (H; —Hy)=0. (5a-d)
approach is demonstrated in Section IV, where a comparison

is made with previously published results. These interface conditions are used to eliminate (for example)

the interior fields (subscript “2”) from the right-hand-side
Il. ALGEBRAIC FORMULATION integral equations (3) and (4). The vector identVy =

The problem considered here consists of a (lossleg¥n - V) —n x (n x V) is used to eliminate the interior
isotropic) body with dielectric properties different from thoséelds from the left-hand side of these equations. Thus, the
of the surrounding space. The notation used is represent@igrior E- and H-field equations can be written in terms of
in Fig. 1: the body parameters have subscript “2” and tiige exterior fields as
surrounding space “1”; the normal is directed away from
the body andr andr’ represent two points on the body's E—ln(n~E1) —nx(nx El):|

surface S. €2
Integral equations are derived from the Maxwell equations 1 ps ,  OH
[12]. The exterior region equations are =T B <_fn X G )
__ rinc 1 Hi_y aH& R 1 aE/ R
B =E +E/S{_En X o +(n’xE’1)xﬁ+c—2<n’xat:>x§
1 / / 1 / aE&) R £1 f{ £1 1 aE/ f{
4+ =n xE 4+ —n' x X — 2nE o oy gy
<R ! C1 at* R + 62n 1R2 (9] an Jt* R g
1 1 E, \ R
# (e )%} v ;
“ Qo [&n(n -Hi) —nx (nx Hl)}
; 1 { €1 8E3 fz
arHp = H™ + — —n' x 1 OE/ R
4 R ot _ 2 1
T Js ) =1 . Enlxat* +(n/XH/1)Xﬁ
+ 1n’><H’+1n’><aH/1 ><R : :
— J— — !
R ! c1 at* R +i n/XaHl XE—F&HI-H/E
’ N C2 at* R H2 1R2
+ 1 n/ H/ + 1 n/ aEl R dS/ (2) A
. - - y
R YTe” o )R Y 1/ H R, @)
H2 C2 at* R
and the interior equations
1 pe ,  OH) Several authors [6], [7] have discussed methods for combining
arEg = “an p —Rr" x Eye the exterior (1) and (2) and interior (6) and (7) equations.
) In essence, these various alternatives comprise the addition
I in’xE’ +in’>< IE) XE of some multiple of one equation to the other. Mieras and
R 20 ¢, at* R Bennett [6] found a particular choice was required to help
1 1 JE'\ R suppress instabilities. We have found it sufficient simply to
+( =n-Eh+—n'- =2 )= 4ds'(3) add the equations with equal weights (and indeed have not
R C2 at* R . . .
investigated alternatives.
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The equations to be discretised and subsequently solved ar@ he spatial variation o’ field over the elementn, at the

therefore retarded time* (wheret* = ¢t — R/c) can be written as
a1 E; + as [in(n -E1)—nx (nx El)}
€2

E(&n;t%)],, ZS (&M Eam(t"). (11)

/
=Erc ¢ 4— {(—%n/ X %I;I*l> Here, E, ., represents théE fleld at theath node of spatial
d elementm. The temporal variation of th& field at the nodal
R 1 JE] R location («, m) can be described by
+(n’><E&)><ﬁ+—<n’ 8t*>xﬁ |
A A P
R 1 EIR] Eam( E:ﬂﬁ DB (12)
B4 —nl. — L s
'R2 "¢ Ot R

Here, 7" is the temporal shape function amgi?;; represents
1 k2 JH] the E field at theath node of spatial element and thegth
4r R at* node of time elemenp*.

The number of time elements ago, identifying the temporal

R 1 JE,\ R O : 7
+ (@' xE})x — +—(n'x X — element in which the retarded time falls, is given by
R2 C2 at* R R
R R * =int 1 13
cawmBialemil, g ol o
BN 202 t (where At is the time step size) and the intrinsic time

coordinate is determined from

€1
H —= -Hy) — H
o 1—|—a2LQn(n 1)—nx(nx 1)} =2y _1_£. (14)
cAt
— Hive 4 1 f1r JE] Integration over the quadratic elements is by Gaussian quadra-
47 R ot* ture. The number of quadrature points used per element can
- , - be varied from four to over four hundred depending on the
, R 1/, O6H} R . .
+ (n’ x H}) x —([n’ x X — geometry and accuracy required; 36 quadrature locations per
R2 ot* R .
. . element have been used for the examples given later.
cw.m R 1n/.3H’15 ds’ When the field node and source element coincide the
'R ¢ at* R variation of the integrand is so rapid that special integration
1 . OF! techniques are required. Both weakly singuldyR) and
I {(Efn’ X 8t*1> strongly singular(1/R?) kernels must be treated. (It is noted
s ‘ that although the integral equations for perfectly conducting
H R 1/, OH; R bodies also contain ordefl/R) and (1/R?) singularities,
(0’ x Hy) x T\ | R the (1/R?) is weakened tq1/R) for smooth surfaces.) The

'R weakly singular kernels are integrated by a repartitioning tech-
n’ v R H1 1 ' aH ' . .
+ -H]— +——n ds (9) nigue based on Lachat and Watson [13]. For strongly singular,
p2 R* " ppeo at* R « L " : : -

. . Cauchy principal value” integrations, a method incorporating
Equations (8) and (9) may be contrasted with Rynne [7, eGgibtraction of the singularity via “tangent planes” has been
(2.9) and (2.10)], where the more common surface elect@@veloped. This is an extension of the methods developed for
and magnetic currents are used. In addition, Rynne leaves {hg treatment of these terms for perfect conductors [14].
choice of coupling weights free. The discretization is discussed more fully elsewhere [5],

Discretization of the Integral EquationsThis work is an [15], [16]. The discretized equations can be written as
extension of the perfectly conducting BIE approach described

by Bluck and Walker [5]. We employ isoparametric quadratic o1 E + 062|: ! nn-E)—nx(nx E)}
discretization with nine-noded Lagrangian elements and point &2

. . . . . . M 9 3
collocation. Temporally, piecewise gquadratic interpolation is ;.. 1 )
used. The radial distance vector from ttie spatial node (with =BT 4 z_:l Z [l 2_: 82_1 Sa
locationr;) to the(&,n) coordinate location on thexth spatial - T .
element is written as . y [_u_n y Hfi{’n + 1 (n < EF fn) N %

Rm(l‘i;ﬂﬁ) =Tr; — Z Soz(gv n)rm,a (10) 1 ];A{,

. . ~ . : + — (@ EJP) = | +T5(r(R)) | (' x EJS,)
where S, is the ath spatial shape function ang, ., is the C1 R ’
position vector of theath local node on thenth spatial R R
element. The actual form of the spatial shape functions are X + (n’- Eg’fn)ﬁ (15)
described in many finite-element texts. ‘
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Written in component form the4] matrix, for example, is

m=1 q =1 nally + n3 Rz —n1l —n1 3
f{, [A] = —na Ry ni1R1 +ns3R3 —no K3
x | —H2n' x HE?, +— (n xEZP ) x — —nghy —n3Ro n1 Ry +naRp
R R
(18)
48 ! —(n'-EZ?, )R +T@(T(R))|:(Il x EZ) Using these matrices, ti# field (17) is written as below (and
€2 ¢ IR om the H field (16) follows similarly):
R R e
X ﬁ—i_ ( Ezl:n)ﬁ alE—i-ag[én(n-E)—nx (an)}
. 1 M 9 3
=E" 4 - D> I lw, ZZSQ
m=1 ¢ a=18=1
€1
aoHi+a|—n(n-Hy)) —nx (nxH .
1Hy 2[52 ( 1) ( 1)} « TQ(T(R))L+T8(T(R))L [A]E"“f
) 1 M 9.3 )) At R / 7/ R2 ,m
=H *EZIZ'J'W ZBZ_IS“ To(r(R)) 1 1 .
e T N\ Tar ar T Ts(r(R) 13 |[CIELT,
€1 3 1 3
X |=n’ x Ea’fn + —(n' x Ha’fn .
R ot ) To(r(B) i1\ g 1
A ~ At R [ ] a,m ( )
R 1 R '
x o+ — (0 HIR) S|+ Ta(r(R)) 5
1 : : LY Y, Z > S
R R m=
x| X HEE) X o (0 ngf;n)RQ e e
X Lﬁ (r(R)) 1 + 13 (T(R))i [AJEZ?,
At R ’ R? o
|J|w .
g-:l zq: a Z Z + 8 Tp(r(R) 1 +1T (T(R)) [CIEZ>,
€1 1 f{ (9] At CQR s R2 cm
X n’ x Eg’fn + —(n' x Hz’fn X — .
[ = o )% & (B 2 g |
N 1 f{ At R a,m
1 / B,p"
P2 BV | + Ta(r(R
+ 2 C2 (0" Hat) R +Ts(r(R) As noted, the formulation here is directly in terms of the

FE and H fields: the common formulation is for tangential
surface field § and M) and normal scalar fieldn(E and
n.H) equations. Due to th&- and H-field formulation, each
(16) of the unknowns can be written in terms of their Cartesian
components, which makes for easier combination into a matrix
The summations are over the elements; (usually) for 36 system.
guadrature locations;, over nine nodes per spatial element Writing the six-vector comprising the Cartesian components
and three per temporal element. The Jacobian of the transfadmE and H as

X l(n x HEP ) x E—i——( xHﬁ’p)%

a,m R2 a,m

to the bi-unit square i$.J| and w, is the Gaussian quadra- E,
ture weight corresponding to Gauss IocatigmHere,ng,’; E,
represents theé” field at theath node of spatial element E E,
and thegth node of time elemem* ago. The dependence on {H} - |H, (20)
parameterised quadrature locations and field location has been H,
suppressed for clarity. In full, the radial vectgy for example H,

would be written asRk,,(r;; (&,71),)-

Formation and Solution of the Matrix SysteriVe now ad-
dress the manipulations required to develop a soluble matrix o {E } Ta {i—‘n(n -E) } o {n x n(n x E) }
system from (15) and (16). To create a matrix which multiplies H ? 1 nx (nxH)
the solution vector (ofe andH fields) the following 3x 3 {

the discretised integral equation can be written as

E inc M 9 3 E 8.,p"
matrices (tensors) are defined: = H} +Y DN Z[K]{H} (21)
q

a,m

[AlV=(nxV)xR; [B[V=nxV where[K] is the amalgamation of the right-hand sides of (19)
[C]V=(n-V)R. (17a—c) and its H-field equivalent.
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Implicitness and Stability:lt can be seen from the integral 0.40 ; . .
equations that the field at the present location and time is
calculated from the fields at points on the surface at the

relevant retarded times. Many of these retarded time values 0.30 - * ves |
-4 Vechinski et al

Analytical

will have been determined at previous time steps. It is only hd
the nearby field contributions that are influenced by as yet 0,

undetermined field values. Nearby in this context means nodes 0.20
with associated Gauss point locations within the support of
the temporal shape function; that is, within a sphere of radius |

2¢cAt of the field node.

Coefficients multiplying these known values are multipliedg
by the corresponding retarded surface field values and add&l .00 &ce
to the incident field to obtain the right-hand-side vector for thes,
matrix system. Coefficients multiplying as yet unknown values®
remain on the left-hand side, forming a sparse matrix. Solution  -0.10
of this sparse system is performed at each time step. The
actual matrix solution is achieved at negligible computational
cost using an iterative solver. The dominant cost, just as with ~ “9-20
the explicit approach, are the summations required to form
the right-hand sides of (21) at each timestep. These issues of

-0.30 | i .

storage and operation requirements are discussed more fully .
elsewhere [5], [16], [17].
It is observed that this implicit approach provides stability, 040 . 1 1
and we have found no need to apply the various stabilization 0.0 5.0 10.0 15.0 20.0

schemes [7], [8] noted above, which are used with the more time (im)

common eXpIICIt, marChlng on in time” methods. Fig. 2. The equivalent surface magnetic currevf, at6 = 90°, ¢ = 0°

for pulsed excitation of a sphere. Comparison is made between the present

code, the results of Vechinskt al. [8], and the analytical solution.
[ll. RESULTS

We present below several example results obtained with the
method described. The geometries used are a sphere, a cube, .
and the NASA almond [10]. 0 ) T ' '

A. Sphere

Vechinski et al. [8] publish results for a dielectric sphere
and compare with an analytical result. The unit radius sphere is
centered at the coordinate origin and is of properigs= 2.0
ur2 = 1.0. The incident pulse is described by

Einc _ EOLC[—(ct—cto—r.f{)z]
w

with Eqg = u,, k = —u, and the initial wave origin set by
cto = 6.0. The triad(u,,u,, u.) represent the unit vectors in
the coordinate directions.

Vechinskiet al. [8] use 138 Rao—Wilton—Glisson [9] patches
(a total of 207 edges) to describe the sphere and the surface
fields. The BIE results presented here use 24 nine-noded
guadratic quadrilateral elements (98 nodes).

We define the usual spherical-polar coordinate system
(r,6,¢) relative to the(u,,u,,u;) triad. Fig. 2 shows the
equivalent surface magnetic curretd,, at 6 = 90°, ¢ = 0°,
and Fig. 3 shows the equivalent surface electric curtgnt 04
at ¢ = 90°, ¢ = 90°. Of the four surface currents presented 0.0 5.0 10.0 15.0 20.0
in Vechinski et al., these are the two which display greatest time (Im)
differences between the computed and analytical results. |t ) ) ,
can be seen from the graphs that the results using the ig. 3. The equivalent surface electric currefpt at# = 90°, ¢ = 90° for

L ed excitation of a sphere. The present results and those of Veckinski
code presented here are significantly more accurate. They @res] are compared with the analytical solution.

J, (mA/m)
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0.020 | ]
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o~ Vechinski et al MOT ooto | |
Vechinski et al IDFT R /
E
S 0005 |
0.030 - 1 5 j
0.000 \
\
~ -0.005 - \
>
=  0.015
u
d -0.010 1
-0.015 : ‘ !
0.0e+00 2.0e-09 4.0e-09 6.0e-09 8.0e-09
0.000 time (sec)
Fig. 5. Interior surface electric field magnitude at a por0(077,—0.02,
—0.01) on the almond for pulsed excitation. Inset: The mesh of the NASA
almond [10], comprising 132 quadratic quadrilateral elements.
-0.015
version have been published, it thus, nonetheless, provides
an interesting challenge for the present time-domain dielectric
-0.030 - L ! ! L treatment.
0.0 3.0 60 9.0 12.0 15.0 The almond mesh comprising of 132 elements is shown
time (im) inset in Fig. 4 and is 0.252 m long. Material properties the
Fig. 4. Backscattered component ofE field from a cube. The present Same as the Vechinslket al. [8] sphere and cube results
results are compared with those of Vechinskial. [8]. cited a_bove(gr2 = 2.0, pp2 = 1_()) were used. The precise

o ~ configuration of this problem is described elsewhere [10].
not shown here, but good agreement was similarly obtainedit can be seen that near the tip the mesh is refined to

for other orientations. accurately model the geometry. An explicit method would
require a time-step size smaller than the temporal separation
B. Cube of the nodes on the smallest element. The implicit method

The results of transient scattering from a cube have alpoesented here has no such limit and, thus, uses fewer (larger)
been published by Vechinskt al. [8] using the incident wave time steps, reducing computational costs.
described in Section IlI-A. The cube is centered on the origin, Fig. 5 shows the: component of the interior surface electric
has a side of unit length and has the same material properfiedd at (—0.077,—0.02, —0.01) when the almond is illumi-
as the sphere. Meshes of 98 and 290 nodes, respectivagted with a Gaussian pulse of half-height full-width equal
were used by us with virtually indistinguishable results. Th® 0.127 m, traveling in the: direction andz polarized. The
backscattered-directed component of the field is shown in stability of the field for many transit times is clear.
Fig. 4 together with the results due to Vechinskial., which A comparison between the time domain code and a
comprise an inverse discrete Fourier transform (IDFT) of faequency-domain code [18] is presented in Fig. 6. A harmonic
frequency-domain result and a marching on in time (MOTgxcitation is used in the time-domain code, with the harmonic
result. (Note that these results have been obtained by insident wavez directed and polarized in the direction,
directly from the figures printed in their paper and are subjeand of frequency 1.19 GHz. The almond is approximately
to some error from this.) one wavelength long at this frequency. The quasi-steady-state
The results are in reasonable agreement with Vechieksi(after several transit times) time-domain solution is extracted
al., though some differences are apparent, notably the |doe comparison with the frequency-domain code solution. The
peak, which is in better agreement with the MOT calculatioresults show the variation of the magnitude of theand =
than the IDFT result. The reasons for this are unknown. components of the interior electric field plotted against:ithe
coordinate of a line of nodes from the tip to tail, across the
C. Almond “top” of the almond. The upper and lower lines represent the

The NASA almond [10] presents a challenging application @hdz components, respectively. Good agreement between
for modeling: it has a very low head-on radar cross sectiéhe time- and frequency-domain codes is apparent.
(RCS), smoothly curved geometry, and a sharp tip. The
RCS is dominated by creeping waves and so its computatiBn
can be adversely affected by geometric distortions such asVe will quote here actual run times and storage needs for
“staircasing” or “facetting” produced by some modeling techa particular case, along with an indication of how these will
nigues. While measurements on only a perfectly conductisgale with problem electrical size.

Costs and Timings



1218 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 8, AUGUST 1998

treatment is used. This seems to provide stability without
resorting to the averaging processes normally found necessary.
Further, by permitting free choice of timestep, it avoids the
® large increases in computational cost attendant on constraining
the timestep to be smaller than the smallest nodal spacing.
Where we can compare, more accurate results than those

0.8 T T T T R

—— Frequency Domain
® Time Domain

(1]

©
»
T
it

(2]

Electric field (V/m)

(3]

(4]

(5]

(6l

0

(7]
(8]

1 1 1 ]
-0.05 0.00 0.05 0.10

x-coordinate (m)

.0 o
-0.15 -0.10 0.15

Fig. 6. The magnitude of the and = components of the interior surface
electric field along the top of the almond (at= 0, = > 0 for « varying

along the length of the almond). Comparison between time-domain an[iq]
frequency-domain code results. Upper and lower lines represent el

& components, respectively. [10]

For the sphere discretized with 98 nodes, 21 Mb wdsl]
required with an elapsed run time of 25 s on a DEC Alphasta—2
tion 255 with a 233-MHz processor. Asymptotically, storage
requirements scale with electrical size to the fourth power afi$l
run time to the fifth, although on this small problem some
lower scaling cost components actually dominate.

Storage can quickly become prohibitive. An alternativé4l
approach is to recalculate all the coefficients of (21) at each

published elsewhere are obtained.
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