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Numerically Efficient Solution of Dense Linear
System of Equations Arising in a Class
of Electromagnetic Scattering Problems

Jean-Rea Poirier, Pierre Borderies, R. Mittra, and V. Varadarajan

Abstract—In this paper we present an efficient technique for of the present solver. We further show that a high matrix
solving dense complex-symmetric linear system of equations aris- compression rate can be achieved by successive refinements
ing in the method of moments (MoM) formulation. To illustrate \yithoyt sacrificing the accuracy required. This procedure not
the application of the method, we consider a finite array of L .
scatterers, which gives rise to a large number of unknowns. only leads to a saving in the memory rgquwements, a”O_' thus
The solution procedure utilizes preconditioned transpose-free €nables us to handle large problems which would otherwise be
QMR (PTFQMR) iterations and computes the matrix-vector unmanageable, but also contributes to the numerical efficiency
products by employing a compressed impedance matrix. The of the algorithm.
compression is achieved by reduced-rank representation of the Next, in Section II, we study the problem of solving the

off-diagonal blocks, based on a partial-QR decomposition, which i t f fi itself. To illustrate the effici
is followed by an iterative refinement. Both the preconditioning Inear system of equatons 1isell. 1o lllustrate the einciency

and the compression steps take advantage of the block structure Of the TFQMR algorithm [1], we carry out a comparative
of the matrix. The convergence of the iterative procedure is study of the performances of several iteration techniques. The

investigated and the performance of the proposed algorithm is important problem of preconditioning is addressed in Section
compared to that achieved by other schemes. The effectlveness”L both from the points of view of implementation as well as

of the preconditioner and the degree of matrix compression luati fth f fth diti
are quantified. Finite arrays of variable shape and sizes are evaluation ot the periormance or the preconditioner.

considered, and it is demonstrated that the ability to solve large ~ The matrix compression process, described in Section 1V,
problems using this technique enables one to evaluate the edgeincludes both the exploitation of the obvious symmetries of the
effects in the finite array. Such array is basically flat and periodic, system and the application of the QR compression applied to
but the algorithm is still efficient when variation with strict  {he off-diagonal blocks. Finally, to improve the accuracy of the
periodicity or flainess exists. _ _ result derived with such a highly compressed matrix, we apply
Index Terms—Electromagnetic scattering, moment methods, the refinement procedure proposed in [2], after generalizing
numerical analysis. this procedure to an arbitrary ordet. We then evaluate the
performances of the algorithms in terms of the accuracy of the
|. INTRODUCTION results obtained for different compression ratios and orders of

N this paper, we present an efficient algorithm for soIvin@eﬁnemem'
I ’ Section V presents some numerical results for truncated

the problem of estimating the edge effects in a finite array . . L i
. . . .arrays. Section VI discusses a humber of applications of the it-
of identical scatterers, a problem that requires the solution

: . .er?tive technique. Finally, Section VIl draws some conclusions
of a large dense linear system of equations. The numerica : ;
. : . on the basis of the results that could not have been derived
algorithm is based on a preconditioned transpose-free quasi- . . .
0 . o . ...0n the available computer without the use of the compression
minimal residual (PTFQMR) method, which is combined Wlt% orithm
a matrix compression scheme involving rank-reducing partiallg '
QR decomposition. The latter is followed by an iterative refine-
ment of the solution to obtain the desired accuracy. Both the
preconditioning and the compression algorithms are configured !l COMPARATIVE STUDY OF ITERATION TECHNIQUES
such that they can take advantage of the block structure of
the matrix. A comparative evaluation of the performance g |ntroduction to Iterative Procedures
the present iterative technique is carried eig-a-vis other . . . . .
: . . . . . A number of iterative procedures are available in the litera-
matrix solution methods—both iterative and direct—with &

. . . . - re and we have tested three of these on a comparative basis
view to demonstrating the superior computational eff|C|en<B/y applying them to a representative example

. . , The generic one we consider is that of a truncated array
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Fig. 1. Computation time as a function of the number of unknowns fdkig. 2. Efficiency of the band preconditioner: number of iterations versus
TFQMR, CGM, and direct Gauss methods. preconditioner bandwidth.

array. Various configurations of such arrays are conS|deredsll51Ch that C' A as close as possible to identity matrix I. We

this paper to test the algorithms discussed herein. then solve an equivalent systemmCiz = C~*b by using an

All of the three iterative techniques used in this worke 4iive scheme. Sincé is both dense and complex in nature,
are well known and have been extensively discussed in g% can only use preconditioners based on an incomplete
literature. They are:

factorization. In this work, we have investigated the following

1) Conjugate gradient method (CGM) [4]. approaches to generating the preconditioner C.
2) Generalized minimum residual method (GMRES) |n the first approach we construct a banded matrix by
[5]-{7]. retaining the off-diagonal terms up to a certain width and fac-

3) Transpose free quasi minimum residual (TFQMR). Thgyrize the resultant matrix by using the Cholesky-type method
QMR approach is based on Lanczos method describggplied to the complex-symmetric matrix. The bandwidth is
in [6]. The TFQMR approach [1], [2], [8] is an im- chosen such that it is a good compromise between the increase
proved version which does not require any extra storage the computation time of €A with an increase in the

and is also amenable to preconditioning. bandwidth, and the gain in the efficiency of iterations as @
_ _ tends to approach the identity matrix I.
B. Numerical Results for Iteration Procedure In the second approach, we factorize a set of diagonal

One way to judge the convergence rate of an algorithm is f#pcks, whose block size may be variable, again by using
compare the computation time it requires to reduce the residtl® method described above. The special choice of block
to a given value, say 1@. In Fig. 1, we plot the CPU times Size that correspond to submatrices associated with the in-
required to achieve convergence for the CGM and TFQM®vidual patches offers considerable advantage, because the
algorithms as functions of the number of unknowns, and algégonal blocks are all identical, and the storage requirements
compare these results with those for the direct Gauss soh&i€ drastically reduced for this case as well as CPU time.
We omit the corresponding results obtained with the GMREgoreover, since the Green'’s function naturally decays with
scheme because of the poor convergence rate it exhibits fae distance, the matrix structure described above is block-
the cases studied. diagonally dominant, which is desirable.

The above results clearly demonstrate the superior efficiency
of the TFQMR algorithm. Furthermore, since it is amenabB. Numerical Results for Preconditioning

to preconditioning, it is unquestionably the best choice for 1) The Effect of Preconditioning on the Convergence of
the cases under study, viz., truncated arrays, which genergie’ ;i ation Procedure:For the example of an array of 15
diagonally dominant matrix structures. Before closing thiSyiches Fig. 2 shows the number of iterations required to
SeF:tIOﬂ, we point out th.at the significant gan achle\_/ed_ chieve convergence as a function of the bandwidth. We note
using the TFQMR algorithm over the Gaussian eliminatiog, ¢ the optimum bandwidth coincides with the size of the self-
scheme is evident from Fig. 1. block and that an increase in the bandwidth does not reduce
the number of iterations.

Table | presents a comparison of the results derived for
. L several examples by using band and block preconditioners,
A. Implementation of Preconditioning for a number of different bandwidths and block sizes. These

Preconditioning offers a significant potential for improvingesults clearly show that significant improvements can be
the computational efficiency of the matrix solution. Of cours@chieved via preconditioning, confirm the previous conclusions
the challenge that confronts us is the derivation of a matrixWe reached on the choice of the optimum bandwidth, and

[ll. PRECONDITIONING WITH TFQMR
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TABLE | from 50% in the general case (up—down symmmetry) to lower
EFFECT OF BAND AND BLOCK PRECONDITIONING FOR rates depending of the geometrical symmetries.
DIFFERENT BANDWIDTHS NUMBER OF REQUIRED I TERATIONS
Preconditioner w;)tr}:;-ut bloc(;<651ze blo;l; 851ze banc;\gldth bam;v(;/xdth ban;irgdﬂl A. Block QR Compressmn
matrix 864 | 166 5 5 35 5 5 Let us now discuss the global compression of the impedance
matrix 1440 | 173 3 2 27 3 2 matrix A into an approximate matrix A We do this by
matrix 2016 | 174 4 3 30 3 3 individually compressing each of the off-diagonal blocks using
an incomplete QR factorization, which approximates these
TABLE Il blocks with an equivalent matrix of an inferior rank. The QR
EFFECT OF PRECONDITIONING FOR A LINEAR ARRAY OF 21 PATCHES factorization entails the decomposition of a matrix B in the
Preconditioner block size 96 | bandwith 90 [ bandwidth 96 | bandwidth 250 form B = QR' Wher? Ris ,an upper trlanQUIar matrix and Q_IS
Nomber of Tterations p o 3 ; an orthogonal matrix. Using the Householder transformation
Total comp. time (sec) 132 145 134 138 method we can write
Solve time (sec) 2 15 4 8 B = (Hn—lHn—Q .. Hl)—lR — QR

where H are Householder matrixes [9]. The stépof the

TABLE 111 ; ;
algorithm can be written as
EFFECT OF PRECONDITIONING FOR A SQUARE ARRAY OF 25 PATCHES 9

- - - - R(k) R(k)

Preconditioner block size 96 | bandwidth 90| bandwidth 96| bandwidth 250 Bk — Hk—l . HlB — 1 2 & i
Number of iteration 12 17 8 7 0 R(n_ )
Total comp.Time(sec) 191 198 193 204 . N i

Solve tme o0 - ” 5 = If B is such that R*~*) is close to zero, then there exists a

matrix B of rank k& which is close to B, and is defined by
_ B=QrR=B-U,

extend them to the block size as well. The table also shows ~ R R® R®
that efficiencies in terms of required number of iterations are withU ~ 0, Q = (Q(’“) 0),R= < (1) (2) )

very close for the band and the block approaches, provided
that their respective bandwidths are also close. In this eventNext, define a threshold that provides us the criterion to
the block preconditioning becomes the preferred approach determine if R*~*) ~ 0. Specifically, at each transformation
2) Computation Time:lt is interesting to track the effect stepk, we compare the norms of all the lines of 'R with
of preconditioning on the computation time, and we do thi§e norm of the first line of ) by computing their ratio. If the
below. Tables Il and Ill present the results for a linear arrdpaximum ratio is weaker than a given threshojdhen all of
of 21 patches with 2016 unknowns and a square array of #® terms of R*~*) are set to zero; otherwise, the algorithm
patches with 2400 unknowns, respectively. is allowed to continue.
We observe from the above tables that the preconditioners
are so efficient as to make the solve time negligible conB. Refinement of the Solution

pared to the I/O time for the matrix fill, the former being Next, to improve the accuracy of the result derived by

matrix elements. We further note that the convergence is m@gbnosed in [2] after generalizing it to an arbitrary order
rapid when the size of the block preconditioner is identical to

that of the band. These results demonstrate that the PTFQMR =V & [Ac + (A=Al [lo+ L+ -+ L +-- ] = V.
algorithm is really a very powerful tool for solving problemsNext, we note that by solving the following system of equa-
of this type. Furthermore, we observe that the availability of ans
efficient solver is an essential tool for handling large systems
that are highly sensitive to numerical error propagation, and
for implementing multiple refinement procedures, discussed e

later in this paper, that require the construction of the solution Ady=—(A—-A) 1

anew for each step of iteration. i ) i . ) )
in a successive manner, we can derive an iterative solution

which is as close to the true solution as we desire, provided
that the spectral radius of A(A — Ac) is less than one.

. o This iterative refinement, if limited to the ordér, leads to
Matrix compression is not only a useful tool for the re¢s — IA — A.l)):

duction of RAM memory requirements, but also is crucial for X

solving large problems. In this work we carry out the matrix 2] < 8*||[AZ " IHoll = 0(6%)
compression in two steps by employing the QR compression AL — VI < &+LAL Il = o(s++!
scheme as described by a number of authors (see [2], [4], and I = H “ H Ioll ( )
[9], for instance), after exploiting the presence of redundancibs practice, such a second-order refinement is usually found
in the matrix elements. This initial compression rate varide be sufficient. We note, in passing, that each iteration step

IV. MATRIX COMPRESSION
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TABLE V
RELATIVE RMS ERROR IN CURRENT DENSITY COEFFICIENTS
FOR (@) ExampLE 1, (b) EXxaAMPLE 2, AND (C) EXAMPLE 3

TABLE IV
COMPUTATION TIMES ASSOCIATED WITH DIFFERENT EXAMPLES
Example-1 Example-2 Example-3
Matrix fill (sec) 131 410 556 T

compression rate no refinement 1st order ref. 2nd order ref.

.01

QR compression and solution (sec) 44 132 238

129% 11.6 % 13% A48 %

.05
Refinement 8° (sec) 76 227 381

5.7% 12.9% 13% 46 %

3.7% 15.5% 1.7% .63 %

2.1% 33.2% 10.3 % 4.7 %

requires extra input-outputs involving the mass memory of
the uncompressed matrix A. However, we note also thaisA

(@

involved only in the solution of the linear systems, while Ais =

Compression rate no refinement 1st order ref. 2nd order ref.

used solely to form the right hand side. 01

73 % 6% 3% 01 %

.05

3% 6% 3% 02 %

V. NUMERICAL RESULTS DERIVED BY A

2% 6.8% 38% 035 %

USING BLOCK-PRECONDITIONED TFQMR 2

1.5% 21% 38% 12 %

We have applied the block-preconditioned TFQMR solver

(b)

to the following three examples involving different number of
T

Compression rate no refinement Ist order ref. 2nd order ref.

unknowns. 5

25.1% 6.5% 95% 14%

1) Example-1: truncated, periodic array of 25 patches,i05

125% 6.9 % 85% 17 %

configured in a square shape involving 2400 unknowns

(initial compression 25%). 2

2) Example-2: truncated, periodic linear array of 35
patches with 3360 unknowns (initial compression 25%).

3) Example-3: nonperiodic array, same as Example 1 with
one element removed (initial compression 50%).

A. Computation Time T

Table IV lists the computation times associated with the

81% 93% 2.35% 50%
5.7% 122% 4.4 % 14%
(©
TABLE VI
Example-1 Example-2 Example-3

co-pol X-pol co-pol X-pol co-pol X-pol
0to.1 -19.26 -57.43 -14.53 -53.72 -11.98 -50.17

-19.27 -57.02 -14.44 -49.53 -11.99 -49.73

three principal steps involved in the solution process, viz.,

filling the matrix; solving the system with the compressed

matrix; and, second-order refinement. The tolerance valgg without refinement and, the same error with the first- and
chosen for the examples aboveris= 0.01. We should add the second-order refinements, respectively.

remark that the computation times include the time needed forrpe results tabulated above lead to the following conclu-
the input-output operations that are machine dependent afhs for the problems investigated.

have not been optimized on the Cray computer used to solve
the problem.

The following observations may be made about the results
presented in Table IV. First, a major part of the matrix fill-
time is devoted to the computation of the entries in the matrix.
The computational burden for this calculation is proportional
to N? unless any redundancies are exploited. However, since
the uncompressed matrix is stored in the mass memory, this
computation may be carried out in advance as a separate
process. As mentioned previously, the solve time is relatively
small, as is the time required to carry out the compression.
For the case of multiple right-hand sides, the compression step
has to be performed only once. The bulk of the time in the
refinement process is consumed by the input—output operations
involving the uncompressed matrix. The CPU time needed for
this process is approximately the same as the solve time.

1)

3)
B. Compression Efficiency
We have carried out additional numerical experiments with
the above three examples for different values td determine 4)

the efficiency of compression. Below we tabulate the compres-
sion rate realized for the entire matrix and the rms relative
errors ||[I — I.||/]|]] in the coefficients of current densities

It is possible to employ compression rates of 2% with-
out unduly sacrificing the accuracy of the results. For
example, for a given RAM size, the use of compression
enables us to tackle the problem of a truncated array
which is seven or more times larger than can be solved
without the use of compression.

2) We have been able to demonstrate the gain in efficiency

realized via the use of the refinement procedure that has
been proposed earlier in [2], but has not been tested
previously to the best of our knowledge. We find that
each refinement step enhances the accuracy of the result
by about an order of magnitude. Another important
feature of the refinement procedure is that it leads to
a convergent solution even when the initial solution is
considerably different from the final result.

Despite the considerable improvement achieved in
terms of the required RAM size, the need for the
storage of the uncompressed matrix on the disk is not
obviated.

The achieved accuracy in the results does vary from
problem to problem. However, this level is comparable
to that realized in the process of discretization in MoM.
Hence, for a required accuracy level, one must consider
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the tradeoff between the compression and the order
refinement.
5) Relatively good results obtained for the examples co
sidered herein can be attributed to the structure of t
associated matrices that are diagonally dominant, al
are therefore well-suited for deriving rapidly convergen
solutions via iterative methods. We cannot summaril
extrapolate these results to the general case of
arbitrary structure.
6) The results achieved for the compression rate are d
pendent on the chosen for these examples. Howeve
the degree of accuracy is strongly dependent on t
array configuration. For instance, this accuracy is mug
better for the linear array than it is for the square one
For the latter, the off-diagonal blocks may have rel
tively significant norms and the compression procedu
appears to have a larger impact on the efficiency of t
solution.
7) The compression rate is dependent not only on the ary. 3. Elementary cell description.
configuration, but also on the number of cells as well as
the number of unknowns in this cells. When optimal QR s
compression is reached, most nondiagonal blocks asze o
compressed in a few units. This high degre of numerical
degeneracy, as well as the high level of compressio§1
rate, can be attributed to the phasing properties of trgﬂe 35+
impedance matrix terms for blocks corresponding t§ .,
cells sufficiently separated. Ve \

] \
N
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We now present some results that show the errors in the
co- and crosspolarization results for the RCS, and how thege
errors relate to the computed current densities with secogd N
order refinements. The results obtained fovalues between 0 ; - ; - ===

0 2 4 6 8 10 12 14 16
0 and 0.1 are the same and only a very slight difference appears _ _ _
. Fig. 4. Linear array: evolution of the currents on the central cell as a function
in the computed cross-pol results for= 0.2.

of the number of neighboring cells.

A. Linear Array

VI. APPLICATIONS We have investigated linear arrays of 3, ---, 21 cells,
In this section we illustrate the use of the iteration algdh@t are orientated either alonge@r Oy. The reference cell

rithms, developed previously, to compute the current denslﬁ/taken to be the eleventh of the longest arrays. Fig. 4 shows

distribution in a finite periodic array. Periodic arrays arb1€ Progressive evolution of the errér as defined above for

typically analyzed under the assumption that the array the different size arrays, beginning with the smallest case. We

infinite, and that it is sufficient to deal with a single celPPServe thatthe errdr becomes less than 1% once the central
of the,array which requires relatively few unknowns. ousellis surrounded by at least three cells on each side, regardless

objective is to evaluate, accurately, the effects of truncation gkWhether the orientation is alongi@r Oy, and that this error

the array on the induced current density distribution. We begfn P& Very significant for smaller arrays. We note, further, that

by defining the error parametdt = ||.J — Jref||/||Jref]| the edge _effects_ are more pronounced When_ the polarization
where Jref is the reference current density on the cent&f the incident field is parallel to the array axis.
element, which is far removed from the edges.

The elementary cell is shown in Fig. 3, together with it8- Sduare Array
mesh and the coordinate axes. We assume that the illuminatinflext we go on to discuss the numerical results we have
plane wave is normally incident, at the resonant frequenaybtained for square arrays df 3 « 3,5 % 5, ---, 13 % 13
and with a polarization parallel to £0 We first consider a elements. Notice that in this case the number of unknowns
linear array configuration of these elementary cells, and follo 10 140 whereas for our computer RAM size available was
this up with the more general case of a rectangular arrd900. Once again, the reference cell is taken to be the central
configuration. element of the largest array. Fig. 5 shows the evolution of the
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Fig. 6. Evolution of the currents on the cells on th& x 13 array; reference is the central cell of the array.

error in the central cell for the different arrays. We note thaivestigate the particular geometry by using an algorithm, such
the edge effects are more significant now than they were fas the compression code, that enables one to handle a large
the linear array, since it is necessary to have at least 8 problem.
size array for the center element to stabilize.

We could observe that a small arrays«(5) behaves consid- VIl. CONCLUSIONS

erably differently from the infinite array, a result that is not In this work we have successfully illustrated the application
totally unexpected. Next, we saw that we need t0 go t0 & ZOge 5 technique for the efficient solution of large, dense,
in the center which is sizable, for instancelfbx 5 elements jinear systems arising in the problem of truncated arrays. The
in the 13 « 13 array for which the error is plotted in function method consists of four steps, viz., use of iterative procedure;
of the cell location. We further observe that the behavior gfeconditioning; matrix compression; and solution refinement.
E is different in thex andy directions; for instance, the edge p comparative study of various iterative methods using
effect is seen to be significant only over the edge cell inithe Kryloy subspaces has been carried out. It has been found
direction, whereas it spreads over four cells in the orthogonghkt a rapid convergence rate is needed for these methods
direction. Thus the edge effects can be more significant in thi$ avoid numerical error propagation in large systems. The
case than they are for the linear array. TFQMR scheme has been found to provide superior per-
These plots show the regions where the infinite arrdgrmance over several of the other methods tested. Both
approximation is valid, as well as the region where the edg@ge block and band preconditioning schemes of this method
effects should be taken into account and corrected. We shohltlle been implemented and tested. They show significant
point out that the previous results are dependent not only improvements, as evidenced by the reduction in the number
the polarization of the incident field but also on the geometnf iterations to approximately 2% of the nonpreconditioned
of the elementary cell. Thus it is necessary, in general, tase, with only a slight increase in the memory requirement.



POIRIER et al. DENSE LINEAR SYSTEM OF EQUATIONS

1175

The preconditioning has been found to be optimal when thg] Y. Saad,Iterative Methods for Sparse Linear SystemBoston, MA:
diagonal blocks are identical to the selfblocks associated witﬁ] PWS, 1996.

the individual cells. This choice is also found to be optimal
from the CPU time and memory points of view.

The process of matrix compression has been implemented i
two steps. The first one, which exploits the obvious symmetries

Y. Saad and M. H. Schultz, “EGMRES: A generalized minimal resid-
ual algorithm for solving nonsymetric linear system§IAM J. Stat.
Comput.,vol. 7, no. 3, July 1986.

R. W. Freund, “Conjugate gradient-type methods for linear systems with
complex symmetric linear systemsSIAM J. Stat. Computvol. 13, no.

1, Jan. 1992.

of the system, with a weak loss of generality, yields a9 P. G. Ciarlet, “Introductiona l'analyze nurérique matricielle eta

compression ratio of about 25%. This step was followed,
by the QR compression of the off-diagonal blocks, and this
strongly improves the compression ratio, bringing it up to

I'optimization,” Masson,Oct. 1990.

R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian descriptiofsEE Antennas Prop-
agat. Mag.,vol. 35, June 1993.

J. Song, C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm

; . L . 11]
approximately 2%, which represents a significant |mproveme[ni[ for electromagnetic scattering by large complex objedSEE Trans.

in one’s ability to handle a large problem size. The accuracy of

Antennas Propagatyol. 45, pp. 1488-1493, Oct. 1997.

the results obtained with the compressed matrix has been fur-
ther improved via multiple-order refinement, achieving levels

of accuracy better than 1% when compared to the reference

Jean-Rere Poirier received the Eng. degree from

solution.

This method should be closely compared with other fr
quently reported ones, such as in [10] and [11], in tern
of efficiently and accuracy. Future extensions of the meth
to conformal arrays and to antennas mounted on compl

structures that are often treated with hybrid methods &g

contemplated. It is anticipated that further refinements wo

be required to treat these more general cases, and also to tackle

the general case of an arbitrary structure or scatterer.
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