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Numerically Efficient Solution of Dense Linear
System of Equations Arising in a Class
of Electromagnetic Scattering Problems

Jean-Reńe Poirier, Pierre Borderies, R. Mittra, and V. Varadarajan

Abstract—In this paper we present an efficient technique for
solving dense complex-symmetric linear system of equations aris-
ing in the method of moments (MoM) formulation. To illustrate
the application of the method, we consider a finite array of
scatterers, which gives rise to a large number of unknowns.
The solution procedure utilizes preconditioned transpose-free
QMR (PTFQMR) iterations and computes the matrix–vector
products by employing a compressed impedance matrix. The
compression is achieved by reduced-rank representation of the
off-diagonal blocks, based on a partial-QR decomposition, which
is followed by an iterative refinement. Both the preconditioning
and the compression steps take advantage of the block structure
of the matrix. The convergence of the iterative procedure is
investigated and the performance of the proposed algorithm is
compared to that achieved by other schemes. The effectiveness
of the preconditioner and the degree of matrix compression
are quantified. Finite arrays of variable shape and sizes are
considered, and it is demonstrated that the ability to solve large
problems using this technique enables one to evaluate the edge
effects in the finite array. Such array is basically flat and periodic,
but the algorithm is still efficient when variation with strict
periodicity or flatness exists.

Index Terms—Electromagnetic scattering, moment methods,
numerical analysis.

I. INTRODUCTION

I N this paper, we present an efficient algorithm for solving
the problem of estimating the edge effects in a finite array

of identical scatterers, a problem that requires the solution
of a large dense linear system of equations. The numerical
algorithm is based on a preconditioned transpose-free quasi-
minimal residual (PTFQMR) method, which is combined with
a matrix compression scheme involving rank-reducing partial
QR decomposition. The latter is followed by an iterative refine-
ment of the solution to obtain the desired accuracy. Both the
preconditioning and the compression algorithms are configured
such that they can take advantage of the block structure of
the matrix. A comparative evaluation of the performance of
the present iterative technique is carried outvis-a-vis other
matrix solution methods—both iterative and direct—with a
view to demonstrating the superior computational efficiency
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of the present solver. We further show that a high matrix
compression rate can be achieved by successive refinements
without sacrificing the accuracy required. This procedure not
only leads to a saving in the memory requirements, and thus
enables us to handle large problems which would otherwise be
unmanageable, but also contributes to the numerical efficiency
of the algorithm.

Next, in Section II, we study the problem of solving the
linear system of equations itself. To illustrate the efficiency
of the TFQMR algorithm [1], we carry out a comparative
study of the performances of several iteration techniques. The
important problem of preconditioning is addressed in Section
III, both from the points of view of implementation as well as
evaluation of the performance of the preconditioner.

The matrix compression process, described in Section IV,
includes both the exploitation of the obvious symmetries of the
system and the application of the QR compression applied to
the off-diagonal blocks. Finally, to improve the accuracy of the
result derived with such a highly compressed matrix, we apply
the refinement procedure proposed in [2], after generalizing
this procedure to an arbitrary order. We then evaluate the
performances of the algorithms in terms of the accuracy of the
results obtained for different compression ratios and orders of
refinement.

Section V presents some numerical results for truncated
arrays. Section VI discusses a number of applications of the it-
erative technique. Finally, Section VII draws some conclusions
on the basis of the results that could not have been derived
on the available computer without the use of the compression
algorithm.

II. COMPARATIVE STUDY OF ITERATION TECHNIQUES

A. Introduction to Iterative Procedures

A number of iterative procedures are available in the litera-
ture and we have tested three of these on a comparative basis
by applying them to a representative example.

The generic one we consider is that of a truncated array
of coplanar metallic square patches in free space, illuminated
by a normally incident plane wave. The MoM formulation,
based on the Rao, Wilton, and Glisson [3] triangular-patching
approach, gives rise to a linear system of equations with
unknowns, where is the number of conducting patches in the
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Fig. 1. Computation time as a function of the number of unknowns for
TFQMR, CGM, and direct Gauss methods.

array. Various configurations of such arrays are considered in
this paper to test the algorithms discussed herein.

All of the three iterative techniques used in this work
are well known and have been extensively discussed in the
literature. They are:

1) Conjugate gradient method (CGM) [4].
2) Generalized minimum residual method (GMRES)

[5]–[7].
3) Transpose free quasi minimum residual (TFQMR). The

QMR approach is based on Lanczos method described
in [6]. The TFQMR approach [1], [2], [8] is an im-
proved version which does not require any extra storage
and is also amenable to preconditioning.

B. Numerical Results for Iteration Procedure

One way to judge the convergence rate of an algorithm is to
compare the computation time it requires to reduce the residual
to a given value, say 10 . In Fig. 1, we plot the CPU times
required to achieve convergence for the CGM and TFQMR
algorithms as functions of the number of unknowns, and also
compare these results with those for the direct Gauss solver.
We omit the corresponding results obtained with the GMRES
scheme because of the poor convergence rate it exhibits for
the cases studied.

The above results clearly demonstrate the superior efficiency
of the TFQMR algorithm. Furthermore, since it is amenable
to preconditioning, it is unquestionably the best choice for
the cases under study, viz., truncated arrays, which generate
diagonally dominant matrix structures. Before closing this
section, we point out that the significant gain achieved by
using the TFQMR algorithm over the Gaussian elimination
scheme is evident from Fig. 1.

III. PRECONDITIONING WITH TFQMR

A. Implementation of Preconditioning

Preconditioning offers a significant potential for improving
the computational efficiency of the matrix solution. Of course,
the challenge that confronts us is the derivation of a matrix C

Fig. 2. Efficiency of the band preconditioner: number of iterations versus
preconditioner bandwidth.

such that C as close as possible to identity matrix I. We
then solve an equivalent system C C by using an
iterative scheme. Since is both dense and complex in nature,
we can only use preconditioners based on an incomplete
factorization. In this work, we have investigated the following
approaches to generating the preconditioner C.

In the first approach we construct a banded matrix by
retaining the off-diagonal terms up to a certain width and fac-
torize the resultant matrix by using the Cholesky-type method
applied to the complex-symmetric matrix. The bandwidth is
chosen such that it is a good compromise between the increase
in the computation time of C with an increase in the
bandwidth, and the gain in the efficiency of iterations as C
tends to approach the identity matrix I.

In the second approach, we factorize a set of diagonal
blocks, whose block size may be variable, again by using
the method described above. The special choice of block
size that correspond to submatrices associated with the in-
dividual patches offers considerable advantage, because the
diagonal blocks are all identical, and the storage requirements
are drastically reduced for this case as well as CPU time.
Moreover, since the Green’s function naturally decays with
the distance, the matrix structure described above is block-
diagonally dominant, which is desirable.

B. Numerical Results for Preconditioning

1) The Effect of Preconditioning on the Convergence of
the Iteration Procedure:For the example of an array of 15
patches, Fig. 2 shows the number of iterations required to
achieve convergence as a function of the bandwidth. We note
that the optimum bandwidth coincides with the size of the self-
block and that an increase in the bandwidth does not reduce
the number of iterations.

Table I presents a comparison of the results derived for
several examples by using band and block preconditioners,
for a number of different bandwidths and block sizes. These
results clearly show that significant improvements can be
achieved via preconditioning, confirm the previous conclusions
we reached on the choice of the optimum bandwidth, and
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TABLE I
EFFECT OF BAND AND BLOCK PRECONDITIONING FOR

DIFFERENT BANDWIDTHS NUMBER OF REQUIRED ITERATIONS

TABLE II
EFFECT OFPRECONDITIONING FOR A LINEAR ARRAY OF 21 PATCHES

TABLE III
EFFECT OFPRECONDITIONING FOR A SQUARE ARRAY OF 25 PATCHES

extend them to the block size as well. The table also shows
that efficiencies in terms of required number of iterations are
very close for the band and the block approaches, provided
that their respective bandwidths are also close. In this event,
the block preconditioning becomes the preferred approach.

2) Computation Time:It is interesting to track the effect
of preconditioning on the computation time, and we do this
below. Tables II and III present the results for a linear array
of 21 patches with 2016 unknowns and a square array of 25
patches with 2400 unknowns, respectively.

We observe from the above tables that the preconditioners
are so efficient as to make the solve time negligible com-
pared to the I/O time for the matrix fill, the former being
approximately one third of the time it takes to compute the
matrix elements. We further note that the convergence is most
rapid when the size of the block preconditioner is identical to
that of the band. These results demonstrate that the PTFQMR
algorithm is really a very powerful tool for solving problems
of this type. Furthermore, we observe that the availability of an
efficient solver is an essential tool for handling large systems
that are highly sensitive to numerical error propagation, and
for implementing multiple refinement procedures, discussed
later in this paper, that require the construction of the solution
anew for each step of iteration.

IV. M ATRIX COMPRESSION

Matrix compression is not only a useful tool for the re-
duction of RAM memory requirements, but also is crucial for
solving large problems. In this work we carry out the matrix
compression in two steps by employing the QR compression
scheme as described by a number of authors (see [2], [4], and
[9], for instance), after exploiting the presence of redundancies
in the matrix elements. This initial compression rate varies

from 50% in the general case (up–down symmmetry) to lower
rates depending of the geometrical symmetries.

A. Block QR Compression

Let us now discuss the global compression of the impedance
matrix A into an approximate matrix A. We do this by
individually compressing each of the off-diagonal blocks using
an incomplete QR factorization, which approximates these
blocks with an equivalent matrix of an inferior rank. The QR
factorization entails the decomposition of a matrix B in the
form B QR, where R is an upper triangular matrix and Q is
an orthogonal matrix. Using the Householder transformation
method we can write

B H H H R QR

where H are Householder matrixes [9]. The stepof the
algorithm can be written as

B H H B R R
R

If B is such that R is close to zero, then there exists a
matrix B of rank which is close to B, and is defined by

B QR B U

with U Q Q R R R

Next, define a threshold that provides us the criterion to
determine if R . Specifically, at each transformation
step , we compare the norms of all the lines of R with
the norm of the first line of R by computing their ratio. If the
maximum ratio is weaker than a given threshold, then all of
the terms of R are set to zero; otherwise, the algorithm
is allowed to continue.

B. Refinement of the Solution

Next, to improve the accuracy of the result derived by
using a compressed matrix, we apply a refinement procedure
proposed in [2] after generalizing it to an arbitrary order

A A A A

Next, we note that by solving the following system of equa-
tions

A

A A A

in a successive manner, we can derive an iterative solution
which is as close to the true solution as we desire, provided
that the spectral radius of A A A is less than one.
This iterative refinement, if limited to the order, leads to
( A A ):

A

A A

In practice, such a second-order refinement is usually found
to be sufficient. We note, in passing, that each iteration step
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TABLE IV
COMPUTATION TIMES ASSOCIATED WITH DIFFERENT EXAMPLES

requires extra input-outputs involving the mass memory of
the uncompressed matrix A. However, we note also that Ais
involved only in the solution of the linear systems, while A is
used solely to form the right hand side.

V. NUMERICAL RESULTS DERIVED BY

USING BLOCK-PRECONDITIONED TFQMR

We have applied the block-preconditioned TFQMR solver
to the following three examples involving different number of
unknowns.

1) Example-1: truncated, periodic array of 25 patches,
configured in a square shape involving 2400 unknowns
(initial compression 25%).

2) Example-2: truncated, periodic linear array of 35
patches with 3360 unknowns (initial compression 25%).

3) Example-3: nonperiodic array, same as Example 1 with
one element removed (initial compression 50%).

A. Computation Time

Table IV lists the computation times associated with the
three principal steps involved in the solution process, viz.,
filling the matrix; solving the system with the compressed
matrix; and, second-order refinement. The tolerance value
chosen for the examples above is . We should add the
remark that the computation times include the time needed for
the input–output operations that are machine dependent and
have not been optimized on the Cray computer used to solve
the problem.

The following observations may be made about the results
presented in Table IV. First, a major part of the matrix fill-
time is devoted to the computation of the entries in the matrix.
The computational burden for this calculation is proportional
to unless any redundancies are exploited. However, since
the uncompressed matrix is stored in the mass memory, this
computation may be carried out in advance as a separate
process. As mentioned previously, the solve time is relatively
small, as is the time required to carry out the compression.
For the case of multiple right-hand sides, the compression step
has to be performed only once. The bulk of the time in the
refinement process is consumed by the input–output operations
involving the uncompressed matrix. The CPU time needed for
this process is approximately the same as the solve time.

B. Compression Efficiency

We have carried out additional numerical experiments with
the above three examples for different values ofto determine
the efficiency of compression. Below we tabulate the compres-
sion rate realized for the entire matrix and the rms relative
errors in the coefficients of current densities

TABLE V
RELATIVE RMS ERROR IN CURRENT DENSITY COEFFICIENTS

FOR (a) EXAMPLE 1, (b) EXAMPLE 2, AND (c) EXAMPLE 3

(a)

(b)

(c)

TABLE VI

( ) without refinement and, the same error with the first- and
second-order refinements, respectively.

The results tabulated above lead to the following conclu-
sions for the problems investigated.

1) It is possible to employ compression rates of 2% with-
out unduly sacrificing the accuracy of the results. For
example, for a given RAM size, the use of compression
enables us to tackle the problem of a truncated array
which is seven or more times larger than can be solved
without the use of compression.

2) We have been able to demonstrate the gain in efficiency
realized via the use of the refinement procedure that has
been proposed earlier in [2], but has not been tested
previously to the best of our knowledge. We find that
each refinement step enhances the accuracy of the result
by about an order of magnitude. Another important
feature of the refinement procedure is that it leads to
a convergent solution even when the initial solution is
considerably different from the final result.

3) Despite the considerable improvement achieved in
terms of the required RAM size, the need for the
storage of the uncompressed matrix on the disk is not
obviated.

4) The achieved accuracy in the results does vary from
problem to problem. However, this level is comparable
to that realized in the process of discretization in MoM.
Hence, for a required accuracy level, one must consider



POIRIER et al.: DENSE LINEAR SYSTEM OF EQUATIONS 1173

the tradeoff between the compression and the order of
refinement.

5) Relatively good results obtained for the examples con-
sidered herein can be attributed to the structure of the
associated matrices that are diagonally dominant, and
are therefore well-suited for deriving rapidly convergent
solutions via iterative methods. We cannot summarily
extrapolate these results to the general case of an
arbitrary structure.

6) The results achieved for the compression rate are de-
pendent on the chosen for these examples. However
the degree of accuracy is strongly dependent on the
array configuration. For instance, this accuracy is much
better for the linear array than it is for the square one.
For the latter, the off-diagonal blocks may have rela-
tively significant norms and the compression procedure
appears to have a larger impact on the efficiency of the
solution.

7) The compression rate is dependent not only on the array
configuration, but also on the number of cells as well as
the number of unknowns in this cells. When optimal QR
compression is reached, most nondiagonal blocks are
compressed in a few units. This high degre of numerical
degeneracy, as well as the high level of compression
rate, can be attributed to the phasing properties of the
impedance matrix terms for blocks corresponding to
cells sufficiently separated.

C. Influence on the Radar Cross Section

We now present some results that show the errors in the
co- and crosspolarization results for the RCS, and how these
errors relate to the computed current densities with second
order refinements. The results obtained forvalues between
0 and 0.1 are the same and only a very slight difference appears
in the computed cross-pol results for .

VI. A PPLICATIONS

In this section we illustrate the use of the iteration algo-
rithms, developed previously, to compute the current density
distribution in a finite periodic array. Periodic arrays are
typically analyzed under the assumption that the array is
infinite, and that it is sufficient to deal with a single cell
of the array, which requires relatively few unknowns. Our
objective is to evaluate, accurately, the effects of truncation of
the array on the induced current density distribution. We begin
by defining the error parameter
where is the reference current density on the center
element, which is far removed from the edges.

The elementary cell is shown in Fig. 3, together with its
mesh and the coordinate axes. We assume that the illuminating
plane wave is normally incident, at the resonant frequency,
and with a polarization parallel to O. We first consider a
linear array configuration of these elementary cells, and follow
this up with the more general case of a rectangular array
configuration.

Fig. 3. Elementary cell description.

Fig. 4. Linear array: evolution of the currents on the central cell as a function
of the number of neighboring cells.

A. Linear Array

We have investigated linear arrays of cells,
that are orientated either along Oor O . The reference cell
is taken to be the eleventh of the longest arrays. Fig. 4 shows
the progressive evolution of the error as defined above for
the different size arrays, beginning with the smallest case. We
observe that the error becomes less than 1% once the central
cell is surrounded by at least three cells on each side, regardless
of whether the orientation is along Oor O , and that this error
can be very significant for smaller arrays. We note, further, that
the edge effects are more pronounced when the polarization
of the incident field is parallel to the array axis.

B. Square Array

Next we go on to discuss the numerical results we have
obtained for square arrays of
elements. Notice that in this case the number of unknowns
is 10 140 whereas for our computer RAM size available was
3000. Once again, the reference cell is taken to be the central
element of the largest array. Fig. 5 shows the evolution of the
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Fig. 5. Square array: evolution of the currents on the central cell versus number of neighbors.

Fig. 6. Evolution of the currents on the cells on the13 � 13 array; reference is the central cell of the array.

error in the central cell for the different arrays. We note that
the edge effects are more significant now than they were for
the linear array, since it is necessary to have at least a
size array for the center element to stabilize.

We could observe that a small array ( ) behaves consid-
erably differently from the infinite array, a result that is not
totally unexpected. Next, we saw that we need to go to a zone
in the center which is sizable, for instance to elements
in the array for which the error is plotted in function
of the cell location. We further observe that the behavior of

is different in the and directions; for instance, the edge
effect is seen to be significant only over the edge cell in the-
direction, whereas it spreads over four cells in the orthogonal
direction. Thus the edge effects can be more significant in this
case than they are for the linear array.

These plots show the regions where the infinite array
approximation is valid, as well as the region where the edge
effects should be taken into account and corrected. We should
point out that the previous results are dependent not only on
the polarization of the incident field but also on the geometry
of the elementary cell. Thus it is necessary, in general, to

investigate the particular geometry by using an algorithm, such
as the compression code, that enables one to handle a large
problem.

VII. CONCLUSIONS

In this work we have successfully illustrated the application
of a technique for the efficient solution of large, dense,
linear systems arising in the problem of truncated arrays. The
method consists of four steps, viz., use of iterative procedure;
preconditioning; matrix compression; and solution refinement.

A comparative study of various iterative methods using
Krylov subspaces has been carried out. It has been found
that a rapid convergence rate is needed for these methods
to avoid numerical error propagation in large systems. The
TFQMR scheme has been found to provide superior per-
formance over several of the other methods tested. Both
the block and band preconditioning schemes of this method
have been implemented and tested. They show significant
improvements, as evidenced by the reduction in the number
of iterations to approximately 2% of the nonpreconditioned
case, with only a slight increase in the memory requirement.
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The preconditioning has been found to be optimal when the
diagonal blocks are identical to the selfblocks associated with
the individual cells. This choice is also found to be optimal
from the CPU time and memory points of view.

The process of matrix compression has been implemented in
two steps. The first one, which exploits the obvious symmetries
of the system, with a weak loss of generality, yields a
compression ratio of about 25%. This step was followed
by the QR compression of the off-diagonal blocks, and this
strongly improves the compression ratio, bringing it up to
approximately 2%, which represents a significant improvement
in one’s ability to handle a large problem size. The accuracy of
the results obtained with the compressed matrix has been fur-
ther improved via multiple-order refinement, achieving levels
of accuracy better than 1% when compared to the reference
solution.

This method should be closely compared with other fre-
quently reported ones, such as in [10] and [11], in terms
of efficiently and accuracy. Future extensions of the method
to conformal arrays and to antennas mounted on complex
structures that are often treated with hybrid methods are
contemplated. It is anticipated that further refinements would
be required to treat these more general cases, and also to tackle
the general case of an arbitrary structure or scatterer.
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