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Fast RCS Computation over a Frequency Band
Using Method of Moments in Conjunction with

Asymptotic Waveform Evaluation Technique
C. J. Reddy, M. D. Deshpande, C. R. Cockrell, and F. B. Beck

Abstract—The method of moments (MoM) in conjunction with
the asymptotic waveform evaluation (AWE) technique is applied
to obtain the radar cross section (RCS) of an arbitrarily shaped
three-dimensional (3-D) perfect electric conductor (PEC) body
over a frequency band. The electric field integral equation (EFIE)
is solved using MoM to obtain the equivalent surface current on
the PEC body. In the AWE technique, the equivalent surface
current is expanded in a Taylor’s series around a frequency in
the desired frequency band. The Taylor series coefficients are
then matched via the Pad́e approximation to a rational function.
Using the rational function, the surface current is obtained at
any frequency within the frequency range, which is in turn
used to calculate the RCS of the 3-D PEC body. A rational
function approximation is also obtained using the model-based
parameter estimation (MBPE) method and compared with the
Padé approximation. Numerical results for a square plate, a cube,
and a sphere are presented over a frequency bandwidth. Good
agreement between the AWE and the exact solution over the
bandwidth is observed.

Index Terms—Moment methods, radar cross sections.

I. INTRODUCTION

T HE solution of the electric field integral equation (EFIE)
via the method of moments (MoM) has been a very useful

tool for accurately predicting the radar cross section (RCS)
of arbitrarily shaped three-dimensional (3-D) perfect electric
conductor (PEC) objects in the frequency domain [1]. In MoM,
EFIE is set up by subjecting the total tangential electric field
over the surface of the PEC body to zero. Dividing the PEC
body surface into subdomains such as triangles, rectangles, or
quadrilaterals and employing Galerkin’s technique, the integral
equation is reduced to a matrix equation. The matrix equation
is then solved using either by a direct method or by an
iterative method for the equivalent surface currents. The RCS
is computed from the knowledge of the surface currents. The
generation of the matrix equation and its solution are the two
major computationally intensive operations in MoM.

To obtain the RCS over a band of frequencies using MoM,
one has to repeat the calculations at each frequency over the
band of interest. If the RCS is highly frequency dependent one
needs to do the calculations at finer increments of frequency
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to get an accurate representation of the frequency response.
This can be computationally intensive and for electrically
large objects it can be computationally prohibitive despite the
increased power of the present generation of computers. There
were some attempts to obtain the wide-band data from the
method of moments by interpolating the impedance matrix
[2]. This method trades reduced central processing unit (CPU)
time for increased memory. In [3], the model-based parameter
estimation (MBPE) is used to obtain the wide-band data from
frequency and frequency-derivative data. A similar technique
called the asymptotic waveform evaluation (AWE) technique
has been proposed for the timing analysis of very large scale
integration (VLSI) circuits [4], [5]. The AWE technique is
finding increasing interest in the electromagnetic analysis of
microwave circuits [6], [7]. Recently, a detailed description of
AWE applied to frequency-domain electromagnetic analysis
was presented in [8], [9]. AWE was also successfully applied
for efficient dispersion analysis of dielectric waveguides [10].

In this paper, the application of AWE for predicting the
RCS over a band of frequencies using MoM is described. In
the AWE technique, the electric current is expanded in the
Taylor series around a frequency. The coefficients of the Taylor
series (called “moments”) are evaluated using the frequency
derivatives of the EFIE. In most cases, Taylor series gives
fairly good results. However, the accuracy of the Taylor series
is limited by the radius of convergence and it will not converge
beyond the radius of convergence. In such cases, the rational
function approach is used to improve the accuracy of the
numerical solution. The coefficients of the Taylor series are
then matched via the Padé approximation to a rational function.
Using the rational function, the electric current distribution
can be obtained at any frequency within the bandwidth. Using
this current distribution, the RCS is obtained. Alternatively,
by matching the frequency derivatives of the function to the
rational function, the MBPE method can be used to obtain
a rational function approximation in a rather straight forward
fashion, instead of going through the Taylor series [11]. In this
paper, both the Padé approximation and MBPE are pursued to
show that they are identical to each other.

The rest of the paper is organized as described below. In
Section II, the AWE implementation for the EFIE is described
along with the Pad´e approximation and MBPE. Numerical
results for a square plate, cube, and a sphere are presented
in Section III. The numerical data is compared with the exact
solution over the bandwidth. CPU time and storage require-
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ments for the AWE formulation are given for each example
and are compared with those required for the exact solution
at each frequency. Numerical results are also compared with
the MBPE method. Concluding remarks on the advantages
and disadvantages of the current method are presented in
Section IV.

II. THEORY

Consider an arbitrarily shaped PEC body. For RCS calcu-
lations, a plane wave is assumed to be incident at an angle

. At the surface of the PEC body, the total tangential
electric field is zero. The total tangential field in terms of the
scattered and incident fields on the PEC body is, therefore,
written as

(1)

In a subdomain MoM approach, the PEC surface is divided
into triangles, rectangles, or quadrilaterals. In this paper, we
follow the triangular subdomain approach reported in [12].
Writing in terms of the equivalent electric current
distribution on the surface of the PEC object and apply-
ing Galerkin’s method, a set of simultaneous equations are
generated and are written in a matrix equation form as

(2)

where

(3)

and

(4)

where is the vector testing function, is the wavenumber at
frequency , and is the intrinsic wave impedance. is the
distance between the source point and the observation point.

operates over the source coordinates and similarly
indicates the surface integration over the source coordinates. In
(2), is a complex and dense matrix. is the excitation
column vector. Equation (4) is calculated using a harmonic
plane wave

(5)

where

(6)

and

(7)

(8)

(9)

(10)

(11)

(12)

The matrix (2) is solved at any specific frequency (with
wavenumber ) either by a direct method or an iterative
method. The solution of (2) gives the unknown current dis-
tribution, which is used to obtain the scattered electric field.
The radar cross section is given by

(13)

A. AWE/MBPE Implementation

The RCS given in (13) is calculated at one frequency. If one
needs the RCS over a frequency range, this calculation must be
repeated for the different frequencies of interest. Instead, AWE
or MBPE can be applied for rapid calculation of RCS over
a frequency range. The AWE technique involves expanding
the unknown coefficient vector in a Taylor series and then
obtaining a rational function representation via the Padé ap-
proximation. Alternatively, MBPE involves determination of
the rational function by matching the frequency derivatives of
the function at one or more frequency points. Mathematical
steps involved in this process are given below.

Taylor Series Expansion:The solution of (2) at a particular
frequency gives the unknown current coefficient column
vector at a particular frequency , where is the
wavenumber at . Instead, can be expanded in a Taylor
series around and is written as

(14)

with the moment column vector given by [8]

(15)

where is the th derivative with respect to of
given in (3) and evaluated at . Similarly, is the th
derivative with respect to of given in (4) and evaluated
at is the Kronecker delta.

The evaluation of in (15) is a lengthy process due
to the presence of in the second term of (3). A complete
derivation of and is given in [8]. Using the
moments in the Taylor series, the electric current distribution
can be obtained, which is used to compute the RCS over the
frequency range.

Padé Approximation: In many cases, the Taylor series ex-
pansion gives fairly good results. However, the accuracy of the
Taylor series is limited by the radius of convergence. It will not
converge to the right answer beyond the radius of convergence
and it sometimes requires a large number of terms to converge
over a frequency range. In such cases, one may want to
replace the Taylor series expansion with a rational function
via the Pad́e approximation [13] to improve the accuracy of
the numerical solution.

To obtain the Pad´e approximation, the Taylor series expan-
sion in (14) is matched with a rational function [13]

(16)
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where

where is set to 1 as the rational function can be divided by
an arbitrary constant. Since there are unknowns,

moments of the Taylor series should be matched.
Equating the coefficients for powers

, the coefficients of can be obtained by
solving the resulting matrix equation. The numerator coeffi-
cients can be found by equating the powers

. Once the coefficients of the rational function are ob-
tained, (14) can be rewritten as

(17)

For a given amount of computational effort, one can easily
construct a rational function that has a smaller error than a
polynomial approximation. Also for a fixed value of ,
the error is smallest when or [10]. Using
(17), the electric current coefficients at frequencies around
the expansion frequency are obtained. The electric current
distribution hence obtained is used to compute the scattered
electric field and, finally, the radar cross section using (13).

MBPE Method: Alternatively, the coefficients of the ratio-
nal function given in (17) can be obtained by matching the
derivatives of at the expansion frequency. Since there
are unknowns derivatives of should
be matched. This results in a matrix equation to be solved for
the coefficients of the rational function. A detailed description
of the MBPE method is given in [11].

It can be easily shown that the Padé approximation and
MBPE are identical. The Padé approximation is derived
through a Taylor series, whereas MBPE is derived through
matching the derivatives of the function. Once the rational
function is obtained, the numerical results for the Padé
approximation and MBPE are also identical.

III. N UMERICAL RESULTS

To validate the analysis presented in the previous section, a
few numerical examples are considered. RCS calculations over
a frequency band are done for a square plate, a cube, and a
sphere. The numerical data obtained using AWE with the Padé
approximation is compared with the results calculated at each
frequency using the triangular patch method of moments. We
will refer to the latter method as the “exact solution.” The nu-
merical results are also compared with the data obtained using
the MBPE method [3]. In the examples presented below, the
same data are used for AWE and MBPE and the computational
cost in terms of CPU time and storage requirements is exactly
the same for both of methods. In the numerical examples
presented below, the expansion frequency is chosen to be
the center frequency of the band of interest. This choice of

Fig. 1. RCS frequency response of the square plate (1 cm� 1 cm) from
20 to 40 GHz.

expansion frequency gives the maximum bandwidth as AWE
is equally valid on both sides of the expansion frequency. All
the computations reported below were done on a SGI-Indigo
2 (with 250 MHz IP22 processor) computer.

Square Plate:The first example is for a square plate (1 cm
1 cm) with an -polarized incident electric field

at and . The square plate is discretized
with triangular subdomains resulting in 603 unknown cur-
rent coefficients. The AWE frequency response with 0.1-GHz
increments is calculated using the Pad´e approximation with

and at GHz. The RCS frequency
response is plotted from 20 GHz to 40 GHz in Fig. 1 along
with the calculations using MBPE with and . For
comparison, the frequency response obtained with the Taylor
series expansion is also plotted. AWE took 3296 s CPU time
to fill the matrices (including the derivative matrices) whereas
the exact solution took 429 s for matrix fill at each frequency
(i.e., 9009 s for 21 frequencies). The LU factorization took
18 s CPU time for AWE, whereas it took 18 s CPU time
for the exact solution at each frequency calculation (378 s
for 21 frequencies). It can be observed that Taylor series
solution is accurate between 26 GHz and 33 GHz, whereas
the Pad́e approximation and MBPE give accurate solutions
over the entire frequency range from 20 to 40 GHz. It can
also be noted that the Pad´e approximation and MBPE gave
identical numerical results, hence the curves representing the
Pad́e approximation and MBPE are almost indistinguishable.

Cube: The RCS response of a PEC cube (1 cm1 cm
1 cm) is calculated over a frequency band using AWE with
a plane wave incident at and . The cube is
discretized with 348 triangular subdomains resulting in 522
current unknown coefficients. AWE frequency response with
0.1 GHz increments is calculated using Pad´e approximation
with and at GHz. The RCS frequency
response is plotted from 2 to 22 GHz in Fig. 2 along with the
calculations using MBPE with and . The AWE
took 2867 s CPU time for filling up the matrices including the
derivative matrices and 8 s CPU time for LU factorization.
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Fig. 2. RCS frequency response of the cube (1 cm� 1 cm� 1 cm) from
2 to 22 GHz.

Fig. 3. RCS frequency response of a sphere (radius= 0:318 cm) from 10
to 50 GHz using two frequency points at 20 and 40 GHz.

The exact solution took about 346 s CPU time to fill the
matrix (7266 s for 21 frequencies) and 8 s CPU time for
LU factorization (168 s for 21 frequencies). The frequency
response calculated with the Taylor series expansion is also
plotted in Fig. 2 for comparison purposes.

Sphere: As a third example, a PEC sphere of radius 0.318
cm is considered. To demonstrate the usefulness of AWE over
a wide bandwidth, two frequency points are considered at
20 and 40 GHz to obtain the frequency response over the
frequency range from 10 to 50 GHz. The sphere is discretized
into 248 triangular elements at 20 GHz and 504 triangular
elements at 40 GHz. The frequency response is plotted in
Fig. 3 along with the exact solution calculated using a 1-GHz
frequency increment over the 40-GHz bandwidth. The nu-
merical data is calculated using both AWE with the Padé
approximation and MBPE with and with
frequency increments of 0.1 GHz. It can be seen that both
the AWE and MBPE calculations agree well with the exact
solution. The discontinuity seen at 30 GHz is due to the error

TABLE I
CPU TIMINGS FOR RCS CALCULATIONS OF THE PEC SPHERE

between values obtained from the AWE approximation at 20
and 40 GHz, respectively. The CPU timings for matrix fill and
LU factorizations are given in Table I. It can be seen from
Table I that the exact solution with a frequency increment of
1 GHz took around 4 h and 27 min of CPU time to calculate
the frequency response over the frequency bandwidth (10 to
50 GHz), the AWE calculation requires only 1 h and 34 min
of CPU time.

Comment on storage:In all the above examples, when
solving a matrix equation, one needs to store a complex dense
matrix of size for the exact solution at each
frequency. For th order AWE, one needs to storenumber
of complex dense matrixes of
size along with the matrix of size .
For electrically large problems, this could impose a burden on
computer resources. This problem can be overcome by storing
the derivative matrices out-of-core, as the derivative
matrices are required only for matrix–vector multiplication.

IV. CONCLUDING REMARKS

An implementation of AWE for frequency-domain MoM is
presented. The RCS for different PEC objects such as a square
plate, cube, and sphere are computed and compared with the
exact solution over a band of frequencies. AWE results are
also compared with those obtained with MBPE method. It
is also found to be useful to use multifrequency expansion
points to get a wide-frequency bandwidth. From the numerical
examples presented in this paper, AWE is found to be superior
in terms of the CPU time to obtain a frequency response.
It may also be noted that though calculations are done at
one incidence angle for all the examples presented, with a
nominal cost, the frequency response at multiple incidence
angles can also be calculated. AWE is accurate at and around
the frequency of expansion. Its accuracy deteriorates beyond
a certain bandwidth. The accuracy of AWE over a desired
frequency band and its relation to the order of AWE to be
used are topics of interest for future research. With these
topics addressed, AWE will be of good use in computing the
frequency response using a frequency-domain technique such
as MoM.



REDDY et al.: RCS COMPUTATION USING MOM WITH WAVEFORM EVALUATION TECHNIQUE 1233

ACKNOWLEDGMENT

The authors would like to thank E. Miller for his valuable
input on MBPE and its applicability to electromagnetic prob-
lems. They would also like to thank the reviewers for their
constructive criticism, which helped improve the quality of
the paper.

REFERENCES

[1] E. K. Miller, L. Medgysi-Mitschang, and E. H. Newman, Eds.,Com-
putational Electromagnetics: Frequency Domain Method Of Moments.
New York: IEEE Press, 1992.

[2] E. H. Newman, “Generation of wide-band data from the method of
moments by interpolating the impedance matrix,”IEEE Trans. Antennas
Propagat., vol. 36, pp. 1820–1824, Dec. 1988.

[3] G. J. Burke, E. K. Miller, S. Chakrabarthi, and K. Demarest, “Using
model-based parameter estimation to increase the efficiency of com-
puting electromagnetic transfer functions,”IEEE Trans. Magn., vol. 25,
pp. 2807–2809, July 1989.

[4] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for
timing analysis,”IEEE Trans. Comput.-Aided Design, pp. 352–366, Apr.
1990.

[5] T. K. Tang, M. S. Nakhla, and R. Griffith, “Analysis of lossy multi-
conductor transmission lines using the asymptotic waveform evaluation
technique,” IEEE Trans. Microwave Theory and Techniques, vol. 39,
pp. 2107–2116, Dec. 1991.

[6] D. Sun, J. Manges, X. Yuan, and Z. Cendes, “Spurious modes in finite
element method,”IEEE Antennas Propagat. Mag., vol. 37, pp. 12–24,
Oct. 1995.

[7] J. Gong and J. L. Volakis, “AWE implementation for electromagnetic
FEM analysis,”Electron. Lett., vol. 32, pp. 2216–2217, Nov. 1996.

[8] C. R. Cockrell and F. B. Beck, “Asymptotic waveform evaluation
(AWE) technique for frequency domain electromagnetic analysis,”
NASA Tech. Memo 110292, Nov. 1996.

[9] C. J. Reddy and M. D. Deshpande, “Application of AWE for RCS
frequency response calculations using method of moments,” NASA
Contractor Rep. 4758, Oct. 1996.

[10] S. V. Polstyanko, R. Dyczij-Edlinger, and J. F. Lee, “Fast frequency
sweep technique for the efficient analysis of dielectric waveguides,”
IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1118–1126, July
1997.

[11] E. K. Miller and G. J. Burke, “Using model based parameter estimation
to increase the physical interpretability and numerical efficiency of
computational electromagnetics,”Comput. Phys. Commun., vol. 68, pp.
43–75, 1991.

[12] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,”IEEE Trans. Antennas Propagat., vol.
AP-30, pp. 409–418, May 1982.

[13] E. Chiprout and M. S. Nakhla,Asymptotic Waveform Evaluation. Nor-
well, MA: Kluwer, 1994.

C. J. Reddy received the B.Tech. degree in elec-
tronics and communication engineering from the
Regional Engineering College, Warangal, India, in
1983, and the M.Tech. (microwave and optical com-
munication engineering) and Ph.D. degrees from
Indian Institute of Technology, Kharagpur, India, in
1986 and 1988, respectively.

From 1987 to 1991, he worked at the Society
for Applied Microwave Electronics Engineering and
Research (SAMEER), Bombay, India, where he was
engaged in the development of radar systems and

antennas. From October 1991 to January 1993, he held an NSERC Visiting
Fellowship at Communications Research Center, Ottawa, Canada, where he
developed theoretical and experimental analyzes for slot and microstrip patch
antennas with nonradiating dielectric (NRD) waveguide as the feed. From
February 1993 to January 1995, he worked at NASA Langley Research
Center, Hampton, VA, as National Research Council (USA) Resident Research
Associate. He is currently with Hampton University, Hampton, VA, where his
research activity is in the area of computational electromagnetics, with an
emphasis on hybrid methods for antennas on complex platforms.

M. D. Deshpande was born in Lohgaon, India,
on June 3, 1948. He received the B.E. (electrical)
degree from V.R.C.E., Nagpur, in 1970, and the M.
Tech. and Ph.D. degrees in microwave and radar
engineering from the Indian Institute of Technology,
Kharagpur, India, in 1972 and 1980, respectively.

In 1975, he joined the faculty of the Indian Insti-
tute of Technology, Kharagpur. From 1980 to 1982
he was a Postdoctoral Fellow at George Washington
University, Washington, DC, where he developed an
integral equation method to analyze microstrip path

antennas. As a Senior NRC Resident Research Associate from 1987 to 1989
at NASA Langley Research Center, Hampton, VA, he worked on analysis of
finite printed circuit array antennas. Since 1989 he has been with ViGYAN,
Inc., Hampton, as Research Engineer, working on the developement of a
hybrid finite-element method and an integral equation approach to analyze
electromagnetic scattering and radiation from 3-D complex objects.

C. R. Cockrell received the B.S.E.E. degree from
the University of South Carolina, Columbia, in
1963, the M.S. degree in electrical engineering from
George Washington University, Washington, DC, in
1970, and the Ph.D. degree in electrical engineering
from North Carolina State University, Raleigh, in
1974.

Since 1963 he has been employed by NASA Lan-
gley Research Center, Hampton, VA. He has been
involved in the study of circular array antennas for
spacecraft applications, aperture antennas covered

with plasma and dielectric materials, and the application of diffraction theory
to antenna problems. He currently holds the position of Senior Research
Engineer in the Electromagnetics Research Branch. His current areas of
interest include numerical techniques for computational electromagnetics with
an emphasis on hybrid methods for antennas on complex structures or
platforms.

Dr. Cockrell is a member of Tau Beta Pi, Sigma Xi, Eta Kappa Nu, and
Pi Mu Epsilon.

F. B. Beck received the B.S.E.E. degree from
the University of South Carolina, Columbia and
the M.S. degree in electrical engineering from the
George Washington University, Washington, DC, in
1962 and 1971, respectively.

Since 1962, he has been employed as an elec-
tromagnetic analyst in electromagnetic propagation,
scattering, airborne and spaceborne antenna design,
and design and analysis of aperture antennas radi-
ating into dielectric materials and inhomogenenous
plasmas for the NASA Langley Research Center,

Hampton, VA. He has worked in active and passive mocrowave remote
sensing. He currently holds the position of Senior Research Engineer and is the
group leader in computational electromagnetics, with an emphasis on finite-
element modeling, method of moments, and finite-difference time-domain
techniques.


