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Time-Domain Three-Dimensional
Diffraction by the Isorefractive Wedge

Robert W. Scharstein and Anthony M. J. Davis

Abstract—The extension of the Biot—Tolstoy exact time domain z
solution to the electromagnetic isovelocity or isorefractive wedge
is described. The TM field generated by a Hertzian electric 2a
dipole can be represented by a vector potential parallel to the
apex of the wedge and a scalar potential necessitated by the
three dimensionality of the magnetic field. The derivation of
the former is exactly that of the pressure in the corresponding
acoustic situation [1], and a more efficient version of the lengthy R
details is presented herein. A Lorentz gauge determines the
scalar potential from the vector potential, and the diffracted -
field contains impulsive and “switch-on” terms that cannot be
evaluated in closed form. The ratio of arrival times, at a given y
point, of the geometrical optics and diffracted fields provides /|
a convenient parameter, in addition to the usual metric-related
variable, for graphically displaying this scalar potential. Fig. 1. Wedge and Hertzian dipole.

Index Terms— Boundary value problems, electromagnetic

diffraction, electromagnetic scattering, transforms, transient can pe recovered as a special case. As indicated in [1] and

analysis, wedge. recognized by [8] and [9], the main value of the isovelocity
solution is its service, in principle, as the zeroth-order iterate

[. INTRODUCTION for a wedge of relatively small velocity contrast. However,
H1e envisaged perturbative adjustment (i.e., Neumann series)
annot be constructed in the time domain because an upper
und must be imposed on the frequency. A complete or even

applied to the pertinent transmission problem for the threg§able solution for the arbitrary penetrable (i.e., dielectric)

dimensional time domain wave equation in the spirit of th\é/edge is not yet available. Marx [10] and Davis [11] give

Biot—Tolstoy solution [2] of the simpler impenetrable Wedgeqomplementary VIEWS .Of the ;tatus of the two—_dlmenspnal
féequency domain version of this problem for which Rawlins

The Biot-Tolstoy exact solution to the canonical soft/har 5 ¢ turbation for the riaht led wed
wedge diffraction is often cited in the acoustics literature: ] gave a one-term perturbation for the right-angled wedge
ith equal density.

and is the basic building block of a time domain analog 6I¥Th ) . lsive Hertzian diole. situated at th

geometrical theory of diffraction (GTD) modeling called the . € source IS an Impuisive Fertzian dipole, situated at the

“wedge assemblage method” [3]. The application of the BiGeint with cylindrical coordinategR, ®, 0), in the exterior
gion and oriented parallel to the edge of the wedge, i.e.,

and Tolstoy ideas to the TM/TE electromagnetic scatterir} the 2 directi Fia. 1). Th tituti i f
by the perfectly conducting wedge was presented by Felgdfn'n€ = direction (Fig. 1). The consitutive parameters o

e lossless externdle) and internal(¢) media satisfy the
’%quirement that the intrinsic wave speed remains invariant

HE RECENT solution [1] for the acoustic wave scattere
by the isovelocity wedge is adapted to the electroma
netic case. In [1], a succession of integral transforms

[4] and is mentioned in the Soviet translation [5]. Howevef
our electromagnetics community has apparently ignored th
interesting time domain solution in favor of, for example, c—= (Nefe)—lﬁ - (uifi)—l/% (1)
numerical Fourier transformation of the time-harmonic GTD
results [6]. Analytic Fourier transformation of the GTD (UTD)The name “diaphanous” refers to similar wave speeds in [13],
diffraction for a curved wedge is applied in [7] to excitingdut is adopted by [8] for this isovelocity or isorefractive wedge,
pulses that have appropriate high-pass and band-pass spedf, intrinsic impedance,/:; /e;, which clearly differs, in
Henceforth, the present paper extends the time domai@neral, from the external impedang4:. /e.. This is exactly
analysis to the electromagnetic scattering by a penetrat#@alogous to the archetypal scattering problem of the density

albeit isovelocity, wedge. The perfectly conducting wedgeontrast wedge [1].
Axially directed electric and magnetic dipoles are consid-
Manuscript received June 2, 1997; revised December 8, 1997. ered because of the concomitant simplification in describing
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of Alabama, Tuscaloosa, AL 35487 USA. o respectively. Further rationalization for avoiding generally
A. M. J. Davis is with the Mathematics Department, University of Alabama, . d dipol | h / d " f arbi
Tuscaloosa, AL 35487 USA. oriented dipoles appeals to the TM/TE decomposition of arbi-
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coordinates(s, 6, ¢) and (S, @, ®) can be introduced, if is represented by the volume density of electric current
desired, via

. 6(r — R)
J(r 2, t) = 210 ———2 6(¢p — ©)6(2)6(2). 4
R=55sn0© r=s¢in 6 (r, ¢, 2, 1) = 2 R (¢ )6(z)6(t) (4)
Z =5cos © z=scost 2) Continuity of charge requires the accompanying volume
density of electric charge

where (z — Z) replacesz as the axial displacement between
the field and source points. As the radial distance to the source
S — oo, the incident wavefront becomes planar. Similarly,

the far scattered field is measured by distant observers

L . . . . .
large s. The steady-state behavior of monochromatic fields ich is an electrostatic dipole created by the impulsive

. S o , w. n s ocurrent at timet = 0. Symmetry about the wedge bisector
permits a natural distinction between “near” and “far” fields :
ayrc])ws the source angle to be restricted to the rangec

according to a radial scale that depends upon the wavelen% ' 7. A vector magnetic potentiaﬂ and a scalar electric
and source dimension. In contrast, the temporal evolution of ™~ !
the Dirac delta singularities and subsequent derivatives F|)rc1)tent"'jllv’ defined by
this time domain solution obscure the demarcation between H=VxA
near and far fields. Therefore, it is important to examine the
structure of the entire field. and S

The geometry of Fig. 1 suggests that the field behavior at E=—-VV — 104 (6)

any point is appropriately represented as a function of the four ¢ Ot

coordinategr, ¢, z, ). In the diffraction analysis of [1], the gre introduced into the Maxwell equations, subject to a Lorentz
time and length coordinates become combined with the wWaygugeV - A= —aV/ot. This scaling is chosen to allow the

8(r — R)

A\Ty @5 2, =-1I
pu(ry @, 2, 1) I 7

8(¢p— @) (2)H(E)  (5)

speedc in the metric-related variablg, defined by direct comparison with the boundary conditions in [1].
(ct)? — (R? + 12 + 22) _The partlc_ular solution for thg vect_gr EotennaIAm thﬁe cylin-
cosh £ = 5 > 1. (3) drical coordinate system of Fig. 1 id(7, t) = 2A.(7, t).

Consider a smooth closed contdlirin the («, y) plane, with

In [1], the underlying scalar boundary value problem is solvedutward normali and tangent unit vectat = 2 x #. On the
and explicit solutions for the subject wave function are pré&oundaryC, the tangential component of the magnetic field
sented for several cases of wedge angle, notabl¢ 7/4, intensity is proportional to
/3, 2m/5, andw /6. The physics of the present electromag- 54
netic problem are conveniently represented in terms of two Ax H=—3e222.
functions—the vector and scalar potentials. After the statement In
of the potential wave equations and transmission conditio?

at the wedge boundary in Section Il, the philosophy ary quires continuity ofedA./dn along the curve that sepa-

details of the integral transform analysis are summarized |j§tes the two homogeneous regions. Similarly, away from the
Section Ill. An efficient summation of resultant residue series '

is presented in Section IV for the case of wedge angles th?{urce,aE/at = Vx Vox A implies
are rational multiples ofr. Calculations of the geometrical  9E  [82A. 924,
optics and diffraction field are detailed in Appendixes A and n X 9 T[ 972 + an? }

B, respectively, for specific wedges of half angle= =/3

and 7 /4. Calculated results for the time/space behavior ofyq thus continuity of tangentiaf translates, for all time,
the e_lectromagnetlc potentials are graph_ed for some Seleq@q:ontinuity of the vector potentiali. at each point of the
physical parameters for the case= w/4 in Section V. AS  pondary. WithA properly specified, the boundary condition
in the standard time-harmonic scattering from the perfectly, tangentialZ now implies continuity of” and the absence
conducting wedge, the most interesting feature of this fylk ¢oa surface charge requires continuityesf’/dn.
electrodynamic solution is the singular behavior of the dif- 1o scalar boundary value problems for both potential

fracted field at the critical reflection and shadow boundari¢§,ctions in the exterior and interior wedge regions consist
of the geometrical optics field. Otherwise, the general nat%?inhomogeneous wave equations

of the waveforms, except for straightforward scale factors, is
reasonably insensitive to the particular wedge angle and to the < , 1 82 ){AS)(T, b, 2, t) }

(7)

e boundary condition of continuity of tangentﬁltherefore

L O%A.
z
9z 01

(8)

degree of impedance contrast. 2 o2 J\VE(r ¢, 2 t)
I 6(r— R) 5(6— @) 8(2)6(t)
[I. BOUNDARY VALUE PROBLEM FOR THE POTENTIALS e R &' (=) H(t)
(a<d<m a<d<22r—a)
A. Hertzian Electric Dipole <V2 1 &2 ){Ag)(n b, 2, t)}
All fields are functions of space and time in the manner of 2 o2 J\VO(r, ¢, 2, 1)

E(F, t) = E(r, ¢, z, t). The Hertzian electric dipole of Fig. 1 =0 (—a< <) 9
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subject to identical boundary conditions subject to the boundary conditions
(e) () ‘ (e) @)
(e) () p 04 — dA; P =p® and p o _op atp =xco.  (16)
{AZ =AY } and g Ao até = +a A ¢
Ve =y v _ oV @ This boundary value problem can be solved by introducing a
a¢ a¢ Fourier transform in bott and » according to
(10) o0 o0
p(r, ¢, 4, w) =2 it 2, t Lz dzdt
where the permittivity ratio isp = ¢./¢;. In this case of Br, ¢, £ w) /_Ooe /0 p(r, ¢, 2, 1) cos Lzdz
electric dipole source, which is the TM or E polarization, it is o 17)
expedient to define the reflection coefficient with the definitionsk = w/c, k = V&2 — £2, followed by a
Kantorovich—Lebedev transform in the radial coordinate. This
p—1 € — € .
=L — = . (11) yields
P + 1 Ce + <
The perfectly conducting wedge is the limiting cdse- —1. p(r, ¢, k) = lim —i/ exp(er?)J, (k1)
Note that the two solutiond, andV are related, as are their 0 —i00
respective forcing functions in (9), by the Lorentz gauge -HP(KR) f(v, ¢) dv (18)

which, by adapting [13, (9.19)], can be rearranged as

ot 9
Vir, ¢, 2, t) = —/ 3 A(r, b, 2, ) dt (12)

oo OF 0o+
. . . . . . p(r =1 HP[k(r? + R? — 2rR cosh w)'/?
consistent with the introduction of being necessitated by p(r; ¢, 1) 4/ o [0+ R cosh w)'

the dependence off on 2. oo
. Z "Tres{ec ™" f(v, ¢)} atv = vp]dw (19)
B. Hertzian Magnetic Dipole m=0

TE or H polarization is the perfect dual of the precedinghereres{ } denotes a residue and for the external region
case. Therefore, the above analysis applies to the magnetic F=f©

dipole, after making the following substitutions. Exchange cos @ + T cos (@ — 2a)

magnetic dipole momerk £ for the electric dipole moment/ - - cos v(m — ¢)
of the source, and writ€ = —.V x F in terms of a2 directed sin v+ I' sin v(7 — 2a)
vector electric potential. That is, make the dual replacements 4 8m v® + T sin p(P — 20) sin v(r — ¢)
sin v — I sin v(7 — 2a)
A= F V=U eop p=e +(1£ DH(® — ) sin (P — )

In particular, the pair of scalar functions, and U satisfies according as the source is @R, ®, 0) or (R, 2% — @, 0).
the same partial differential equations (9) and transmissi%reJﬂ < 1, thew integration above is along the contour that
conditions (10), where is now the permeability ratige. /j;. passes to the left of the point = cosh ™ [r2+ K2 +22)/2rR],
The magnetic reflection coefficient is thus the poles are indexeth = 0, v, > V-1 (m > 1), and the
o He—p (14) prime on the summation denotes that a 1/2 factor multiplies
m the residue at the origin, if it exists. Inversion of theand

- fre 1+ 14 )
which is —I" of the dual problem, according to the isovelocit); transforms yields

condition (1). In light of this direct duality, only the TM or E p(r, ¢, z, t)
polarization is considered in the remainder of this work.

1
cobmi 6[t — =(r? 4+ R? — 2rR cosh w + 2?)¥/2
c

I1l. TRANSFORM ANALYSIS FOR THE |SOREFRACTIVEWEDGE = E/ o (r2 + R2 — 2rR cosh w + 22)1/2
A suitable scaling of the forcing term permits the electro- 0
magnetic equations of (9) and (10) for the vector potential to - »_ ‘[res{e™* f(v, $)} atv = v, ] dw (21)
be rewritten precisely in the acoustics notation of [1]: m=0
, 197 and subsequent deformation of the contour shows that
< 2 _2>p( )(7’7 d)v 25 t) [e9)
e ot p(7)¢7t)__i42/
_ @ 8( — @)8(2)8(t) 2r rRsing S,
(a<d<ma<d<2m—a) - [res{cos vn f(v, Z)o)} aty = vp]
2 1 c
<V2 - % %)P(z)(ﬁ ¢, %, 1) + 27 7R sinh £ 7;

=0 (—a < ¢ <) (15) [res{e™¢ sin vw f(v, $)} atv = v,] (22)
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where the time and space dependence is folded into which is required fom, + p,. Thus we need to consider, for

various choices of?, the series
R2 + 7,2 + 22 _ 62t2

o il i "res{[F{ () + F(1)] cos vQ} atv =1,,].  (28)
N ’ + — - m-.
(\/(R—7)2+22<ct< (R+7)2+z2) —
22 _R2 _ g2 2
cosh & = SRr With 8 = v /M, z = cos 6, as in [1], (25) is expressed as
N2 22 e 1 T + Iy
(et > R+ +22) (23) FOw) = IHGESYING) (29)

. o o ) "~ 4sin 0 Up_y(2) £TUN_1(2)
with 0 < n < « and contributions occurring in relevant time

intervals. in terms of Chebyshev polynomials
Thus, the evaluation of the field involves the summation of
these residue series. In the soft and hard cases (TM and TE Tn(x) = cos N0
polarization, respectively, for the perfectly conducting wedge), U _sin(N +1)6 N> 30
the poles are integers or half integers and the summations are v(z) = sin @ (N 20). (30)

elementary. These are the Biot—Tolstoy solutions [2] that were
rederived by Felsen [4], and further details are given in [T]he residue ofFf_Le)(l/) atd = kr, ie., atv = kM (k > 0)
in the verification of this limiting case of no penetration. Ins, from (29) and (30)

general, the poles are the roots of transcendental equations .

and the corresponding residues appear to defy summation. M ()M EDE=DM (31)
However, some simplification occurs if the wedge angle is dm M(=1)kM £ N(-1)FN

a rational multiple ofr, since then the residue series reduce to ) i , i

a finite number of summable series. Even these are nontri\ff&d’ hence, the required sum/difference in (28) is

since the roots of polynomials must be determined and so the

: - ) 4 (_1)k(M—N) 4T (_1)k(M—N) -T
presented results are necessarily restricted to rational multiples— [ V3D NI }
involving small integers. dm [ M(=1) +I'N - M(-1) -I'n

B M M —T2N 32)
IV. WEDGE ANGLE: A RATIONAL MULTIPLE OF 7 T 2r(M2 —T2N2) | T(-1)FV=M(M - N) [

Alter setting The generalized Fourier series

m—20 N (24) - -

T M Z/ cos kMQ =1 Z GiRMEQ
the combinationsV/, N, both odd andM or N even, were k=0 k=—o0
considered separately in [1], but here the presentation is _ S(MQ)
suitably modified so that this distinction is unnecessary. The =" -

consequent simplification is readily apparent, e.g., only the
{y;} roots are used.

With the definition .
w
F(e)( ) 1 cos vmr £ 1 cos v(m — 2a) (25) = Z 5 —2nm/M)  (33)
)y = — =
+ U 4 sin vw £ T sin v(r — 2a) nETee
the symmetric and antisymmetric versions of (20) are and
(e) _ qp(e), \COS gy 008 . - 1¢_1\kL _ - !
FO=aF0 () [ vlr = @) vl = ¢) kz_o (=1)*E cos kMQ = kz_o cos k(MQ + Lx)
+ regular function B o
w
=25 (1) cos Y(® = ) & cos v(2r — & — )] =7 n;m 8[Q — (20 — L)m/M]
+ regular function (26) (34)
so that
allow the reductions
res{cos vn[f (v, ¢) £ [ (v, $)]} o
= res{[F\ () + F' (1))][cos v(n + |® — ¢|) "Tres{[F\7 () + F*) ()] cos 12} atv = kM]
+ cos vy — |& — gI)]) =0 2
. . M —T2N -
+ res F()I/ FE)I/ cos v(in+ 27 —® — - - _
{7 (v) F F27()][cos v(n ¢) SME T2V n;m 82— 2nm /M) (35)

+cos vy — 20+ © + ¢|)]} (27)
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and Similarly, the residue off\”(v) — F)(v) at v = kM +
oo (M/27) cos™t y; is
Z [res{] F( ©) (v) Fie)(l/)] cos v} atv = kM|

= MT sin(M — N)8
o 27 M sin 2M6 — T2N sin 2N6 .
]__‘(M — N) 20=2kwtcos—' y;
= 8[Q— (2n — M + N)x /M].
2(M? —I2N?) _Z (2= (2n /M M-N
n=—oo (—1)(M=N)k gin [ cos 1 uz}
(36) _ MU
o 2m [leﬂl—l (yz) — FQle]\r_l(yi)] SiIl(COS_:L yz)
The Dirac-delta functions, arising from the first residue sum (41)
of (22), are the geometrical optics portion of the total field,
while the second series in (22) is the diffraction field. which is needed in
Further consideration of the sum and difference of (25)
proceeds with the form Z {res{[ FOW) - F90)] cos v}
(e) (e) h=0
FYo/ ()£ 127 (v) M 0
_1 cos M@ +T cos N8 cos M@ —T cos N8 atL/:kM:I:%cos Yi k>1
o sin Mé& +1 sin N& sin Mé& — 1" sin N6 [M—-N .
_ 1 {Sin 2M6 — I'? sin 2N9} MT St [ cos y}
4(sin* M@ — I sin® Ng) | 20 sin(M — N)§ T 7 [Un—i(mi) — T2NUn_1 ()] sin(cos L ;)

w
(37) 0o MQ
Z’ "(M N) cos kM cos {2— cos! y&
Pairs of residues differ by only &1 factor according as to k=0 T

whether the pole arises at a zerosof M6 +T" sin N6. Let I sin M—-N cos=1 1
y = cos 26 = cos(2vw /M); then the poles of (37) occur at the _ Yi
zeros ofl —I'* — Ty (y)+ 1T (y), i.e., atyy, yo, -+, Ynr—1, - [MUpy 1 (y) —T2NUpn 1 (3] sin(cos™! ;)
1. The zero aty = 1 corresponds to the already considered -
poles atv = kM. The other roots correspond to ) Z 6[9 _2Zn-—M+N W}
< M
M n=—o&
v=kEM+ — cos™!y k> 0 . (38) M- N 1
2m 1 -cos || n — 5 cos™ ~ Y;
The residue of FJ(:')(V) + FY0) at v = kM + = r 5
(M/27) cos™t y; is, from (37) [MUM 1Y) = P2NUn—1 ()]
M sin 2M6 — I'? sin 2N6 Z 812 — (2n — M + N)m/M]
- B 12 B n=—oo
47 M sin 2M 6 (F)N 51;1 2N (20)=2k7r:|:cos*1 v ) {SgnnU|n|_1(yi) —sen(n — M+ N)
M Un—1(yi) —1*Un_1(y;
== 39 Ul Ny =1 () }- 42
An MU]\/I—I(yi) — FQNU]\T—l(yi) ( ) |[n—M+N| l(y )} ( )
and furthermore Thus, by combining (35) and (40)
o/ () (@) res{[FO () + F© O} aty =
Z res{[F” (v) + F-(v)] cos 2} [res{[F}"/(v) + F27 (v)] cos 12} atv = vp,]
k=0 M 0 m=0
aty = kM j: — cos7t u} <k > ) ad M —-T2N
M Uyoily ) T2Un_1 (i) S——
 2n MUy (ys) — P2NUn—1 (i) L Ail Unm1(ys) =T?Una(9:) o, () b
< Mo 2 Ze MUy_1(0i) — D2NUy_y () WY
. Z cos kMSQ cos | — cos™ " w; i=1
k=0 2 (43)
1 Uyoa(y) —D?Un—1 (i) . . . .
T2 MUy (i) — T2NUn—1 () Similarly, from (36) and (42), the difference sum is shown in
00 (44) at the bottom of the next page. Wh&h— N is even, the
. Z §(2 = 2nm /M) T, (4i)- (40) second summation can be expressed in termig$f-2nx /M)

n=—o0 by replacingn by n + (M — N)/2 in (44), whereupon the
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M-1

expression in{ } reduces to _ Z Unr—1(yi) — T2Un_1 ()
Mo 2 P MUy _ 1 —T2NUy_ 1(.%)
I'M — N) 4T Z Uaa— N)/2) 1) Tjny (4i) M
2(M? —T2N?) MUy 1 (y;) —T2NUN_1(y:) sin <— cos™?! m)
(45) ) M
The diffracted terms in the second sum of (22) are now cosh M& — (~1) cos MY
written in the form . {cosh [Mﬁ(l — Zi cos™t yz)}
70
ves{e"€ sin v [f() (v, ) % [ (v, $)]} MU M¢
—1 M —1
= res{[Ff)(l/) + Fie)(l/)]e_”’3 sin vw s eos [? cos yz} = (=1)7 cosh [; cos yl}
-2 cos V(P —
(e)]/( d)()e}) ] - COS [M\I/ <1 1 cos™! uzﬂ } (50)
+res{[F\” (v) F F*”(v)]e™* sin v 27
-2cos V(2 — & — )} (46)

and similarly, by using (41)
which is required fop, £ p,. The general form of the residue

sums is therefore > ) ()

Z [res{[F}” (v) — F'”(1)]e™ sin vmr - 2 cos v ¥}

Z [res{| F( V(v) £ F1)]e ™ sin v - 2 cos v}

aty = vy 47 atv = vp|
o [M-N
There are no poles at = kM, and, hence, the contributions M—1 sin cos™t y;
of the poles (38) to the residue sum (47) with the plus sign— MT Z .
are by using (42) T = [MUpn—1(yi) — T?NUn—1(y:)] sin(cos™ ;)
N 1277 ) . M
M Unoa() =D2Uxoal) o (M0 sin <_ cos—1 U)
2m MUpr—1(yi) = I2NUNn_1(yi) 2 ’ . 2
M cosh M& — (—1)N cos MV
- RS exp [—(5 W) o cos™! uz} 1 T MU
2w i . {COSh [Mﬁ(l — — cos ! yz> cos {— cos* yz}
27 | 2m
oM —kM(¢—iX . M
_Z(_l)kj\le kM (§—iW) _ (_1)1\ cosh [2_5 cos™! yz}
k=0 7
) g
e cos [arw(1- oo )| 51)
Z (—1)’“Me_’“M(5_i‘I’)} (48) For p, + p,, take the first sum withl = |® — ¢| and the
k=1 second sum withl = 27 — & — ¢ and sum ovet. For the

in which, by summing the geometric series, the complex factifférencep, — pa, do likewise with the angles interchanged.
reduces to as shown in (49), given at the bottom of the next

page. The first desired residue sum in (47) is therefore, by
substituting (48) and (49) V. APPLICATION TO THE RIGHT-ANGLED WEDGE

oo When « = 7 /4, the complete solution of (9) and (10) for
Z [res{[Ff)(,,) + Ff)(u)]e—”f sin v -2 cos v} the vector potential in the exterior region is assembled from
P the sample results in Appendixes A and B. As indicated above,

an alternate calculation of the relevant residue sums is given
aty = vy] in [1]. If the field point is on the same side of the symmetry

plane as the source, i.e., whern< ¢ < =, the vector potential

o

Z /res{[Ff)(l/) - Fie)(l/)] cos VY atv = l/m}
m=0
= 2n—M+N
:n;mé{g—in M+ w}

(44)

M -N) T 13_:1 sgnn Upp)_1(y;) —sgn(n — M + N)Upj_yqnj-1(i)
2(M? —T2N?) MUy -1 (yi) = I2NUn—1(y:)

=1
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is shown in (52), given at the bottom of the page, with in terms of permissible source to observer distances. This re-

striction is an explicit consequence of the underlying transform

A B 1 analysis of [1]. As indicated in (52), for example, the actual
(& ¢)= cosh 2¢ — cos 2(® — ¢) arrival time of each wave event depends on the particular
2 geometry in terms of the angles, ¢, and «, as well as
'{COSh [<1+ — sin (F/2)>5} the nondirectional lengths, R, and z. The remainder of
9 the field, termed the diffraction, begins when the metric-
- CoS Kl - = Sin_l(F/2)>(<I> - ¢)} related variable¢ of (3) becomes operative. This “turn-on”
i time 7, corresponds t&¢ = 0 and is predicted by the
— cosh [(1 2 Sin—l(l—w/2)>§:| ge_r_leral_ized _Fermat’s _principle. The physical source of this
7 initial diffraction wave is the apex of the “Keller cone.”
2 . When¢ is measured in the opposite sense to denote a field
wcos {14 — sin (L/2) )(® —¢) point on the other side of the symmetry plane, i.e., with the
1 replacemen2r — ¢ = ¢, the vector potential is shown in (55),
~ cosh 2€ + cos 2(® + ¢) given at the bottom of the next page, with
2 1
: h|(1+ = sin™(I/2 A =
{COS {( * 7 o &/ )>§} & ¢) cosh 2¢ — cos 2(D + ¢)
2
- COS [(1 - = Sin_l(F/2)>(27r e d))} . {COSh [(1 + 2 Sinl(F/2)>£}
w w
2 . —1 2 —1
+ cosh 1—; sin™H(T"/2) )¢ ccos [[1——=sin™([/2) ) (2 — @ — ¢)
Qo
2 2
ccos [ |1+ =sin " (['/2) |(2r — & — ¢)| ¢. —cosh |[1— = sin™"(['/2) )¢
aw aw
53
3) - cos [(1 +2 sin—l(r/2)> (27— & — ¢)} }
w
The spherically spreading delta functions are the geometrical B 1
optics field. The argument—|®—¢| of the first Heaviside step cosh 2£ + cos 2(9 — ¢)
function is always positive in the present case= 7 /4 < ¢, 2
® < 7. That is, the source is directly visible from each field : {COSh [(1 +— sin (F/Q))f}
point in this exterior domain. However, the geometrical optics 9
reflection, which is the second term of (52) and is weighted by - cos [(1 - = Sinl(F/2)> (- d))}
T", disappears beyond the reflection boundary at 37 /2—®, T
as indicated by its Heaviside factor. Arrival times of these + cosh [(1 2 Sin_l(r/2)>§}
specular contributions are between the extrémaand 77, l

defined by

- cos [(1 + % sill_l(F/2)> (®— ¢)} }
Ty = [(r F R)* + 272 (54) (56)

cosh [MS — (&€ — i) % cos™! uz} — (=M cosh |:LM\I/ + (€ —4D) % cos™! uz}

- 49
b cosh M&— (—1)M cos MY (49)
1
1! 6[t -~ (?*+R*+ 22— 2rR cos|® — ¢|)1/2}
Al =2 ¢ Hir—|®—
. Ce dr(r? + R? + 22 — 2rR cos |® — ¢])1/2 (m | ¢l)
1
5[t - = (7‘2 +R>+ 22 —-2%R cos(P + ¢ — 7r/2))1/2}
c
r H(37/2— & —
- dr(r2 + R2 + 22 — 2rR cos(® + ¢ — 7/2))1/2 (37/ )
cl’
A6, ¢) (52)

B 272(4 — T'2)1/27R sinh ¢
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The third term of (55), which is the ray that penetrates theith parameters0 < a < 2, ¢ > 1, and -1 < b =
wedge and emerges on the “shadowed” side, is weighted dpy:0s 2(® F ¢) < 1. If ¢ lies along one of the geometrical
the cascaded transmission coeffici€nt-I")(14I"). Note that reflection or shadow boundaries, rearrangement of the terms
this penetration field exists in the shadow region of the sour@annot remove the singularity whén= —1. Otherwise, the
The geometrical optics and diffraction parts of the scaléitegrand is so well behaved that quadrature is the most effi-
potential are considered separately. Application of (12) to tlient method of computation. The following numerical results

general form make use of the IMSL routine QDAGS [14], which treats the
5(t — g/c) nearly singular behavior als — —1 by a globally adaptive
A = B Hir — (¢4 5)] Gauss—Kronrod rule based on thalgorithm extrapolation.

The Dirac delta functions and Heaviside step functions that
5 o 5 comprise the geometrical optics portion of the potentials are
¢ =17+ R4 27 = 2rR cos(¢ + ) (57)  clear. The variation of the functions(¢, ¢) andQ(¢, ¢; o) as
a function of¢ for fixed values ofp and® is graphed in Figs. 2
and 3. The effect of the multiplicative facto(sR sinh £)~*
and z(rR)~%/2, respectively, in the diffracted components of
the vector and scalar potentials is readily apparent without
i , . specific numerical values. The two sets of curves in Figs. 2
to the scalar poFenUa_I. Th_e gauge (12) is most convenleng}ﬁd 3 usel’ = 0.5, and for the normalized scalar potential
applied to the diffraction field as of Fig. 3, the arrival time parameter s = 2. The relative
a [ Lot insensitivity of A and @ to the values ofl* and & precludes
8z/0 AZ(r, ¢’€)a—£,d§- (59) the need to present an array of parameterized curves and
numerical data. The main impact of the dielectric contraist
Definition (3), the introduction of the arrival time parameterin the scale factors of the geometrical optics (Fresnel reflection
1+ (T /T, ) and transm_ission coeff_ic_ients) and diffracti_on component_s of
o= m >1 (60) both potentials. The striking feature of the diffracted potentials
-0t of Figs. 2 and 3 is the change in sign across the reflection
and the pertinent diffraction (last) terms of (52) and (55) permidoundary atp = =, due to the source location &t = /2.
the representation as shown in (61), given at the bottom of tAe the reflection boundary is approached from either side,
page. Given the form of (53) and (56), the evaluation of (61e initial (¢ — 0+) diffracted flash becomes stronger and

with

results in a typical geometrical optics contribution

z {5@— q/c) n H(t—q/c)
7 c q

yo - -+ s

Vd(T’ d)a 5) =

requires integrals of the form ultimately coincident with the specular reflection. Unlike the
¢ ) full time-harmonic solution, which must be bounded, the

/ cosh a§ de’ (62) direct, reflected, and diffracted waves due to the impulsive

o (cosh 2¢’ 4 b)(cosh & + 0)3/2 current all exhibit singularities that generally arrive at differ-

1
5 {t -~ (?+ R+ 22— 2rR cos(2nr — & — ¢))1/2}
(0 _ 1L ¢

AW ==

' H b —
- €e dr(r? + R? + 22 — 2rR cos(2m — & — ¢))1/2 (¢ + )

1
6[t -~ (P +R*+22—2rRcos(3r/2 — | — ¢|))1/2}
c

1 dr(r2 + R2 + 22 — 2rR cos(37 /2 — | — ¢|))1/2 Hl¢ =l =7/2)
6 [t _1 (r? + R? + 22 — 2rR cos(® + d)))l/ﬂ
5 c
-9 dr(r2 + R2 + 22 — 2rR cos(® + ¢))1/2 Hir =€ =)
cl’
B 272(4 — T'2)1/27R sinh ¢ A& 9) (55)
dr b €)= 1Tz A& ¢) LS A D)
Ve 6,6 = eem2(4 —'2)1/2(2rR)3/2 | sinh & (o + cosh &)1/2 + 5/0 (o + cosh £)3/2 @ (61)

Q. ¢30)
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o the impulsive temporal source hinders a direct comparison
0 [analytic evaluation of@(£ — oo)] with [15] or [16]. With
10 = ¢ respect to integral transform techniques, the static problem
K \ is better treated as such from the outset, as in [15], in
i BN terms of the Mellin transform which is the static limit of the
150 Kantorovich—Lebedev transform.
13— Application of the curl operator of (6) to the geometrical
AS b — optics termls (57) of the vecftolrd potential gives the typical
o eometrical optics magnetic fie
" % g p g
L-210 .
0 00 ﬁg :ﬁ —F M
o / dm g
8(t—q/c &t —q/c
(ML T b - (o4
o q ¢
10 L= a/0)bm = (¢ +0))
0 0.5 1 15 2 rq
o (5t — & (¢ —
3 +¢L2< (t—a/e) & (J/C)>
Fig. 2. Scaled diffraction portion of vector potential(¢, ¢) as a func- q q ¢
tion of the metric variable¢. Case:T' = 0.5, « = = /4, & = =/2,

100° < 6 < 220°. (63)

Hlr - @+

o
. The diffraction contribution to the magnetic field, according
to both cases (52) and (55), is
n N
i I 1écl 3 7 OA(E, @) ¢
\ 272(4—I2)1/2 | y2Rsinh & 9¢ rRsinh? ¢
\
Qe A ¢) (1 coshé
© sinh € \ r R
Va )
3 / (64)
o 4 in terms of the scalar functiod of (53) or (56). Similarly,
Nl the electric field is given by the second member of (6) in
0 0.5 1 1.5 2

terms of both potentialsl, andV, or equivalently, from the

3

Fig. 3. Scaled diffraction portion of scalar potentiflé, ¢; o) as a function
of the metric variablet. Case:c = 2, T = 0.5, o = /4, & = 7/2,

t integration of the curl off. Recall that thet integration is
introduced into the scalar potential via the auxiliary function

Q of (61).

100° < ¢ < 220°.

ent times. However, the sign of the diffracted singularity is VI. CONCLUSIONS

always in opposition to any changes in the geometrical opticSExact analytic results for the transient electromagnetic fields
singularities. This is especially evident in the neighborhoagtattered by the isovelocity wedge are broken into geometrical
of the reflection and shadow boundaries, where the variogistics and diffraction contributions. Direct, reflected, and
geometrical optics rays are turned on or off. transmitted rays comprise the geometrical optics terms. Under

Long after the impulsive dipole current has been pulsedis isorefractivity restriction, the usual Fresnel coefficients
(at t = 0), the variable{ — oo ast — oo and the are independent of incidence angle. The apparent source of
remaining static electric dipole produce the static potentitde diffraction field is the wedge apex, with the diffracted rays
of the second (integral) term af in (61). Both the vector forming the “Keller cone” in accordance with the generalized
potential and the magnetic field have decayed to zero in tiHermat’s principle. Scattered electromagnetic fields due to
static limit. In principle, this asymptotic limit should recovemmore complicated source configurations can now be synthe-
the static results of [15] and [16], with obvious adjustmentszed, via appropriate temporal and/or spatial convolutions
for the source configuration. However, the present form favith the resultant time domain Green’s functions.
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APPENDIX A
EXAMPLE CALCULATIONS OF GEOMETRICAL OPTICS RESIDUES

1
Case 1—Wedge Half-Angle= = /3. The integers in (24) " =0,2= - {

are nowN = 1, M = 3, and the zeros of
1-T2—Ta(y) + 12y =0
= (1-y+4y+4°-T%=0
are the required values in (38):
y=—3(1+I)
Consider the coefficient (43)
3-12 1<
20-179 T2 2

< 12y7

(A1)

Yo = —%(1 — F) (AZ)

dy? — 117

_3_712 Ty (yi) (A3)

in which
4y —
1242 — 3

1-r2 1
-T2 34T

and
3-T2 14T 1-T
9-I?2 2(3+1) 2B3-T)
so that the required coefficient is

L T(y1) —m Tn(yz)—m}

(A.4)

+ (A.5)

2 3+ 3-T

Evaluation at the values of that yield delta functions in
visible space gives

n=0= 3+ =3

n=1=20
122 —1—y 293 —1—19

—2= =

"TET ST BT 3T
1?2 6 I o
T 2129-T2 2 9-T2|
1'4 2 2 _

n—3o 1 vilyi —1) | dye(ys — 1)
2| 34T 3-T

= -y +1) =y +1)

1-12
5
Consider next the coefficient (44)

9FQ+Z

(A.6)

sgun Upy 1 (vi) — sen(n — 2)Uj 211 (%)

— 1247 —3 12
(A7)
which in view of
r 1/ 1 1
9-I2 _§<3+—P_3——r>
and .
+1
2(12y7 —3-T?)  4(340D) (A8
is written as
1[sgnnUp—1(y1) — sgn(n — 2)Up,—2)—1(y1) — 2
4 3+T
sgnn Uy, —1(y2) — sen(n — 2)U)—oj—1 (v2) — 2
B 3-T '
(A.9)
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Explicit values at the pertinent values ofare

2y1—2 2y2 2 1
1 +1[=0
3+ 3- r} Fiau
n=1=0
1 l[Q(Ul)—3 l[Q(Ug)—3
=-1,3= - . - .
’ 4[ 3+7T 3-T
i+l e+l D (A.10)
N 2 2 2 '

Case 2—Wedge Half-Angle=n/4: WithN =1, M =2
the single root from the characteristic equation

1-T2-22+14+T% =0
= 1-y2+2y-I?H=0 (A.11)
is
=-1+3iI7% (A.12)
Coefficient (43) reduces to
2-T2 12y —1I? Tjn (1) — 1
— = T =——" (A13
3A—T7) T3 2y, —rz L) g_rz A
and provides physical delta function weights corresponding to
- 1-— U1 - 1
n=0= 1123
n=1=0
21—y, 1-T7
=2 = . A.14
NEET T 2 (A.14)

Coefficient (44) is

r
2(4—12) [1 —sgnn Uy —1(y1) +sgn(n — HUj—1-1(y1)]
(A.15)
with contributions
=0,1= L (1-1)=0
ST s =
I
=-1,2=> —[1-2 1 == )
n : ;‘2(4—r2)[ y1 + 1] (A.16)
APPENDIX B

EXAMPLE CALCULATIONS OF DIFFRACTION FIELD RESIDUES

Case 1—Wedge Half-Angle=»/3: WithN =1, M =3
the two-term sum in (50) or (51) is

(3 14T
3 1 S11 2COS —2

27 341 cosh 3¢ + cos 3¥
. {COSh [3—5 <1 + l cos ™t ﬂ)}
2 s 2

[3\1/( 1 1 1+F>}}
ccos|— |1+ —cos™t ——
2 s 2

=+ similar expression with-I" instead ofl’ (B.1)



1158

where

3 1+D r
sin [5 cos™t <—L>} =——+v3+1TI.

: 5 (B.2)

(1]

Hence, with{ } denoting the curly brackets in (B.1), the 2]

diffraction component op; + p,, IS —¢/27r R sinh £ times

3r 1
4r/3 + T cosh 3¢ +cos 3(® — ¢) { }\pchqu
+ similar expression with-I" instead ofl"
3r 1
+ 473+ T cosh 3¢ + cos 3(P + ¢) { }\p:27r—<1>—¢
— similar expression with-I" instead ofl". (B.3)

Case 2—Wedge Half-Angle=n/4: WithN =1, M =2
the single term in (50) is

1 2 sinfcos™! 1]
7 4 —I'? cosh 26 — cos 2¥

. {Cosh {5 <1 + % cos™! (—m)ﬂ
- cos {\P <1 —~ % cos‘l(—yl)ﬂ
— cosh [5(1 - % cos‘l(—yl)ﬂ
cos {\p <1 L cosi(—y )) } (B.4)

while the single term in (51) is

1

or —sin [5 cos™! yl]
7w (4 —T?)[cosh 2£ + cos 2U]
{as above with+ instead of—}. (B.5)
The simplifications
sin[% cos ! yl] =\/1-T2/4
sinfcos™ 3] =|I'|/1 —1'2/4
cos H(—y1) =2 sin"H(|']/2) (B.6)

(3]

(4]

(5]
(6]
(7]

(8]
El
[10]

[11]
[12]
[13]
[14]

(18]

[16]
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