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Time-Domain Three-Dimensional
Diffraction by the Isorefractive Wedge

Robert W. Scharstein and Anthony M. J. Davis

Abstract—The extension of the Biot–Tolstoy exact time domain
solution to the electromagnetic isovelocity or isorefractive wedge
is described. The TM field generated by a Hertzian electric
dipole can be represented by a vector potential parallel to the
apex of the wedge and a scalar potential necessitated by the
three dimensionality of the magnetic field. The derivation of
the former is exactly that of the pressure in the corresponding
acoustic situation [1], and a more efficient version of the lengthy
details is presented herein. A Lorentz gauge determines the
scalar potential from the vector potential, and the diffracted
field contains impulsive and “switch-on” terms that cannot be
evaluated in closed form. The ratio of arrival times, at a given
point, of the geometrical optics and diffracted fields provides
a convenient parameter, in addition to the usual metric-related
variable, for graphically displaying this scalar potential.

Index Terms— Boundary value problems, electromagnetic
diffraction, electromagnetic scattering, transforms, transient
analysis, wedge.

I. INTRODUCTION

T HE RECENT solution [1] for the acoustic wave scattered
by the isovelocity wedge is adapted to the electromag-

netic case. In [1], a succession of integral transforms is
applied to the pertinent transmission problem for the three-
dimensional time domain wave equation in the spirit of the
Biot–Tolstoy solution [2] of the simpler impenetrable wedge.
The Biot–Tolstoy exact solution to the canonical soft/hard
wedge diffraction is often cited in the acoustics literature
and is the basic building block of a time domain analog of
geometrical theory of diffraction (GTD) modeling called the
“wedge assemblage method” [3]. The application of the Biot
and Tolstoy ideas to the TM/TE electromagnetic scattering
by the perfectly conducting wedge was presented by Felsen
[4] and is mentioned in the Soviet translation [5]. However,
our electromagnetics community has apparently ignored this
interesting time domain solution in favor of, for example,
numerical Fourier transformation of the time-harmonic GTD
results [6]. Analytic Fourier transformation of the GTD (UTD)
diffraction for a curved wedge is applied in [7] to exciting
pulses that have appropriate high-pass and band-pass spectra.

Henceforth, the present paper extends the time domain
analysis to the electromagnetic scattering by a penetrable,
albeit isovelocity, wedge. The perfectly conducting wedge
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Fig. 1. Wedge and Hertzian dipole.

can be recovered as a special case. As indicated in [1] and
recognized by [8] and [9], the main value of the isovelocity
solution is its service, in principle, as the zeroth-order iterate
for a wedge of relatively small velocity contrast. However,
the envisaged perturbative adjustment (i.e., Neumann series)
cannot be constructed in the time domain because an upper
bound must be imposed on the frequency. A complete or even
usable solution for the arbitrary penetrable (i.e., dielectric)
wedge is not yet available. Marx [10] and Davis [11] give
complementary views of the status of the two-dimensional
frequency domain version of this problem for which Rawlins
[12] gave a one-term perturbation for the right-angled wedge
with equal density.

The source is an impulsive Hertzian dipole, situated at the
point with cylindrical coordinates , in the exterior
region and oriented parallel to the edge of the wedge, i.e.,
in the direction (Fig. 1). The constitutive parameters of
the lossless external and internal media satisfy the
requirement that the intrinsic wave speed remains invariant

(1)

The name “diaphanous” refers to similar wave speeds in [13],
but is adopted by [8] for this isovelocity or isorefractive wedge,
with intrinsic impedance , which clearly differs, in
general, from the external impedance . This is exactly
analogous to the archetypal scattering problem of the density
contrast wedge [1].

Axially directed electric and magnetic dipoles are consid-
ered because of the concomitant simplification in describing
vector fields that are TM and TE ,
respectively. Further rationalization for avoiding generally
oriented dipoles appeals to the TM/TE decomposition of arbi-
trary electromagnetic fields, external to the source. Spherical
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coordinates and can be introduced, if
desired, via

(2)

where replaces as the axial displacement between
the field and source points. As the radial distance to the source

, the incident wavefront becomes planar. Similarly,
the far scattered field is measured by distant observers at
large . The steady-state behavior of monochromatic fields
permits a natural distinction between “near” and “far” fields
according to a radial scale that depends upon the wavelength
and source dimension. In contrast, the temporal evolution of
the Dirac delta singularities and subsequent derivatives in
this time domain solution obscure the demarcation between
near and far fields. Therefore, it is important to examine the
structure of the entire field.

The geometry of Fig. 1 suggests that the field behavior at
any point is appropriately represented as a function of the four
coordinates . In the diffraction analysis of [1], the
time and length coordinates become combined with the wave
speed in the metric-related variable, defined by

(3)

In [1], the underlying scalar boundary value problem is solved,
and explicit solutions for the subject wave function are pre-
sented for several cases of wedge angle, notably ,

, , and . The physics of the present electromag-
netic problem are conveniently represented in terms of two
functions—the vector and scalar potentials. After the statement
of the potential wave equations and transmission conditions
at the wedge boundary in Section II, the philosophy and
details of the integral transform analysis are summarized in
Section III. An efficient summation of resultant residue series
is presented in Section IV for the case of wedge angles that
are rational multiples of . Calculations of the geometrical
optics and diffraction field are detailed in Appendixes A and
B, respectively, for specific wedges of half angle
and . Calculated results for the time/space behavior of
the electromagnetic potentials are graphed for some selected
physical parameters for the case in Section V. As
in the standard time-harmonic scattering from the perfectly
conducting wedge, the most interesting feature of this full
electrodynamic solution is the singular behavior of the dif-
fracted field at the critical reflection and shadow boundaries
of the geometrical optics field. Otherwise, the general nature
of the waveforms, except for straightforward scale factors, is
reasonably insensitive to the particular wedge angle and to the
degree of impedance contrast.

II. BOUNDARY VALUE PROBLEM FOR THE POTENTIALS

A. Hertzian Electric Dipole

All fields are functions of space and time in the manner of
. The Hertzian electric dipole of Fig. 1

is represented by the volume density of electric current

(4)

Continuity of charge requires the accompanying volume
density of electric charge

(5)

which is an electrostatic dipole created by the impulsive
current at time . Symmetry about the wedge bisector
allows the source angle to be restricted to the range

. A vector magnetic potential and a scalar electric
potential , defined by

and

(6)

are introduced into the Maxwell equations, subject to a Lorentz
gauge . This scaling is chosen to allow the
direct comparison with the boundary conditions in [1].

The particular solution for the vector potential in the cylin-
drical coordinate system of Fig. 1 is .
Consider a smooth closed contourin the plane, with
outward normal and tangent unit vector . On the
boundary , the tangential component of the magnetic field
intensity is proportional to

(7)

The boundary condition of continuity of tangentialtherefore
requires continuity of along the curve that sepa-
rates the two homogeneous regions. Similarly, away from the
source, implies

(8)

and thus continuity of tangential translates, for all time,
to continuity of the vector potential at each point of the
boundary. With properly specified, the boundary condition
on tangential now implies continuity of and the absence
of free surface charge requires continuity of .

The scalar boundary value problems for both potential
functions in the exterior and interior wedge regions consist
of inhomogeneous wave equations

(9)



1150 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 8, AUGUST 1998

subject to identical boundary conditions

and at

(10)

where the permittivity ratio is . In this case of
electric dipole source, which is the TM or E polarization, it is
expedient to define the reflection coefficient

(11)

The perfectly conducting wedge is the limiting case .
Note that the two solutions and are related, as are their
respective forcing functions in (9), by the Lorentz gauge

(12)

consistent with the introduction of being necessitated by
the dependence of on .

B. Hertzian Magnetic Dipole

TE or H polarization is the perfect dual of the preceding
case. Therefore, the above analysis applies to the magnetic
dipole, after making the following substitutions. Exchange
magnetic dipole moment for the electric dipole moment
of the source, and write in terms of a directed
vector electric potential. That is, make the dual replacements

(13)

In particular, the pair of scalar functions and satisfies
the same partial differential equations (9) and transmission
conditions (10), where is now the permeability ratio .
The magnetic reflection coefficient is thus

(14)

which is of the dual problem, according to the isovelocity
condition (1). In light of this direct duality, only the TM or E
polarization is considered in the remainder of this work.

III. T RANSFORM ANALYSIS FOR THE ISOREFRACTIVEWEDGE

A suitable scaling of the forcing term permits the electro-
magnetic equations of (9) and (10) for the vector potential to
be rewritten precisely in the acoustics notation of [1]:

(15)

subject to the boundary conditions

and at (16)

This boundary value problem can be solved by introducing a
Fourier transform in both and according to

(17)
with the definitions , , followed by a
Kantorovich–Lebedev transform in the radial coordinate. This
yields

(18)

which, by adapting [13, (9.19)], can be rearranged as

at (19)

where denotes a residue and for the external region

(20)

according as the source is at or .
Here, , the integration above is along the contour that
passes to the left of the point ,
the poles are indexed , ( ), and the
prime on the summation denotes that a 1/2 factor multiplies
the residue at the origin, if it exists. Inversion of theand

transforms yields

at (21)

and subsequent deformation of the contour shows that

at

at (22)



SCHARSTEIN AND DAVIS: TIME-DOMAIN THREE-DIMENSIONAL DIFFRACTION 1151

where the time and space dependence is folded into

(23)

with and contributions occurring in relevant time
intervals.

Thus, the evaluation of the field involves the summation of
these residue series. In the soft and hard cases (TM and TE
polarization, respectively, for the perfectly conducting wedge),
the poles are integers or half integers and the summations are
elementary. These are the Biot–Tolstoy solutions [2] that were
rederived by Felsen [4], and further details are given in [1]
in the verification of this limiting case of no penetration. In
general, the poles are the roots of transcendental equations
and the corresponding residues appear to defy summation.
However, some simplification occurs if the wedge angle is
a rational multiple of , since then the residue series reduce to
a finite number of summable series. Even these are nontrivial
since the roots of polynomials must be determined and so the
presented results are necessarily restricted to rational multiples
involving small integers.

IV. WEDGE ANGLE: A RATIONAL MULTIPLE OF

After setting

(24)

the combinations , , both odd and or even, were
considered separately in [1], but here the presentation is
suitably modified so that this distinction is unnecessary. The
consequent simplification is readily apparent, e.g., only the

roots are used.
With the definition

(25)

the symmetric and antisymmetric versions of (20) are

regular function

regular function (26)

so that

(27)

which is required for . Thus we need to consider, for
various choices of , the series

at (28)

With , , as in [1], (25) is expressed as

(29)

in terms of Chebyshev polynomials

(30)

The residue of at , i.e., at
is, from (29) and (30)

(31)

and, hence, the required sum/difference in (28) is

(32)

The generalized Fourier series

(33)

and

(34)

allow the reductions

at

(35)
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and

at

(36)

The Dirac-delta functions, arising from the first residue sum
of (22), are the geometrical optics portion of the total field,
while the second series in (22) is the diffraction field.

Further consideration of the sum and difference of (25)
proceeds with the form

(37)

Pairs of residues differ by only a factor according as to
whether the pole arises at a zero of . Let

; then the poles of (37) occur at the
zeros of , i.e., at
1. The zero at corresponds to the already considered
poles at . The other roots correspond to

(38)

The residue of at
is, from (37)

(39)

and furthermore

at

(40)

Similarly, the residue of at
is

(41)

which is needed in

at

(42)

Thus, by combining (35) and (40)

at

(43)

Similarly, from (36) and (42), the difference sum is shown in
(44) at the bottom of the next page. When is even, the
second summation can be expressed in terms of
by replacing by in (44), whereupon the
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expression in reduces to

(45)
The diffracted terms in the second sum of (22) are now

written in the form

(46)

which is required for . The general form of the residue
sums is therefore

at (47)

There are no poles at , and, hence, the contributions
of the poles (38) to the residue sum (47) with the plus sign
are by using (42)

(48)

in which, by summing the geometric series, the complex factor
reduces to as shown in (49), given at the bottom of the next
page. The first desired residue sum in (47) is therefore, by
substituting (48) and (49)

at

(50)

and similarly, by using (41)

at

(51)

For , take the first sum with and the
second sum with and sum over . For the
difference , do likewise with the angles interchanged.

V. APPLICATION TO THE RIGHT-ANGLED WEDGE

When , the complete solution of (9) and (10) for
the vector potential in the exterior region is assembled from
the sample results in Appendixes A and B. As indicated above,
an alternate calculation of the relevant residue sums is given
in [1]. If the field point is on the same side of the symmetry
plane as the source, i.e., when , the vector potential

at

(44)
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is shown in (52), given at the bottom of the page, with

(53)

The spherically spreading delta functions are the geometrical
optics field. The argument of the first Heaviside step
function is always positive in the present case ,

. That is, the source is directly visible from each field
point in this exterior domain. However, the geometrical optics
reflection, which is the second term of (52) and is weighted by

, disappears beyond the reflection boundary at ,
as indicated by its Heaviside factor. Arrival times of these
specular contributions are between the extremaand ,
defined by

(54)

in terms of permissible source to observer distances. This re-
striction is an explicit consequence of the underlying transform
analysis of [1]. As indicated in (52), for example, the actual
arrival time of each wave event depends on the particular
geometry in terms of the angles, , and , as well as
the nondirectional lengths, , and . The remainder of
the field, termed the diffraction, begins when the metric-
related variable of (3) becomes operative. This “turn-on”
time corresponds to and is predicted by the
generalized Fermat’s principle. The physical source of this
initial diffraction wave is the apex of the “Keller cone.”

When is measured in the opposite sense to denote a field
point on the other side of the symmetry plane, i.e., with the
replacement , the vector potential is shown in (55),
given at the bottom of the next page, with

(56)

(49)

(52)
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The third term of (55), which is the ray that penetrates the
wedge and emerges on the “shadowed” side, is weighted by
the cascaded transmission coefficient . Note that
this penetration field exists in the shadow region of the source.

The geometrical optics and diffraction parts of the scalar
potential are considered separately. Application of (12) to the
general form

with

(57)

results in a typical geometrical optics contribution

(58)

to the scalar potential. The gauge (12) is most conveniently
applied to the diffraction field as

(59)

Definition (3), the introduction of the arrival time parameter

(60)

and the pertinent diffraction (last) terms of (52) and (55) permit
the representation as shown in (61), given at the bottom of the
page. Given the form of (53) and (56), the evaluation of (61)
requires integrals of the form

(62)

with parameters , , and
. If lies along one of the geometrical

reflection or shadow boundaries, rearrangement of the terms
cannot remove the singularity when . Otherwise, the
integrand is so well behaved that quadrature is the most effi-
cient method of computation. The following numerical results
make use of the IMSL routine QDAGS [14], which treats the
nearly singular behavior as by a globally adaptive
Gauss–Kronrod rule based on the-algorithm extrapolation.

The Dirac delta functions and Heaviside step functions that
comprise the geometrical optics portion of the potentials are
clear. The variation of the functions and as
a function of for fixed values of and is graphed in Figs. 2
and 3. The effect of the multiplicative factors
and , respectively, in the diffracted components of
the vector and scalar potentials is readily apparent without
specific numerical values. The two sets of curves in Figs. 2
and 3 use , and for the normalized scalar potential
of Fig. 3, the arrival time parameter is . The relative
insensitivity of and to the values of and precludes
the need to present an array of parameterized curves and
numerical data. The main impact of the dielectric contrastis
in the scale factors of the geometrical optics (Fresnel reflection
and transmission coefficients) and diffraction components of
both potentials. The striking feature of the diffracted potentials
of Figs. 2 and 3 is the change in sign across the reflection
boundary at , due to the source location at .
As the reflection boundary is approached from either side,
the initial diffracted flash becomes stronger and
ultimately coincident with the specular reflection. Unlike the
full time-harmonic solution, which must be bounded, the
direct, reflected, and diffracted waves due to the impulsive
current all exhibit singularities that generally arrive at differ-

(55)

(61)
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Fig. 2. Scaled diffraction portion of vector potential�(�; �) as a func-
tion of the metric variable�. Case:� = 0:5, � = �=4, � = �=2,
100� � � � 220�.

Fig. 3. Scaled diffraction portion of scalar potentialQ(�; �; �) as a function
of the metric variable�. Case:� = 2, � = 0:5, � = �=4, � = �=2,
100� � � � 220�.

ent times. However, the sign of the diffracted singularity is
always in opposition to any changes in the geometrical optics
singularities. This is especially evident in the neighborhood
of the reflection and shadow boundaries, where the various
geometrical optics rays are turned on or off.

Long after the impulsive dipole current has been pulsed
(at ), the variable as and the
remaining static electric dipole produce the static potential
of the second (integral) term of in (61). Both the vector
potential and the magnetic field have decayed to zero in this
static limit. In principle, this asymptotic limit should recover
the static results of [15] and [16], with obvious adjustments
for the source configuration. However, the present form for

the impulsive temporal source hinders a direct comparison
[analytic evaluation of ] with [15] or [16]. With
respect to integral transform techniques, the static problem
is better treated as such from the outset, as in [15], in
terms of the Mellin transform which is the static limit of the
Kantorovich–Lebedev transform.

Application of the curl operator of (6) to the geometrical
optics terms (57) of the vector potential gives the typical
geometrical optics magnetic field

(63)

The diffraction contribution to the magnetic field, according
to both cases (52) and (55), is

(64)

in terms of the scalar function of (53) or (56). Similarly,
the electric field is given by the second member of (6) in
terms of both potentials and , or equivalently, from the

integration of the curl of . Recall that the integration is
introduced into the scalar potential via the auxiliary function

of (61).

VI. CONCLUSIONS

Exact analytic results for the transient electromagnetic fields
scattered by the isovelocity wedge are broken into geometrical
optics and diffraction contributions. Direct, reflected, and
transmitted rays comprise the geometrical optics terms. Under
this isorefractivity restriction, the usual Fresnel coefficients
are independent of incidence angle. The apparent source of
the diffraction field is the wedge apex, with the diffracted rays
forming the “Keller cone” in accordance with the generalized
Fermat’s principle. Scattered electromagnetic fields due to
more complicated source configurations can now be synthe-
sized, via appropriate temporal and/or spatial convolutions
with the resultant time domain Green’s functions.



SCHARSTEIN AND DAVIS: TIME-DOMAIN THREE-DIMENSIONAL DIFFRACTION 1157

APPENDIX A
EXAMPLE CALCULATIONS OF GEOMETRICAL OPTICSRESIDUES

Case 1—Wedge Half-Angle : The integers in (24)
are now , , and the zeros of

(A.1)

are the required values in (38):

(A.2)

Consider the coefficient (43)

(A.3)

in which

and

(A.4)

so that the required coefficient is

(A.5)

Evaluation at the values of that yield delta functions in
visible space gives

(A.6)

Consider next the coefficient (44)

(A.7)
which in view of

and

(A.8)

is written as

(A.9)

Explicit values at the pertinent values ofare

(A.10)

Case 2—Wedge Half-Angle : With ,
the single root from the characteristic equation

(A.11)

is

(A.12)

Coefficient (43) reduces to

(A.13)

and provides physical delta function weights corresponding to

(A.14)

Coefficient (44) is

(A.15)
with contributions

(A.16)

APPENDIX B
EXAMPLE CALCULATIONS OF DIFFRACTION FIELD RESIDUES

Case 1—Wedge Half-Angle : With ,
the two-term sum in (50) or (51) is

similar expression with instead of (B.1)
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where

(B.2)

Hence, with denoting the curly brackets in (B.1), the
diffraction component of is times

similar expression with instead of

similar expression with instead of (B.3)

Case 2—Wedge Half-Angle : With ,
the single term in (50) is

(B.4)

while the single term in (51) is

as above with instead of (B.5)

The simplifications

(B.6)

then enable (53) and (56) to be deduced from (B.4) and (B.5).
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