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Implementation of Transparent
Sources in FDTD Simulations

John B. Schneidetyiember, IEEE Christopher L. Wagner, and Omar M. Ramabhi

Abstract—Sources can be embedded in a finite-difference time- is a spurious artifact of the source implementation which
domain (FDTD) grid in any one of several ways. Depending on degrades the quality of the simulation. One approach to
the particular implementation, the embedded source corresponds eliminating source scattering requires the use of a pulsed

physically to a hard field source (applied field), a transparent . . . .
current source (impressed current), a finite-impedance voltage driving function that goes to zero after a finite duration. Once

source, or some other physical excitation. While the implemen- the driving function is zero, the value of the source node
tation of any of these sources is a straightforward procedure in is set by the update equation. For this approach to succeed,
FDTD simulations, ensuring an accurate correspondence between ihe duration of the driving function must be shorter than the

the physical source and its numerical implementation is challeng- .. .
ing. In this work, we describe the implementation of a new field time it takes for energy to travel from the source node to

source, referred to as a transparent field source, that couples the @ny material discontinuity and back again. However, in many
same fields into the FDTD grid as a hard field source. Unlike circumstances this requirement is overly restrictive. In this

the hard field source, however, the transparent source does not paper the implementation of a source that radiates the same
scatter energy, i.e., the usual FDTD update equation applies 10 oy a5 3 hard source, but that does not scatter energy, is
the source node. The implementation is described both in terms .
of a single node and in terms of an array of nodes. The latter is presented. We call such a source a transparent field source.
discussed in the context of parallel-plate waveguide excitation. A node in an FDTD grid that has the same material proper-
Index Terms—eDTD methods. ties as its nelghbors and that is governed by the standard FDTD
update equation does ngter se scatter energy. Therefore, it
appears that one may simply implement a transparent field
|. INTRODUCTION source by setting the value of the source node equal to the
NERGY can be coupled into a finite-difference timesum of the value returned by the update equation and the value
domain (FDTD) grid by external or internal sourcesof the driving function. Unfortunately, although this approach
When a source is external to the FDTD grid, the energfelds a node that does not act as a scatterer (and in that
radiated by that source, i.e., the incident field, is couplggnse is transparent), the energy that it couples into the grid
into the grid usually by means of a total-field/scatterednay bear little resemblance to that of a hard field node. A
field formulation or a scattered-field approach. In the tota$ource implemented in this way is, in fact, an injected current
field/scattered-field formulation [1] the grid is divided into s&nd we label such a source a current source. In applications
total-field region and a scattered-field region and the incidenhere one measures the energy coupled into the grid and then
field is introduced over the boundary between the two. In tl@rmalizes by that measured value (as is done when obtaining
scattered-field formulation [1], [2], the scattered field radiate$ parameters), the distinction between a field source and a
directly from any material that differs from the backgroundurrent source is inconsequential. Thus, in applications where
medium. one merely wishes to characterize the spectral properties of
For many simulations, however, the source of energy mustgiven device and where one properly normalizes by the
be embedded within the grid. For example, excitation @heasured signals, a current source may provide sufficient
resonators or antennas requires that the source be positiogeditation to characterize the system under test. Nevertheless,
within the FDTD grid. A popular source implementation i&ne should be aware that the source of energy corresponds
known as a “hard” source (e.g., [1, Sec. 6.4]) which ighysically to a current source rather than a field source. (In
implemented by specifying the field at a given node wit{g] and [4] such an additive source was described but the
a temporal driving function. Since the update equation dogsurce was mistakenly identified as a field source. However,
not apply to this source node and its value is fixed solebtditive and hard source were correctly identified in [5].)
by the driving function, it scatters any energy incident upon The transparent field sources described here have their
it. In certain applications, scattering from the source no@geatest utility when one needs to specify the field (either
electric or magnetic) that excites a structure. For example,
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field at the horn throat. Unfortunately, such a model does nbtansparent field screens are described in Section IV. The
accurately reflect the true physical system because the hardnsparent field screen is presented in the context of a parallel
wired field source, which is perfectly reflecting, masks thglate waveguide. The analytic solution for the field in the
effects the feeding waveguide has on the radiation. Anothguide is presented for hard-source excitation. Numerical results
approach to modeling this problem is to include a sectiabtained using FDTD simulations with either a hard field
of the feeding waveguide in the model and again empl®green, a transparent field screen, or a transparent current
a hard field source to excite the waveguide. However, thtésreen are compared to the analytic solution.

can be computationally costly since one must ensure that the

source is causally or spatially isolated from any reflections || one-DIMENSIONAL TRANSPARENT FIELD SOURCE

that occur at the horn. An alternative approach is provided by . . L .
lAI'[hough a transparent source in one dimension is of little

the transparent field source. The field can be specified right ™. Lo ore : ) X )
g}ractlcal use, it is simpler first to consider implementation

at the termination of the waveguide, i.e., at the horn throat. i ion. Wi ion in dhdirecti
To one side of the source would be the horn and to the ott{gON€ dimension. We assume propagation in theirection
d z polarization of the electric field so that the governing

would be a small section of the feeding waveguide which ff o )
then terminated with an absorbing boundary condition. Th erential equations are

approach ensures the model will include the loading of the OE. 10H,

feed while not significantly increasing the cost. 9t ¢ dz (1)
The transparent field sources presented here should also 0H, 10E,

prove useful in applications involving nonlinear materials. For 9t uodr (2)

linear systems, one has the option of using almost any exci- ) )
tation to measure a system transfer function. Then, from tHe@ Source current density’. were present, it would be
system transfer function one can obtain the system respofgbtracted from the right side of (1) (and scaledif). These
to other excitations that may be of interest. On the other harffjuations lead to the standard update equations for the FDTD
for most nonlinear systems one typically does not have tHiRethod in one dimension:
option and must use the excitation of interest to determine thepn+1,, Ei) 4+ Z |:Hn+1/2 N gnt/2g }
) i 2) = E"(; ’ ) — H s —1 3

system response. The fact that the transparent field sources” @) =(0) +Zs|Hy @ Y =] @

. . . . . . . — . 1 - e
des_cnbed hgre_ permlt one to mtrc_:duce, in the tlme domaljiy,;,+1/2(z) —H 1/2(1) ZS[EM i+ 1) — EN(6)] @)
a given excitation into a computational domain (without any Z

concern for how the source nodes “load” the system) make;I : .
. . L Wheres = cAt/Az is th rant num =/ is th
them ideal for such nonlinear applications. Wneres = ¢ t/Au is the Courant numbeg; p/cis the

As shown in this paper. it is possible to record a ri| pedance, and\x and At are the spatial and temporal step
impulse response atpth?a s’ource ?10 de and then const?u izgs, respectively. For brevity, the spatial offset between the

P P . . F.-and H, nodes is suppressed in the arguments of the discrete
transparent source that couples into the grid the same fi

6 n+1/2,.\ . .
as a hard field source. The impulse response is measuregoﬂs' thUSHy+ /_(l) is equivalent taH, (i +1/2]Ax, .[”+
the source node and is fundamentally different from the tim% 2 A_t)_' The maximum value O.f the _Coura_nt numbeyields
domain Green'’s function (which is, of course, itself an impuls € minimum amount of ngmencal d|spersu_)n and the longest
response, but one for which the source and observation poiﬁ@mat'on duration for a given number of time steps, but the

are not collocated). In one dimension, the impulse resporﬁgurant limit cannot be used throughout the computational

is of finite duration when using the Courant limit. In two an o(r:naln_:;or S|mulat(|j(_)ns of_mhcl)mlogDeneous rte?_lonsl.d o
three dimensions, and in one dimension for Courant numberﬁ_ onsider a one-dimensiona ( -D) compu ationat domain in
ich the source is an electric field nodeat. A hard source

other than the limit, the impulse response is infinite in duratiolY. : . . -
Perhaps the simplest way to implement a transparent fi §drea}llzed by setting the source r_10d_e equal to a given driving
source, and the one used in this study, is first to run petion f(”,At) = /" The electric field at the source node
auxiliary simulation that records the impulse response of t thendE; (svc) :t /" t;ut alldotZer:odes_ arethgivg]rnedd_py
grid. This simulation must use the number of dimensions aﬁ update equations (3) and (4). Assuming that the driving

the Courant number that pertain in the problem of interest, bepctloq IS Z€ro prior tor =0, Fig. 1 ShOWS. the valges @
ndH, in the vicinity of the source for the first two time steps.

mmetry can be exploited to reduce the size of the auxilia . . . ;
Sy y xplol ! S1z X the Courant limit, a 1-D FDTD simulation of propagation

simulation. The transparent field source is then realized, iin homoaen medium i ivalent t i f shift
part, by convolving the impulse response with the drivin a homogeneous medium 1S equivaient 10 a Series of s

function. Once found, the impulse response can be used &eranons. Hence, the electric field at nodand time step

subsequent simulations that have similar geometries. To reafizd® 9'VEN by

a transparent fieldscreen(i.e., a multi-element source that E7 (i) = frliztedl, (5)

couples the same energy into the grid as a hard multi-element

source, but which does not scatter), impulse responses musSb&e a hard source only depends on the driving function and

recorded over the set of nodes that are members of the scrégrindependent of other propagating fields, it is effectively
In Section Il implementation of a single-node transpareperfectly reflecting. Therefore, if a space is inhomogeneous

field source in one dimension is described. In Section Iind a reflected field propagates back to the source, the source

implementation in two and three dimensions is describedill, in turn, reflect that field.
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Fig. 1. Values ofE. and H, in a 1-D grid when the nod€. (is..) is implemented as a hard source. The values assume the Courant nuishetity.
Node location is given along the top and the time step is indicated along the left. A blank indicates the field is zero.
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Fig. 2. Values ofE. and Hy, in a 1-D grid when the nodé. (is;c) is given by the sum of the usual update equation and the driving fungtian
The values assume the Courant numbers unity.

With the goal of creating a transparent field source, let usinspection of Fig. 2 shows that the field coupled into the
implement the source as the sum of the driving function amglid can be made identical to that of the hard source with
the update equation that pertains at that node. The valuetloé addition of a delayed sample of the driving function. This

the source node is then given by delayed term, which is added to the update equation and the
il o undelayed driving function as given by (6), cancels the “echo”
B2 (isee) = B (isee) + Zs of the previous source term (i.ef™) caused by using the

. [H"“/Q(i Y — H' P2 (G — 1)} + g7+, update equation at the source node. Thus, a truly transparent
Yy src Yy src . . . . .
5 field source that couples the same field into the grid as the
6) hard source can be achieved using

(This implementation is essentially that which was described EM (i) = B (i) + Zs

in [3] and [4].) Fig. 2 shows the values df. and H,, in b 1/2/; nt1/2,;

the vicinity of the source for the first two time steps for this ' [Hy (isrc) — H), (tsre — 1)}

source implementation. Significantly, the field throughout the ol g 8)

grid cannot be obtained simply by a shifted (or delayed) value

of the driving function. Instead, the field at an arbitrary nodghis source implementation produces the fields shown in Fig.
is given by 1, but the source node does not scatter (or reflect) any field
incident upon it.

One-dimensional FDTD simulations performed using
Courant numbers other than the limit do not permit such
a simple implementation of a transparent field source. At the
In contrast to the hard source, any field that is reflected baClourant limit, the term that is echoed by the update equation
to the source node will pass through it. In this sense tlack onto the source node depends only on the value of
source node is “transparent.” However, the field that is coupléte driving function at the previous time step. When the
into the grid by the source node will not resemble that d@ourant number is less than unity, the FDTD algorithm is not
the hard source since the source physically corresponds tecmivalent to a set of simple shift operations nor can it provide
current source [as is evident by retaining the current densép exact solution because of inherent numerical dispersion.
term in (1)]. To demonstrate this distinction, consider the caseTo facilitate the construction of transparent field sources that
f* = é&[n] (the Kronecker delta function) for whictf® is  will work for any Courant number, we define a grid impulse
unity and all other values of™ are zero. In this case the fieldresponse. First, consider a grid in which the source node is
that propagates away from the source node is a series of oimeglemented as a hard source and the driving function is a
with alternating signs. Since, at the Courant limit, the fieldronecker delta function. We define the grid impulse response
propagates without error, this result is directly attributable s the values that are obtained using the update equation at the
the source implementation and is not indicative of any erreource node. (The update equation is calculated at the source
inherent in the FDTD simulation. node and the returned value is recorded as part of the impulse

n—[i—dsro|

ENi)= Y (=1yminclizhecdpm @)

m=0
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response. However, the value of the source node is not setdamplement a transparent field source, one must subtract the
this value—as dictated by the hard Kronecker delta functioopnvolution of the impulse response and the driving function
the source node is initially one and zero thereafter.) Thuspm the source node. Specifically, a transparent field source
the impulse response is calculated from the previous valfee an arbitrary Courant number is obtained using

of the source node and its surrounding magnetic field nodes,

but the impulse response does not couple back to the source £t (isxe) = EZ (isxe) + Zs

node because the node is *hard” and its value is fixed by the ) [HQH/Q(isrc) — HY 2 (i — 1)}
Kronecker delta function. Therefore, the source node is given N
by E?(is.) = 6[n] while the impulse response is 4oL Z [r-meLm (11)
1" = B2 isee) + Z5[Hy (i) = H V2 isee = 1)]. =0
(9) In one dimension, the impulse response for a magnetic

field node is the same as for an electric field node. In three
One can obtain the impulse response analytically—it is simpdimensions the impulse response is different than in one
a polynomial whose order increases with each time step—Hliinension, but the impulse response is independent of the
it quickly becomes unwieldy. For example, the first few termeld component (i.e., all six field components have the same
of I are impulse response). In two dimensions, however, the impulse
responses is polarization dependent. Field components in the

0
=0 plane (e.g..H, and H, in a TM problem orE, and E, in
It =1-2¢° a TE problem) have the same impulse response, and out-of-
= —2s% 4 25* plane components (e.g&. in a TM problem andd. in a TE
I3 = — 952 4 65t — 456 problem) have the same response, but the in-plane and out-of-

plane responses differ. Nevertheless, in all dimensions and for

4_ 5.2 4 o506 8
I"=—2s+125° - 205"+ 10s all components, the transparent field source implementation,

P = — 257 4 20s* — 605 4 70s® — 28510, which is described in the next section, is basically the same.
Note that whens = 1, the impulse response ig" =
—6é[n — 1], but for Courant numbers less than unity, the [ll. TRANSPARENT FIELD SOURCES
impulse response is infinite in duration. Fortunately, it is not IN TWO AND THREE DIMENSIONS

necessary, nor even desirable, to obtain the polynomial forma more general form of (11) that also holds in two and
of the impulse response. Instead, the impulse response g3Re dimensions is

be obtained numerically via an FDTD simulation using a
homogeneous grid that has the same material properties as " +(#_.) = (N-D update equation+ f"*!

those found at the source node in the problem of interest. n
In this simulation, a hard source is driven impulsively and =y I (12)
the impulse response is recorded using (9). Symmetry can be m=0

n—1/2 .

exploited, since the magnetic field, (ésre — 1) is the

) z here ' is any one of the six field componentd] is the
n—1/2,. ]
negative ofH; ~"/* (i), so that only half the 1-D space r]‘a(a(_¥:lumber of dimensionsi,.. is the source location, X-D

be simulated. The impulse response can then be found “S'Ugdate equation” is the update equation appropriate for the

I = B Mige) + 2ZsH"*1/2(ism) (10) node in the given number of dimensions, ahd is the grid
i Y impulse response. With a change in dimension, the update
where [* = 0 for n < 0. equation changes and the values of the impulse response

The impulse response can be used to give the field tlehtange, but the underlying approach does not change. The
will echo back to the source node if the source node is equidfinition of the impulse response also remains unchanged: A
to the sum of the update equation and the driving functidrard source is driven impulsively and the impulse response is
as given by (6). Assuming such a source and that the fimdttained using the update equation at the source node.
nonzero value of the driving function B = f°, the source  In three dimensions, the impulse response approaches zero
node at the next time step B! = f! + I'E?; at the next and the rate at which it approaches zero depends on the
itis E2 = f2 4+ I'E! + I?E?; and so on. Clearly, if a Courant number. The closer the Courant number is to the limit,
transparent source is to couple the same field into the gtlte more rapidly the impulse response approaches zero (here
as a hard source, the source node must, in the absence oftaeyrate of fall-off is discussed relative to the number of time
reflected field, take on the same values as those of a hateps, not absolute time). Thus, after a sufficient number of
source, i.e., the source node must take on the values of time steps the impulse response can be approximated by zero
driving function and the echoed values must all be canceladd the convolution with the source function in (12) does not
so thatE? = f0, E! = f1, E? = f2, etc. The cancellation is necessarily have to be done over the entire previous history
realized by subtracting® f from the source node at the firstof the source function. Instead, it only needs to be done over
update, subtracting' f1 4 12 f© at the next update, subtractingthe number of time steps the impulse response is treated as
I'f2+12f1 + 130 at the next, and so on. Said another wayjonzero.
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Unlike in one and three dimensions, the impulse response in PEC PLANE
two dimensions does not quickly converge to zero, rather it de-
cays very slowly. This type of response can be problematic for .
simulations requiring a large number of time steps. There are E; SOURCE
ways, however, to work around this. For example, the decay
rate is so slow that the convolution of the driving function and
the impulse response eventually can be approximated by zero
for a finite-duration driving function with no dc component.
(The convolution of a constant with a signal that has no dc
component is zero. The impulse response decay is slow enough
that for signals of sufficiently short duration, the convolution
may be well approximated by zero.)

Finally, to demonstrate the different behavior of hard and
transparent field sources, consider a two-dimensional (2-D)
TM problem with a single-nodé&. field source near a perfect
electric conductor (PEC) plane as shown in Fig. 3(a). The
source driving function is a Ricker wavelet (details of this
wavelet are discussed in the Appendix). The spatial step ig
such that there are 32 points per wavelength at the pea
frequency of the wavelet and the temporal step is set so tha
the Courant number is the limit. Fig. 3(b) and (c) shows the
electric field in the vicinity of a hard and transparent field
source, respectively, after 220 time steps. In these grayscal
field maps, black corresponds to zero and the brightness o
a pixel is indicative of the absolute value of the electric
field found at the corresponding node. The hard source, Fig. (®)
3(b), while radiating the same primary field as the transparent
source, scatters the reflected field as evidenced by the nonblag
region between the reflected wave and the PEC surface. Fo
the transparent source, Fig. 3(c), the primary wave is identical
to that of the hard source but the source does not interferg
with the field reflected by the PEC surface.

Unlike in two dimension, in three dimensions for a single-
node source close to a PEC plane the results obtained b
implementing the source as either hard or transparent are no
strikingly different. This is due to the more rapid decrease in
the field as one moves away from the source and the smalle
scattering cross section of the hard source. However, when th¢
source consists of several nodes, the different implementation
can yield profoundly different results. The implementation of
a transparent multinode source is discussed in the next section. o _ o

Finally, note t.ha.t many indiVi.duaI tr_anspa_rent field SourCés:%%fa?:-e aIfEtIe(_:‘rC t2”2(:0 ftli?rlge ztjec;)ust: ?ar\? ;k:?éjr:%ef ;%?;1:2 gtjr(-‘:f)n:;mryl,t)zbc))fhgrg Egurce,
can be used within a single simulation (this type of supefng (c) transparent source.
position is distinct from the application discussed in the next

section). Each source introduces energy into the grid without ,
scattering it. This could prove useful in the excitation of the same way as would a hard field screen. The general

resonant structures or in applications where one is interested®ff\Cipal used to construct individual transparent field sources
mimicking the behavior of a “classic” phased-array with noritill holds for this case. However, impulse responses are now

interfering elements (the total radiated field is the superpositiftgasured for each node in the screen when the entire screen
of the individual radiated fields). is excited impulsively; thus, each source node has its own

(unique) impulse response.
Two-dimensional parallel-plate waveguides have been used
IV. EXCITATION OF A PARALLEL -PLATE WAVEGUIDE in many FDTD applications and have been especially prevalent

The individual transparent field sources considered thus fArthe evaluation of absorbing boundary conditions (ABC'’s)
couple energy into the grid in the same way as would (&-9., [6] and [7]). Thus, the use of transparent screens is
hard field source in an unbounded medium. In this sectislemonstrated for such waveguides. We first provide the an-
we consider the construction of a multiple-element transpareytic solution for the field at an arbitrary point in the guide
source (or “screen”) that couples energy into a bound structwvben the source is a hard screen. The solution is presented in

(©
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terms of nondimensional parameters so that it can easily be = —————T———— e ——

scaled to any waveguide and any excitation. ! PRI S FDTD, transparent field screen
- i ° Analytic E
Note that the transparent source screen can be brought [ J — FDTD, transparent current screen-]

arbitrarily close to a waveguide discontinuity. Any energys
reflected back to the screen will pass through it. Therefore
the computational domain (i.e., the waveguide) must exten§|
to either side of the transparent source screen. Also, unlike
in a total-field/scattered-field formulation, fields will radiateg
to either side of the screen. Thus, a practical problem migkgt

0 ....«..‘,.

|r!volve_a t_ransparent screen _placed very close to a waveguidie i Sc‘;ume”’w o
discontinuity (such as an iris, a flared horn, a bend, or d i Screen obs. ‘I'N <

. . . oin 8
dielectric load). On the other side of the screen, an ABC would y=0 ]

be used to absorb the field initially radiated by the screen L. . . . . . =0 P L L]

and to absorb any field that is subsequently scattered by the ° 100 . 2008t 300 400
discontinuity and propagated back through the screen. me =iep
Although the transparent screen is presented specificafly. 4. Field at an observation point nearly midway between the plates and

_ _ ; it ne-half of a cutoff wavelength in front of the source screen. The cutoff
for 2-D parallel-plate waveguides, the application to thre(gvavelength is equal to the wavelength at the peak frequency of the pulse

dimensional (3-D) waveguides of any cross section follows)a,. The analytic solution (for a field source) was obtained using a 2048-point
similar development. Furthermore, it is possible to implemeRET. The sampling in the FDTD simulation was such that there were 40 cells

a transparent screen over any aperture so that the aperturé)q,%}yvavelength' at the peak frequency _of the Ricker wavele't. The source is
implemented either as a transparent field screen, a hard field screen, or a

diates as if the fields were “hard-wired.” It is merely necessagynsparent current screen. The results for the transparent field screen are

to first determine the impulse responses for the source-scr@ntical to those of the hard screen and the two results appear as a single
nodes curve passing through the analytic results.

A. Analytic Solution for a Hard Screen where~ is the guide propagation constant for the;Tfeode

. . . given by
Consider a parallel-plate waveguide of thickngds as 12
shown in the inset in Fig. 4. We restrict consideration to the w A2
TE; mode and assumeg’, is specified over the cross section T= ‘7; 1= E (16)

of the guide atz = 0. (In the context of a waveguide, TE

implies the electric field is transverse to the guide axis smdAc = 2W is the cutoff wavelength of the guide. Thus, for
that the nonzero fields arg,, H,, and H,. In the previous an arbitrarily located observation plane, the waveguide transfer
discussion, TE implied the electric field was transverse to tfignction is

out-of-plane direction.) To facilitate application to guides of o\ 1/2

i i : 3 : it _ W A
any dimension, a solution for the field at an arbitrary pointis (y) = ¢™* = exp |—j— [ 1 - <_> . @7
sought that is expressed in nondimensional units. Assume that c Ac

E,atz =0is given b
- g Y To express this in discrete form, assume a uniform spatial step

size 6 so that the distance from the = 0 plane is Nxé,
i.e., the distance from the “reference” plane to the observation
plane isNx cells. Let the cutoff wavelength b = N6,
where the “driving functionp(t) can be chosen arbitrarily. so that the waveguide i /2 cells wide. Finally, consider
The sinusoidal variation iy ensures fields only propagate ina time-domain simulation in which the total number of time
the TE mode. The driving function used in the subsequesteps isV; (this need not be the number of time steps used in
analysis is a Ricker wavelet which is described in detail in then actual FDTD simulation). The discrete Fourier transform of
Appendix. (An alternate implementation of a source screentime series withVy time steps has a spectral resolution of
can be found in [8] and [9] where an impedance is used 9f = 1/(NyAt) so that, assuming/7 is large enough so that
control the introduction of a given mode and the attenuatiahere is no aliasing, the discrete spectrGiim] is obtained by
of undesired modes.) settingw equal to2rmAf in (17). ThusG[m] = G2rmAf),
Assume, for the moment, that the field over the waveguig¢hich can be written as

cross section at = 0 is harmonic with phasor representation o\ 1/2
N N
G[m] = exp —j27rm X <1 - < ST ) ) . (18)

E.(z=0,y) = A sin(ry/W) (14) sNr mNc

E.(x=0,y,t)=sin(ry/W)p(t) (13)

. ) For pulsed excitation, the discrete time-domain field at an
where exp(jwt) time dependence is understood. The phasgrpitrary location is obtained by taking the inverse discrete
at an arbitrary point is Fourier transform of the produc®[m]P[m] where P[m] is

, the discrete spectrum of the driving function and where one
E.(z,y) = A sin(ny/W)e ™" (15) must additionally incorporate appropriate scaling to reflect
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the vertical location of the observation point. Thus, the timeneasured specifically for the guiding structure under consid-

domain fieldNx cells in front of the reference plane aig- eration—the homogeneous-media impulse response discussed

cells above the bottom plate is given by in the previous section is no longer relevant. It is instructive

27Ny first to describe how one obtains the appropriate impulse re-

E.[Nx, Ny, n] = sin < ~ )Jf—l(G[m]P[m]). (19) sponses for simple multi-element structures before discussing

the waveguide implementation.

Assuming the driving function is a Ricker wavelet and in- Assume that one wants to radiate fields from a two-node

corporating the discrete spectrum given in the Appendix, thésurce. The radiated fields are to be the same as those radiated

becomes in a homogeneous medium when both nodes are set by the
) same driving function, i.e., both nodes are hard and have the
E.[Ny, N o <27TNY> 2 <m_NR> same values, but the source itself should be transparent to any
L[Nx, Ny, n] =sin )
Nc JryV/7 \ sNr reflected energy. To insure transparency, each node must be
updated using the standard FDTD update equation; however,
mNg\?  m to obtain the same radiated field as would be present for
Xp | = < sNp ) -J WSNT hard nodes, each of the transparent source nodes must, in the
absence of any scattered field, take on the same values as the
sNp \ 2 1/2 hard nodes. As before, a convolution of an impulse response
Ngr + Nx <1 - <mN ) ) with the source function is used to cancel the “echoed” terms
¢ that results from using the update equation at the node. The

(20) impulse response for each source node is measured in a grid
L ) . ) ) in which both source nodes are driven (in the hard sense)
where~" is the inverse discrete Fourier transforfig, is the 1,y kronecker delta functions. And, the impulse response is
most energetic frequency of the Ricker wavelet, andis the  ecorded using an auxiliary simulation. At each time step,
number of points per wavelength at this frequency. _the value obtained from the source-node update equation is
~ Equation (20) can be used to determine analytically the figld.orqed, but the actual value of the source node is fixed
in the waveguide when the guide is excited by a hard sc're%; the delta function. Once the impulse responses have been
(and the source function is a Ricker wavelet)—the hard-wirgd.rged, they would be used in (12) to realize a transparent
fields at the source screen are synonymous with the fields at{}§_clement source which could. for example, be used to

@ = O reference plane. Fig. 4 shows the field at an observaliffyminate a scatterer. Any field scattered back to the source
point obtained from an FDTD simulation employing a harg,, 14 pass through it.

screen and obtained from the analytic solution given by (20). ;g approach can be generalized to any number of nodes.

In this case, the width of the guidd” was such that the it 5| hodes are to be driven by the same source function, then
cut off wavelength\c: equaledAg, which is the wavelength e jmnyise responses for all the nodes can be obtained from a
corresponding to the peak frequency of the Ricker wavelgh e auxiliary simulation in which each source node is driven
fr. The observation point wasr/2 in front of the screen p 5 nit.amplitude impulse. In the case of the waveguide
and displaced slightly from midway between the two plate§y e screen, the driving function for each node is the same
The relevant discrete parameters wefg = 40, No = 40{ except for the sinusoidal variation of amplitude as a function
Nx =20, Ny =9, ands = 0.95/v/2. For the analytic y [see (13)]. In cases such as this, where the nodes are
solution, Nz was 2048. _Note that the FDTD simulation i Iriven with the same temporal waveform but are scaled by
only run for as many time sFep; as desired (400 s_teps di¥ferent amounts, the impulse response for each node cannot
this case) and this number is mdepgndent]‘éj (Wh'ch be obtained by using unit-amplitude Kronecker delta functions
must be Iargg enough to ensure negligible frequency al'as'gpall the source nodes in the auxiliary simulation. Instead, the
in the analytic SOI“F'On)' F'_g' 4 s_hows excellent agreemeQanIitudes of the delta functions must be scaled by the same
between the ana_lytl_c solution (C|rcles)_ and the hard-scr_egglue that scales the source function in the problem at hand.
FDTD results (solid line). Note that the field at the observatiqn,, 5 \vo-node source, if one node is givendiyAt) and the
point bears little resemblance to the Ricker wavelet drivm&her by0.5 p(nAt), then the impulse responses are obtained

fun_ctiqq. The persistent ringir)g is a consequence of havigg driving the first node with the Kronecker delta function
a significant portion of the driving function spectrum belovg[n] and the other witfD.58[n]

Gutoff. One must also account for the walls of the guide when

) obtaining the waveguide impulse responses. To do this, a

B. Transparent Field Screen simulation is performed in which the walls of the guide

The transparent screen used to excite a 2-D parallel-plat® present and the nodes in the source screen are driven
waveguide consists of a column df. nodes. Similar to impulsively (by Kronecker delta functions with appropriate
(12), each node is updated by the sum of the usual updataling). The way in which the impulse response is recorded
equation, the desired source function (i.e., the same souizd¢he same as before.
function that is used when driving the hard screen), and theAs mentioned previously, in [3] and [4] the implementation
convolution of an impulse response with the source functioaf a transparent source in which the source function is merely
However, each node uses a unique impulse response thadded to the update equation was described. When the source
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node is an electric field node, this is equivalent to establishing —— T i —

a current at that node and hence the field radiated by such a®% R Lransparent Screen
source is fundamentally different from that radiated by the,
transparent field source described here. Note that the orﬁy
difference in implementation is that the transparent currerg
source does not use the convolution that is employed by th:e
transparent field source. Fig. 4 also shows the field at the oB-

servation point of the waveguide problem described previousky

o]

when the source is implemented either as a transparent figdd , | = 1
screen or as a transparent current screen. The transparent field | Source 20 5 4l |
: H i L Screen ° 20
screen yields precisely the same result as the hard screen 4hd i gf ¥
. . . . 1 3
hence excellent agreement with the analytic solution still holds - ¥=0

- e > ale X
(the transparent screen results are covered by those of the hard ; L. . . | N
screen). As is expected, the transparent current screen yields a  © 100 200 800 400
different result. [Note that it is possible to obtain the analytic Time Step
solution for the fields in the waveguide when the source . 5. Field at an observation point in a guide with two discontinuities. The

a current screen. In that case, the guide transfer functioni”i?t figure shows the parallel-plate waveguide geometry. Dimensions are in
) ! number of cells. The small circle 20 cells in front of the screen indicates the

modified bywu/(Q u)2/62 - WQ/WQ)-] location of the observation point. The excitation is such that there are 40 cells
To illustrate further the behavior of a transparent fielder wavelength at the peak frequency. The source screen is implemented either

screen. consider the problem shown in the inset of Fig 5% hard or transparent yielding the dotted line and the solid line, respectively.
which there are two discontinuities in an otherwise homoge-

neous waveguide. The ultimate goal might be, for examplgariety of excitations that would be difficult or impossible
to determine the field in the vicinity of these discontinuitiegy achieve otherwise. Transparent field sources also can be
under a particular pulsed TEexcitation. Other than the ysed to finely control the excitation of resonant structures
discontinuities, the guide geometry, the observation point, apgthout affecting the resonances. Though more expensive to
the excitation are the same as those that pertained for Figiplement than hard sources, the impulse response required
4. In one simulation the discontinuities are illuminated by 1) imp|ement a transparent field source must be calculated
hard screen and in the other a transparent field screen. By once and can be saved for subsequent simulations. The
screens are placed one half of a cutoff wavelength away fragBst of the convolution is typically small compared to other

the leading edge of the first discontinuity. The transparegémputations for realistic 2-D and 3-D simulations.
screen is backed by a homogeneous section of waveguide

that is five cells long. This backing section is then terminated
in an eight-cell perfectly matched layer (PML) [10]. (The
standard split-cell PML with central differencing was used. The Ricker wavelet is used for the driving functigt)

No modifications were made to absorb evanescent enerigyall the simulations presented here. The Ricker wavelet is
However, to test the effects of the ABC, another simulatioequivalent to the second derivative of a Gaussian; it is simple
was performed where the section of the waveguide behitmlimplement; it has no dc component; and, its spectral content
the screen was made long enough to causally isolate the gsidixed by a single parameter. The Ricker wavelet is typically
termination from the observation point. Those results wereritten

virtually indistinguishable from those obtained using the eight- - ) - )

cell PML.) The field at the observation point for the two P(t) = (1 — 21 fr(t —tr) )exp [—W fr(t —tr) } (21)
simulations is shown in Fig. 5. The large ringing seen in the

hard-screen result is a consequence of the trapping of ene¥diere fr is the peak frequency antg; is the temporal delay.
between the discontinuities and the screen itself, i.e., it is AR€ peak frequency is the frequency with the greatest spectral
artifact of the source implementation and not truly indicativeontent. The delay can be set to any desired amount, but it
of the way in which the discontinuities themselves trap energg. convenient to express it as a multiple bffr. Here we
The result obtained using the transparent source, on the ot4&# tr = 1/fr. The FDTD simulation is assumed to start
hand, provides an accurate indication of the behavior of tAét = 0, but p(¢) is not zero fort < 0. However, with a

discontinuities in an otherwise uniform segment of waveguid@elay oftr = 1/ fr, |p(t < 0)| is bound by 0.001, which is
small compared to the peak value of unity. Thus, the transient

caused by switching op(t) att = 0 is relatively small. (For
V. CONCLUSIONS applications that demand a smoother transition, the bound on
By convolving the driving function and a grid impulsel2(f < 0)| can be made arbitrarily small by increasing.)
response, 1-D, 2-D, and 3-D transparent field sources can ¥ Fourier transform of (21) is
created that radiate the same fields as hard sources but that 5

2 2
do not scatter energy themselves. Multiple transparent field P(w) = —— <L> exp [_thw _ < w ) ]
sources can be used in the same simulation and, if necessary, frvm \2nfr 27 fr
used in adjacent nodes. This permits the creation of a wide (22)

APPENDIX
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1.2 { x T r . and using (23) yields
o | ; 1] 2 [(mNr\? . mNr  [mNg\’
¢ 1 _ 1 Pml=——= — —j2 —
=3 : {1 [m] fR\/7_r<sNT> FPNTIETN, SNy
S oo ; ik @5)
g os | > g Again, this is independent of the spatial and temporal step
I sizes (except via their ratio in the Courant number), but it
5 : does depend on the additional paramé¥er. As was the case
S o4l 1 for (18), (25) is based on the assumption tié# is large
g L enough so that no frequency aliasing occurs. However, this
S o2y 1 number is not tied to the number of time steps in any actual
. ; FDTD simulation. It merely has to be sufficiently large for
° 05 4 15 5 o5 3 purposes of obtaining the unaliased analytic solution.
Frequency [Hz]
Fig. 6. Normalized spectrum of the Ricker wavelet wjth = 1 Hz. The ACKNOWLEDGMENT

corresponding temporal forp(t) is shown in the inset box. For other values The authors would like to thank Dr. K. L Shlager of
of fr, the horizontal axis in the time domain is scaledliyf . For example, o

if £, were 1 MHz, the peak would occur atds rather than at 1 s. In the Lockheed Martin, Sunnyvale, CA, for helpful comments in
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