1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 9, September 1998

Table of Contents for this issue

Complete paper in PDF format

Mitigation of Rain and Ice Particle Cross Polarization at RF for Dual Circularly Polarized Waves

Kiyo Tomiyasu, Life Fellow, IEEE

Page 1379.

Abstract:

On millimeter-wave satellite-to-ground links encountering moderate rain and ice particles, RF mitigation of atmospheric cross-polarization effects on circularly polarized (CP) waves can be achieved by inserting a passive fixed phase delay in the vertical component of the received electric field introduced prior to an orthomode transducer (OMT) in the receiver. This passive phase shifter and the OMT can be combined into a single microwave structure and its performance is discussed.

References

  1. H. B. Poza, "TDRSS telecommunication payload: An overview," IEEE Trans. Aerosp. Elect. Syst., vol. AES-15, pp. 414-429, May 1979.
  2. T. Oguchi, "Electromagnetic wave propagation and scattering in rain and other hydrometeors," Proc. IEEE, vol. 71, pp. 1029-1078, Sept. 1983.
  3. H. W. Arnold, D. C. Cox, H. H. Hoffman, and R. P. Leck, "Characteristics of rain and ice depolarization for a 19- and 28-GHz propagation path from a Comstar satellite," IEEE Trans. Antennas Propagat., vol. AP-28, pp. 22-28, Jan. 1980.
  4. R. A. Hogers, M. H. A. J. Herben, and G. Brussaard, "Distinction between rain and ice depolarization by calculation of differential attenuation and phase shift," Electron. Lett., vol. 27, no. 19, pp. 1752-1753, Sept. 1991.
  5. Y. Maekawa, N. S. Chang, A. Miyazaki, and T. Segawa, "Calculation of depolarization cancellation on Ka-band satellite-to-ground paths," in Dig. IEEE Int. Antennas Propagat. Symp., Seattle, WA, 1991, pp. 1560-1563.
  6. F. Dintelmann, G. Ortgies, F. Rücker, and R. Jakoby, "Results from 12- to 30-GHz German experiments carried out with radiometers and the OLYMPUS satellite," Proc. IEEE, vol. 81, pp. 876-884, June 1993.
  7. Y. Maekawa, N. S. Chang, and A. Miyazaki, "Cross-polarization discrimination measurements on satellite-to-ground path using CS-3 beacon signal," Dig. Int. Geosci. Remote Sensing Symp., 1993, vol. 1, pp. 295-297.
  8. R. Jakoby and R. Rücker, "Crosstalk cancellation on satellite links in the K_a band," Dig. IEEE Int. Antennas Propagat. Symp., Seattle, WA, 1994, pp. 1328-1331.
  9. R. Jakoby, F. Rücker, D. Vanhoenacker, and H. Vasseur, "Fraction of ice depolarization on satellite links in Ka band," Electron. Lett., vol. 30, no. 23, pp. 1917-1918, Nov. 1994.
  10. R. Jakoby, "Results of 20/12.5 and 30/20-GHz XPD-frequency scaling measurements with the Olympus satellite," IEEE Trans. Antennas Propagat., vol. 43, pp. 1503-1508, Dec. 1995.
  11. Y. Karasawa and Y. Maekawa, "Ka-band earth-space propagation research in Japan," Proc. IEEE, vol. 85, pp. 821-842, June 1997.
  12. B. R. Arbesser-Rastburg and A. Paraboni, "European research on Ka-band slant-path propagation," Proc. IEEE, vol. 85, pp. 843-852, June 1997.
  13. I. J. Caylor and V. Chandrasekhar, "Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar," IEEE Trans. Geosci. Remote Sensing, vol. 34, pp. 847-858, July 1996.
  14. R. W. Kreutel, Jr., D. F. DiFonzo, W. J. English, and R. W. Gruner, "Antenna technology for frequency reuse satellite communications," Proc. IEEE, vol. 65, pp. 370-378, Mar. 1977.
  15. M. Yamada, H. Yuki, and K. Inagaki, "Compensation techniques for rain depolarization in satellite communications," Radio Sci., vol. 17, pp. 1220-1230, Sept./Oct. 1982.
  16. W. L. Stutzman, Polarization in Electromagnetic Systems.Boston: Artech House, 1993.
  17. K. Tomiyasu, "Four-port scattering matrix for dual-polarized wave transmission and reflection network," IEEE Trans. Microwave Theory Tech., vol. 45, pp. 354-358, Mar. 1997.
  18. J. D. Kraus, Radio Astronomy.New York: McGraw-Hill, 1966.
  19. M. Born and E. Wolf, Principles of Optics, 6th ed.New York: Pergamon Press, 1993.
  20. C. E. Hendrix, G. Kulon, and T. A. Russell, "Specification of polarization parameters for optical-performance in rain of dual circularly polarized radio links," IEEE Trans. Antennas Propagat., vol. 40, pp. 510-516, May 1992.
  21. C. Balanis, Advanced Engineering Electromagnetics.New York: Wiley, 1989.
  22. C. Balanis, Antenna Theory, Analysis, and Design, 2nd ed.New York: Wiley, 1997.
  23. C. Capsoni, A. Paraboni, F. Fedi, and D. Maggiori, "A model-oriented approach to measure rain-induced cross-polarization," Ann. Telecommun., vol. 36, pp. 154-159, Jan./Feb. 1981.
  24. D. J. Fang and C. H. Chen, "Propagation of centimeter/millimeter waves along a slant path through precipitation," Radio Sci., vol. 17, pp. 989-1005, Sept./Oct. 1982.
  25. H. Fukuchi, J. Awaka, and T. Oguchi, "A theoretical formula for the prediction of cross-polarized signal phase," IEEE Trans. Antennas Propagat., vol. 33, pp. 997-1002, Sept. 1985.
  26. G. Brussaard, "The analysis of depolarization and anisotropy using the OLYMPUS beacon," in Proc. Olympus Utilization Conf., Seville, Spain, Apr. 1993, pp. 561-565.
  27. J. E. Allnutt, Satellite-to-Ground Radiowave Propagation.London, U.K.: Peter Peregrinus, 1989.
  28. A. C. Ludwig, "A simple graph for determining polarization loss," Microwave J., vol. 19, p. 63, Sept. 1976.