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The EM Field of Constant Current Density
Distributions in Parallelepiped Regions

John G.

Abstract—The electromagnetic field vectorsA, H, E arising
from a constant current density J in an electrically small orthog-
onal parallelepiped regionw are obtained analytically and exactly,
up to order (kr)*, at any point (z, y, z) a distancer from the
center of v. They are then applied to the solution of an electric
field integrodifferential equation (EFIDE) for which the region V'

Fikioris

The attention in the present paper is focused on orthogonal
parallelepiped regions or cells= 2a x 2b x 2¢ into which any
large regionV can be divided, as a necessary step for solving
the electric field integrodifferential equation (EFIDE) in it. A
further restriction is to considef constant inv. As long asv

has been divided into small parallelepiped cells. These new resultsis electrically small this assumption is common in numerical

are directly applicable to the evaluation of electromagnetic field
interaction with natural media.

Index Terms—Electromagnetic fields, hybrid methods.

I. INTRODUCTION

ITH assumed time dependeneep(iwt), we are con-
cerned with the basic integrals [1]-[6]

e [ 7o v
HF :-vX///V_ _Zmdv’ )
E(F) = L“’“ < —VV. ) / / A f v @)

inwhichR = [7—7/|, k = w\/ue = 27/, andJ the (electric)
current (or source) density. is the volume wherd #£ 0 and,
in particular, we are concerned here willi7) continuous in

V' and with field pointsr in V. Closely related to the above

evaluations of volume integrals. Thus, for smadl, kb, kc,
and J constant inv the field quantitiesd, E are evaluated
in this paper analytically and exactly up to ordér)* at any
point (x, y, z) at a distance: from the center ofs, both in
the interior and the near exterior of

These near-field= values are directly usable for the eval-
uation of the integrodifferential term of the EFIDE (3) at the
centers of the “self-cell” and its adjacent ones. Moreover,
by comparing these values @ at adjacent cells with those
obtained by the far field approximatid® = » one is led to the
optimal size and shape af and to great economy in matrix
size and computer time.

II. THE VECTORPOTENTIAL A AND ITS FIRST DERIVATIVES

Let J = 4J, in v = 2a x 2b x 2¢, with J, and the
unit vector4 constant, and the origin of coordinates at the
center ofu. Assumingka, kb, ke < 1 and keeping the first
four terms in the expression (Ipr(—LkR) where R? =
(@' —2)? + (¥ —y)? + (2 — )%, we obtain from (1)

A7

—Au(xv Y, Z)

integrals is the following equation holding both in the exterior (/.

and interiorV of an inhomogeneous and isotropic medium

5'1;[5'1; = E'U(F) 7£ ein V]
B =F () + 4—1€(k2 YV / / A (0~ JEG)
. 3)

Here E' is a given incident field andv[e, (r') — e]E(+') the
equivalent polarization current densify7’) in V. For7 in V/

(3) is often mentioned in the literature as the “electric field
integral equation” (EFIE) and provides the starting point for
electromagnetic (EM) field evaluations inside dielectric media,
human tissue, heating and hyperthermia applications, dielectric

waveguides, etc. [6]-[13].
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at any poin%(z, y, z) interior or in the near exterior af such
that kr < 1. The four basic indefinite integrals that come up
in the course of integrating the first two terms of (4) are

dx L1 (T
| i = () R
2
/ 2y e =5+ A2 g (3) (6)
2 2 A
dz
A T
— 1 -1 — 1 -1 —_—
= z sinh <\/m>+Asmh <\/m>
— Btan! < Az ) 7)
BVa? + A? 4+ B?
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A B
1 —1 s —1
/ |:B Slnh <m) + A Slnh <m)

—z tan"! < AB )} dx
zvx? 4+ A2 + B2

A B
= Bz sinh™! <— + Az sinh™! [ ——
‘/.’L'2+B2> ‘/.’L'2+A2
T
| AB sinh ! <7)
VA? + B2

: N < A:L' )
— tan
2 Bvz? + A? + B?

— A—2 tan! < Bz )
2 AVaz? 4+ A2 4 B?

2
T ant < AB ) (8)
2 z

Nreny ey

The first two integrals (5) and (6) are quite common [14].
The other two, (8) in particular, are not easy to find in
tables; however, the reader can verify them immediately by

differentiating their right-hand-side. The final result is

A, v, %)
=F(z,y, 2) + Fz, y, —2) + F(z, =y, 2)
+ P -y, —2)+ F(-z,y. 2) + F(-2, y, —2)
+ (- z2)+ F(—z, —y, —z) — ik8abc
= 28[F(x, y, 2)]

The notationX8[F(x, y, z)] is defined in (9). Also,

— tk8abc. (9)

Fa, y, 2) = Sa(, y, 2) + 5y(@, y, 2) + 5-(x, y, 2)
- (a—;x) tan"!(a,) — @ tan™! (a,)
- (c—i—zz) tan"!(a.)
={1+CP+ CP[CP]}
a+ x)?
- | Su(z, v, z)—( + ) tanl(am)} (10)
= ¢+ zyinh ™t ot
Sx(xv Y, Z) _(b+y)( + )S h \/(b+y)2+(c+z)2
Sy(xv y7 Z) :CP[S (.’L’ y7 “)]
Sz, y, z) = CP[S,(z, y, 2)]
= CP[OP[Sy(x, y, 2] (11)
o) (b+)(c+2)
s (a+2)\/(a+ 22+ @ +v)?+ (c+2)?
ay(w, y, z) = CP(as), a.(x,y, z) = CP(ay) (12)

procedures yield the same result (from the first two terms) in
agreement with the general theory of singular integrals [1]—[4].
The final result [from all four terms of (4)] is

47 OA,
ity Ox

= D(z, y, z) — D(—=z, y, ) +i§k3abcx (13)

where
D(z, y, 2)
=3 4{—(@ + ) tan " (az) + (c+ 2)
Yz

bty

- sinh~ <\/(a+x)2+(c+z)2> +(b+y)

] c+ z k2
- sinh -
Vie+2)?+ (b+y)? 12

2(b +y)(c+ 2) /(a+ x)?

+(b+y)?+(c+2)?

+(c+2)B(a+2)* + (c+2)?)

b+y
-sinh™
Vie+ )2+ (c+ 2)?

+ (0 +y)Batz)? + (b+y)%)
1 c+z
-sinh™ <\/a+a: Sy FRmE )

}. (14)

The symbolx,. 4[f(x, y, z)] denotes the sum of four terms
arising from the function f(x, y, ») evaluated [besides
the point (x,y,2)] at the points (z,y, —2),

(z, -y, 2), (x, —y, —2z) as well. The derivativedA, /3y
follows from (13) and (14) by replacinge, 4, a, b by

Y, «, b, a, respectively. These results serve, also, to express
the magnetic fieldd = (1/1)V x A everywhere.

A first conclusion, concerns the convergent nature of the
integrals. Indeed, no matter how shrinks to zero, both
A, and 94, /9z tend to zero in and out of, as required
by theory [1]-[4]. Finally, we examine the analyticity and
continuity properties of4,,, A4, /9x. Based on the limiting
valuessinh ™'z = z, tan ! 2 = z asz — 0 andsinh ™' z =
In(2z), tan~!(+x) = +7/2 asx — +oo it is easy to
conclude that all quantities in (10)—(12) and (14) remain finite
and continuous, as the poifit, y, z) crosses some side of
v, even through an edge or tip of the parallelepiped. Thus,
A,, 04, /0x remain finite and continuous over all space, as

;_.

—2(a+z)* tan"(a,)

whereC'P[f(z, y, »)] denotes the function that follows fromreqwred by the theory of convergent singular integrals; this

f(z,y, z) by cyclical permutation ofz, y, z and a, b, ¢,
namely, by substitutings =z, b+ vy, ,ct 2z by by, c+

was observed to hold for spherical as well [2], [3].

z, ¢ + a, respectively. The last two nonsingular terms of (4)

are integrated only for the derivation df,,.

[ll. SECOND DERIVATIVES OF A,, AND THE ELECTRIC FIELD

Coming now tadA,,/dx we can evaluate it in two ways: By  Apart from the singular terrh/ R second derivatives can be

differentiating (9) and by going back to (4) and passih@z

obtained either by differentiating (13), (14) or by interchanging

after the triple integral, keeping all four terms of (4), bot®?/9x?, 9% /0xdy with the triple integrals of the these terms
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in (4). Differentiation of (13) and (14) is valid for all termsone may further verify thatd and E satisfy throughout

and the final results are space the equation§zV x H — k?H = V x J = 0 and
ir 9°A, B 12 VxVxE—-FEE=—iwul.
iy 02 228{—'03“1 (az) — ?[Sy(% Y, 2) Considering next the analytic and continuity properties of
the second derivatives it is better to examine and explain them
+S.(x, y, 2) — (z +a)? tan—l(%)]} in connection with the electric field&. Without actual loss
of generality and to avoid lengthy expressions, it is better to
+i§k3abc restrict ourselves to the cage= & and.J = #J,; cyclical

T 922

2 2
9* A, :C’P[a Au}

92A, o 92A, permutation leads easily to the more general cgse/, # 0.
dy? Ox? N [

N } (15)  Then, in and out ofv: H, =0, uH, = 0A,/0z, pH. =

—9A, /0y, while fromiweE = V x H —J

4w 9% A,
=d 2) +d —2)+d{—z, —y, =
T 9udy (z, , 2) +d(z, y, —2) + d(—z, -y, 2) oL (PA PA
+d(—z, —y, —2) — d(z, —y, 2) T wep \ 92 g T
—d(x, —y, —2) — d(~z, y, 2 1 [824,
(.’L’ Y 7) ($4y7) = |: +I€2AT:|
—d(—z, y, —z) + O[(kr)%] (16) wep | 0x?
d — ginh~l c+z k2 = i 8 —tan_l(a )+k—2(25 + 5,4+ 5.
(2, y, z) = sin Jat+a2+ b+ | 4 rwe R
2,1 2., 1
.{(c+z)\/(a+x)2+(b+y)2+(c+z)2 ~(oFe)ian " ay)~ o+ 2 tan ()
16,
+[(a+2)2+ (b+ )7 —igh abc} (22)
2 2
- sinh~! cr: : =L Oy 1 0 (23)
Via+ )2+ (0 +y)? iwep Oxdy twep 00z

17) The analyticity of E(z, v, z) in and out ofv is again
The derivative(82 A, /(99x) follows from (16) and (17) by obvious. However, agz, y, 2) now crosses either of the

replacingb, v, ¢, by ¢, z, b, y, respectively. surfacesr = a orr = —a of v, four of the arguments,,
The first test that the above expressions should satisfy9k >8[tan~*(az)] in (23) jump from+o0 to —oc and each

the Helmholtz equation suchtan™!(a,) from +x/2 to —n /2. Therefore E, exhibits
o a step discontinuity./,, /iwe), consistent with the continuity
V2A, + k2A, = { —pJu, insidev (18) relationV.E = p/e = —V.J/iwe or here with the constant

0, outsidew. surface charge density = J,/iw generated onc = a by

To this end we first observe that based on the identities [14{€ @brupt change of the value df, [2], [3]. F, remains
continuous at the other surfacgs= +b, » = +¢ to which J,,

is parallel and on which no surface charge accumulates.
Coming now toE, and E. we observe from (16) and (17)

1 A1tz

tan ™t 21+ tan ™t 2o = tan
1-— 1R

tan=! 2 + tan~1 L = { /2, Ior ©>0"" 19y that they become infinite at the edges= +a, y = b and
T —n/2, forz <0 z = 4a, 2 = +c to which they are perpendicular, respectively.
it is easy to establish the relation The i?finity is Iogarithmig:, arising from terms of the form
. . . sinh™ [(c¢+ 2)/p] + sinh™ [(¢c — z)/p]—for E,—wherep =
tan™" (ag) + tan”™ (ay) + tan” (a.) V(a+z)? + (b+ y)? is the distance from the edge; as- 0
w2, ifay>0 (20) these two terms behave &s[2(c + 2)/p] + ln[2(c — 2)/p]
T =7/2, ifa,<0. for |z2] < ¢ asluf(c + 2)/(|c — 2|)] for = > ¢ and as

In[(¢—2)/(|c+2|)] for = < —c. Therefore, in the last two cases,
E, is analytic at the extension of the edge in the exteriop of
(it simply approaches infinity near the tip), but in the interior
|z| < ¢ E, goes toco logarithmically. This behavior may
Y8[tan ! (a,) + tan*(a,) + tan"!(a.)] be explained by the abrupt termination efat these edges
(1) and has no counterpart for surfacgsvith continuous normal
[2], [3], where &, arising again from the normal component
while further consideration leads to the conclusion thaif J on S, vanishes continuously rather than abruptly $n
Y8[tan!(a,) + tan1(a,) + tan"*(a.)] = 0 at any point It may be verified further by the exactly similar behavior near
exterior to v. Keeping this and (21) in mind, we maythe edges; = 0, w of the £, component of the electrostatic
immediately verify that the Helmholtz equation (18) is indeefield of a constant surface charge densityspread over an
satisfied both in and out of. Based on this first result andinfinite (in 2) strip 0 < ¥ < w on the planex = 0; this

Maxwell's equationspH = V x A, iweE = V x H — J field can be obtained by simple integrals of thg-field due

Observing from (12) that,, a,, a. are all either positive
or negative and that for pointg, y, z) interior to v all six
quantitiesa + z, b -y, ¢ = z are positive we conclude that

=4dr for |z|<a, |y <b, |2 <c.
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to infinite line chargessdy’ over 0 < 3 < w. Therefore, enough to justify the approximatio® = r. The resulting
this logarithmic infinite behavior is characteristic of (dielectricar-field (dipole) expressions are [6]
edges ofv or S. However, wherv is part of a larger volumé&
with continuous/ in it, all these discontinuities and infinities
cancel one another due to the opposite field values from the Ey
adjacent tov cells.
Before closing this section, following are some new results
for the value ofE(z, y, ) at the center of:

J e—ikr
= ——"% (8ab
i47rws( abe) 73

2
: {1 +ikr — K22 — (34 Bikr — k%v?)} (26a)
.

J. 8abc [ 322 k2 < a:2>
- 1- 22 1+ 2
k

(1

E4(0,0,0)=FE.(0,0,0)=0 nwe 13 72 2 72
9 Lt 2 5.5 2
E(0,0,0)= — 7 Jogant (L0 vkt S (3D ) it (2= T
ITWE ava? + b2 + 2 3 8 7 15 T

N a
— k2 [2bc sinh™* <W) +0(/s67>6)} (26b)
- b E, J, zo—tkr .
e () () = e a5 (2 J -+ 4222
L c (27&)
+ ab sinh™* <4>
Va? 4 b? o L (8abc)£ Y
B ac 1dmwe o\ 2
VLipa S P . "D a0
bva? +b% +c R 5 + s " 1E + O(k%)|. (27b)
5

5 1 < ab )} ,4k3abc}
—c” tan +¢ .
cva? + b2+ 2 3

It is worth noticing that: 1) Both near- and far-field expressions

(24) for £, £, E. yield—for real.J,—imaginary values for zero
In particular, for cubicak, « = 6 = ¢ and and second order terms and the same real and constant third-
order terms, namely—4.J,.k®abc/(3rwe)] for £, and zero for
£,(0, 0, 0) E,, E.; 2) apart from the multiplying factdabe the far-field
- _ Jw [1.04720 — 1.586 72(ka)? +i1.33333(ka)?] ~ €XPressions are insensitive to the shape;ahey stand for the
TWE dipole field that prevails away enough fromand contrasts
= JT [1— 1.51520(ka)? + i1.27324(ka)?]. (25) With the near-field expressions, which depend strongly on the
Siwe shape ofv; and 3) comparing with terms of ordérr* and

In the last expression, the constant vakué, /(3iwe) from the &°r> and takingkr = 1/3, for instance, one easily concludes
singular terml/R in the preceding integral (2) is the same athat retaining terms of order up to and includitity® in (26b),
at the center of a spherical [2], [3]. For cubes, it has been (27b) provides an accuracy better than 0.1% i E. and,
known for a long time; for parallelepipeds, the first term o&part from directions for whick?/r* = 1/3, better than 0.5%
(24) can also be found in [6], [9], and [10]. Here, we includér E,. Even in the latter case, the accuracy continues to be
higher order terms and are able to evaluBtat any interior better than 0.1%, when it is realized th&j, and/or E. are
or near-exterior point. now the prevailing components. Numerical and plotted results
that follow verify these remarks.

Proceeding now with comparisons of same-order-terms

IV. APPLICATION TO THE SOLUTION OF THE EFIDE . d far field 4 'd N
. . rqm near- and far-field expressions, we consider two shapes
The E-field expressions (3), (4), (16), and (17) can be USF08I‘ via=b=c(cube)andb = ¢ = a/2. Numerical

immediately for the solution of the EFIDE (3), in which regloniesults are shown in Tables | and Il for the normalized and

V has been divided into a number of parallelepiped cel . . R - -
v = 2a X 2b x 2¢. The last (integrodifferential) term on thedslmenSIOnless field quantity = (idrwe/J;)E. Only positive

— values ofz, ¥, ~ in half of the first octant need be considered,

right of (3) is the E-field inV arising fromJ = iw(e, — €)E g ¢ urational irv. The followi h
and values of it at any fixed point of each cell (in particula(r?]\(')‘{['i';?ngo configurational Symmetry. The following are wor

its center) due to/ in v itself and in its neighboring cells .
are directly obtainable, as long &s is small. The influence 1) The cube is the more advantageous shape, as far as
overlapping and least differing values between near-

of more remote cells is easily evaluated using the “far-field”

expressions (26) and (27) given below. An important question, and far-field expressions are concerned. The percent

is how smallkr should be to insure the accuracy of these near-  difference of the dominant constant term for adjacent
cells in thex andy directions does not exceed 18.1% for

field values. This question, directly related to the important
question of how smalka, kb, kc should be taken, can be cubes. For longer parallelepipélds- ¢ = a/2, it reaches

answered reliably if we compare these near-field values with
those obtained very simply from (2), when, at points exterior
to v, the ratior /« (v being the greater among b, ¢) is large

178% (and for much elongated onés= ¢ = a/5 it
grows to 1897%!) One has to move quite a bit away from
v in the last two cases for the far-field expressions to take
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2)

3)

4)
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TABLE |
CuBE: @ = b = ¢. VALUES OF THE DOMINANT TERM AND THE COEFFICIENT OF THEK? @%-TERM FROM NEAR- AND FAR-FIELD
EXPRESSIONS AT THECENTERS OF THESELF CELL AND NEARBY EXTERIOR ONES. SHOWN ARE €, AND e, VALUES FOR
THE NORMALIZED DIMENSIONLESS FIELD € = i4nweE/.J, AND CORRESPONDINGPERCENT DIFFERENCES (¢ = «)

1 2 I 3 4 5 ] 6 7 8 I 9 10 11 ] 12 13
] % diff. % % %

point Constant term of c, from Coeff. of (ka)’- diff. Constant term of e, diff. Cocff. of (ka)- diff.

(x,y,2) col.2 term of e from from term of ¢ from
b col.5 col.8 ” col.11
From From From From From From From From
(22) (26b) 2) (26b) (16),(17) 27b) (16).(17) (27b)
23) (23)

(0,0,0) -4.18879 6.34687 0 0

(2a,0,0) 1.69373 2.00000 | -18.08 | 360593 | 4.00000 | -10.93 0 0 0 0

(0,23,0) | -0.846863 ~1.00000 | 1808 | 2.14741 | 2.00000 | 6.86 0 0 0 0
(2a,22,0) | 0.172739 0.176777 | -2.34 | 2.09094 | 2.12132 | -1.45 | 0.539378 | 0.530330 | 1.68 |0.622330| 0.707107 | -13.62
(0.22,2a) | -0.345479 | -0.353553 | -2.34 | 1.47865 | 1.41421 | 4.36 0 0 0 0
(2a,24,22) 0 0 1.54142 | 1.53960 | 0.12 | 0.196166 | 0.192450 | 1.89 |0.354229| 0.384900 | -8.66
(42,0,0) | 0246786 0.250000 | -1.30 | 1.95534 | 2.00000 | 2.28 o 0 0 0

0,42,0) | -0.123393 -0.12500 | -1.30 | 1.02056 | 1.00000 @ 2.01 0 0 0 [}
(2a,42,0) | -0.0364791 | -0.0357771 | 1.927 | 1.07840 | 1.07331 | 0.47 | 0.106794 | 0.107331 | -0.50 | 0.3394947 0357771 | 538
(0,4a,2a) | -0.0890090 | -0.0894427 | -0.49 | 0.909651 | 0.894427 | 1.67 0 0 0 0
(42,22,0) | 0.12548% 0.125220 0.21 | 1.58921 | 1.60997 | -1.31 | 0.106794 | 0.107331 | -0.50 | 0.339494 | 0.357771 | -5.38
(4a,42,0) | 0.0220746 | 0.0220971 | -0.10 | 1.05696 | 1.06066 | -0.35 | 0.0663782 | 0.0662213 | 0.13 | 0.342649 | 0.353553 | -3.18
(0,42,42) | 00441491 | -0.0441942 | -0.10 | 0.714651 | 0.707107 | 1.06 0 0 0 0
(2a,4a4a) | -0.0247274 | -0.0246914 | 0.15 | 0.744909 | 0.740741 | 0.55 | 0.0246916 | 0.0246914 | 0.11 | 0.144020 | 0.148148 | -2.87
(4a,4a.4a) 0 0 0.769854 | 0.769800 | 0.007 | 0.0240817 | 0.0240563 | 0.11 | 0.188487 | 0.192450 | -2.10
(62,0,0) | 0.0738788 | 0.0740741 | -0.26 | 1.32057 | 1.33333 | -097 0 0 0 0

(0,6a,0) | -0.0369394 | -0.0370370 | -0.26 | 0.672814 | 0.666667 | 0.91 0 0 0 0

over satisfactorily. This, of course, is a manifestation of  lead to (» — §a)*8abc < IR, < (r + da)"abc and,
the fact that in the exterior near field the influence of finally, to

shape is very important and that the far-field (dipole)
expressions do not yield acceptable field values at points
close tow.

The percent difference of the less dominaf? terms _ _ - .
is consistently much smaller (even for adjacent cells), which, for the first few values of, verifies the preceding
while for the k®a® terms it was shown to be zero statement.

everywhere. It remains to answer how largka (with « the larger of

In particular, in directions for whichs?> = 2/3, the @ b, ¢) can be taken for a prescribed accuracy #oand at
dominant constant term o, in the far field is zero, Whatr/a value the simple (complete) far-field values (262)
as seen from (26b). The same term from the near-fiedd (27a) [not the restricted (26b) and (27b) ones] can take
expression (22), is zero for cubes and very small f@ver satisfactorily from the near-field ones. To this end, we
more elongated;; here, dominant are the other field'@ve calculated and plotted in Fig. 1 the total figid =
componentss,, E. (see Tables | and I1). lleal? + ley|* + |e=[?]V/? = |(dnwe/J,)E| from the above
Another proof of this relationship between near- antv0 Sets of expressions, namelly, |, [¢s| in the exterior of
far-field expressions is based on the diminishing percentfor about2.5 < r/a < 12, in three typical directions
difference between their corresponding terms as the ratio- a(y =z = Q), r=ylz=z=0)z sy=z2= r/V3,

r/a increases. The table results verify this remark fdp_half of the first octant and for cubical(a = b = ¢)
point z, v, z for which 7 /a is large (particularly for the With ka = 0.1. These plots differ unnoticeably for other
dominant component o) and there is a simple theoret-values ofka, owing to the scales and to the small difference
ical explanation for this behavior. Ag/a increases, the betweenje,| and|e,|. In order to selecka and transition-/a
percent difference between corresponding terms in nej@lue for a prescribed accuracy, more useful are the plots of
and far-field expressions essentially reflects the sarthe percent difference (PCOPO0([en| — [2¢[)/[en|, which is
difference between the exact integfal, = [f, R" dV shown in Figs. 2 and 3, corresponding to the configurations

IRn - Irn
I’I”n,

a
< |”|; (29)

and its far-field approximatiorl,,, = [ff r"dV = of Tables | and Il, respectively, witha as a parameter. We
Saber™ forn = —1,0,1,2,---. Asr/a increases, the further notice at this point, that the first two dominant terms
obvious inequalities of the e-components are real, while the third, the imaginary

one, is the same for both near- and far-field expressions; this
implies that the phase af is well taken into account in the
2 overlapping region (small PCD), even when the comparison
b c\2 e . .
r—éa<R<r+dba, 6=4/1+ <—> + (—) is limited between magnitude| values. Looking at the plots
@ of the PCD in Figs. 2 and 3, we can easily conclude that
1<6<V3 (28) they andz directions are the worst as far as the PCD in the
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TABLE 1
SAME AS TABLE | FORD = ¢ = a/2 (a = a)
1 2 I 3 4 5 I 6 7 8 I 9 10 11 ] 12 13
% diff. Y % %
point Constant term of ¢, from Coeff. of (ka)- diff. Constant term of ¢, diff. Coeff. of (ka)- diff.
(y,2) col.2 term of e from from term of ¢, from
> col.5 col.8 ¥ col.11
From From From From From From From From
(22) (26b) (22) (26b) (16),(17) (27b) 16),(07) (27b)
(23) (23) -
(0,0,0) -1.61086 2.65702 0 0
(0,a,0) -0.719668 -2.00000 | -177.9 | 1.086122 | 1.000000 | 7.93 0 0 0 0
(0,2a,0) | -0.187671 -0.250000 | -33.21 | 0.521037 | 0.500000 | 4.04 0 0 0 0
(0,6a,0) | -0.0089727 | -0.0092593 | -3.19 | 0.167610 | 0.166667 | 0.56 0 0 0 0
0,10a,0) | -0.00197758 | -0.00200000 | -1.13 | 0.100207 ; 0.100000 0.21 0 [ 0 0
(0,12a,0) | -0.0011484 | -0.0011574 | -0.79 | 0.0834532 | 0.0833333 | 0.14 0 0 0 0
(2a,0,0) 0.697310 0.500000 28.30 | 1.033551 | 1.00000 | 3.25 0 0 0 0
(4a,0,0) | 0.0685167 | 0.0625000 8.78 | 0.505014 | 0.500000 | 0.99 0 0 0 0
(10a,0,0) | 0.00406028 | 0.0040000 1.48 | 0.200332 | 0.200000 | 0.17 0 0 0 0

(2a,a,0) 0.266719 0.250440 6.10 | 0.804288 | 0.804985 | -0.09 0.288905 0.214663 | 25.70 | 0.179957 | 0.178885 0.60

(2a,2a,0) | 0.0301294 | 0.0441942 | -46.68 | 0.522066 | 0.530330 | -1.58 0.136866 0.132583 3.13 | 0.166532 | 0.176777 | -6.15
(22,60,0) | -0.00550683 | -0.00553399 | -0.49 | 0.174131 | 0.173925 | 0.12 | 0.0068610 | 0.0071151 | -3.70 | 0.0460443 | 0.0474342 | -3.02
(24,3,2) 0.122278 0.136083 !l 1.29 | 0.672250 | 0.680414 | -1.21 0.160023 0.136083 14.96 | 0.131833 | 0.136083 | -3.22
(2a,2a,2a) | -0.00454901 0 © 0.381215 | 6.384900 | -0.97 | 0.0463656 | 0.0481125 | -3.77 | 0.090270%8 | 0.0962250 | -6.60
(8a,6a,0) | 0.0018259 | 0.0018400 | -0.77 | 0.163857 | 0.164000 | -0.09 | 0.0029066 | 0.0028800 | 0.92 | 0.479142 | 0.480000 | -0.18
(62,8a,0) | 0.00013555 | 0.00016000 | -18.04 | 0.135823 | 0.136000 | -0.13 | 0.0028713 | 0.0028800 | -0.30 | 0.0476641 | 0.0480000 | -0.70
(4a,10a,42) | -0.00083965 | -0.00083922 0.05 0.0976048 | 0.0975890 | 0.02 { 0.00118670 | 0.00119888 { -1.03 | 0.0261470 | 0.0263754 | -0.87

“ —_— Okgg
30, — - a=b=c i Ve
0:10 ’
e
A
&
~
— )
@ 1
—= 0.1 2
(] Q
— (@]
—-30 T T T T
6 10
0.01 r/a
8

30
Fig. 1. Cube:e = b = c. Exterior field valuege,.|, [e;| versusr/a for
ka = 0.1. 20
< 10
overlapping region is concerned. This helps make the choice of 5
the optimumka and transitiorr/a values by just restricting the 9
calculations in either the or y directions or both, at the most. %,1 ol
The following conclusions may then be drawn: For cubes )
a = b = ¢ Figs. 1 and 2 show thatea = 0.12 leads to a ~207
PCD of less than 4% and transitieria around 3.8%a = 0.1
to a PCD of less than 2.7%, and transitiofu around 4.1, B JA R 5 1o
and so on. The overlapping region is quite wide, as could be r/a

expected, while the resulting minimum PCD for edehin the  Fig. 3. same as Fig. 2 for = ¢ = a/2.

overlapping region insures an even higher accuracy when the

near/far-field expressions are used for points closer to/farther

from v than the above transition/a value. Higher values this connection that larger values éfi, although desirable
of ka are possible at the expense of PCD and accuracy (fehen solving an EFIDE, are actually restricted from the
instance,ka = 0.16 lowers the optimum PCD to 7% andstart by two fundamental assumptions of this approach: 1)
transition 7/a to 3.2). It should always be remembered ithat ./ can be maintained constant througheuin an actual
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situation and 2) that the assumptidd = r» in the phase [7] D. S. JonesThe Theory of ElectromagnetismOxford, U.K.: Perga-

q o ikr ~ 1/pr mon, 1964.
faCto.rS exp(L.k'R) eXp(_L]W)’ as. opposed .td/R /7.’ 8] J. Boersma and P. J. Doelder, “Closed-form evaluation of the wave
requires definitely smalta; otherwise the far-field expressions "~ hstential due to a spherical current source distribution,” Dept. Math.,

(26a) and (27a) are useless, regardless of how lafgeis Eindhoven Univ. Technol., Eindhoven, The Netherlands, Memo 1979-
i ioti _fi 11, Oct. 1979.

taken. Thls Iatte_r restriction does not appl_y to_the near ﬂel?9] A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,”

expressions, which can be extended to quite highevalues Proc. IEEE vol. 68, no. 2, pp. 248-263, Feb. 1980.

by including terms of order higher thari3 in the integration’ [10] A. D. Yaghjian, “A delta-distribution derivation of the electric field in

: S : : the source region,Electromagn.vol. 2, pp. 161-167, 1982.
somethlng not prOh'b't'Ve as far as this author is Concerne[91] J. S. Colburn and Y. Rahmat-Samii, “Electromagnetic scattering and

This appears quite unnecessary, however, as far as solving an radiation involving dielectric objectsJ. Electromagn. Waves Applicat.,

EFIDE with near cubicab is concerned. vol. 9, no. 10, pp. 1249-1277, 1995. _
= | ted shapes smaller are required for the same [12] M. S. Viola, “A new electric field integral equation for heterogeneous
ore o_nga p : aq dielectric bodies of revolution embedded within a stratified medium,”
PCD; for instanceka = 0.08 gives PCD of about 6% around IEEE Trans. Antennas Propagatiol. 43, no. 10, pp. 11161122, Oct.
r/a = 6.5 (Fig. 3 for b = ¢ = a/2), while for thin v, 1995.

; . 13] H. Ganand W. C. Chew, “A discrete BCG-FFT algorithm for solving 3D
b = ¢ = a/5, it may not be possible to lower PCD belOV‘} inhomogeneous scatterer problems,”Electromagn. Waves Applicat.,

5% even withka = 0.06. That is another case, where terms  vol. 9, no. 10, pp. 1339-1357, 1995. ‘
of order higher thark3:3 may be necessary for lower PCD[14] I. S. Gradshteyn and I. M. RyzhikTables of Internals, Series and

Products. 4th ed. New York: Academic, 1965 (English transl. A.
and largerka. Jeffrey).
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