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The EM Field of Constant Current Density
Distributions in Parallelepiped Regions

John G. Fikioris

Abstract—The electromagnetic field vectorsA; H; EA; H; EA; H; E arising
from a constant current densityJJJ in an electrically small orthog-
onal parallelepiped region��� are obtained analytically and exactly,
up to order (kr)(kr)(kr)4, at any point (x; y; zx; y; zx; y; z) a distancerrr from the
center of ���. They are then applied to the solution of an electric
field integrodifferential equation (EFIDE) for which the region VVV
has been divided into small parallelepiped cells. These new results
are directly applicable to the evaluation of electromagnetic field
interaction with natural media.

Index Terms—Electromagnetic fields, hybrid methods.

I. INTRODUCTION

W ITH assumed time dependence , we are con-
cerned with the basic integrals [1]–[6]

(1)

(2)

in which , , and the (electric)
current (or source) density. is the volume where and,
in particular, we are concerned here with continuous in

and with field points in . Closely related to the above
integrals is the following equation holding both in the exterior
and interior of an inhomogeneous and isotropic medium

in

(3)

Here is a given incident field and the
equivalent polarization current density in . For in
(3) is often mentioned in the literature as the “electric field
integral equation” (EFIE) and provides the starting point for
electromagnetic (EM) field evaluations inside dielectric media,
human tissue, heating and hyperthermia applications, dielectric
waveguides, etc. [6]–[13].
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The attention in the present paper is focused on orthogonal
parallelepiped regions or cells into which any
large region can be divided, as a necessary step for solving
the electric field integrodifferential equation (EFIDE) in it. A
further restriction is to consider constant in . As long as
is electrically small this assumption is common in numerical
evaluations of volume integrals. Thus, for small
and constant in the field quantities are evaluated
in this paper analytically and exactly up to order at any
point at a distance from the center of , both in
the interior and the near exterior of.

These near-field values are directly usable for the eval-
uation of the integrodifferential term of the EFIDE (3) at the
centers of the “self-cell” and its adjacent ones. Moreover,
by comparing these values of at adjacent cells with those
obtained by the far field approximation one is led to the
optimal size and shape of and to great economy in matrix
size and computer time.

II. THE VECTOR POTENTIAL AND ITS FIRST DERIVATIVES

Let in , with and the
unit vector constant, and the origin of coordinates at the
center of . Assuming and keeping the first
four terms in the expression of , where

, we obtain from (1)

(4)

at any point interior or in the near exterior of such
that . The four basic indefinite integrals that come up
in the course of integrating the first two terms of (4) are

(5)

(6)

(7)
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(8)

The first two integrals (5) and (6) are quite common [14].
The other two, (8) in particular, are not easy to find in
tables; however, the reader can verify them immediately by
differentiating their right-hand-side. The final result is

(9)

The notation is defined in (9). Also,

(10)

(11)

(12)

where denotes the function that follows from
by cyclical permutation of and ,

namely, by substituting by
, respectively. The last two nonsingular terms of (4)

are integrated only for the derivation of .
Coming now to we can evaluate it in two ways: By

differentiating (9) and by going back to (4) and passing
after the triple integral, keeping all four terms of (4), both

procedures yield the same result (from the first two terms) in
agreement with the general theory of singular integrals [1]–[4].
The final result [from all four terms of (4)] is

(13)

where

(14)

The symbol denotes the sum of four terms
arising from the function evaluated [besides
the point ] at the points

as well. The derivative
follows from (13) and (14) by replacing by

, respectively. These results serve, also, to express
the magnetic field everywhere.

A first conclusion, concerns the convergent nature of the
integrals. Indeed, no matter how shrinks to zero, both

and tend to zero in and out of , as required
by theory [1]–[4]. Finally, we examine the analyticity and
continuity properties of , . Based on the limiting
values as and

as it is easy to
conclude that all quantities in (10)–(12) and (14) remain finite
and continuous, as the point crosses some side of

, even through an edge or tip of the parallelepiped. Thus,
, remain finite and continuous over all space, as

required by the theory of convergent singular integrals; this
was observed to hold for spherical, as well [2], [3].

III. SECOND DERIVATIVES OF AND THE ELECTRIC FIELD

Apart from the singular term second derivatives can be
obtained either by differentiating (13), (14) or by interchanging

with the triple integrals of the these terms
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in (4). Differentiation of (13) and (14) is valid for all terms
and the final results are

(15)

(16)

(17)

The derivative follows from (16) and (17) by
replacing by , respectively.

The first test that the above expressions should satisfy is
the Helmholtz equation

inside
outside .

(18)

To this end we first observe that based on the identities [14]

for
for

(19)

it is easy to establish the relation

if
if .

(20)

Observing from (12) that are all either positive
or negative and that for points interior to all six
quantities are positive we conclude that

for (21)

while further consideration leads to the conclusion that
at any point

exterior to . Keeping this and (21) in mind, we may
immediately verify that the Helmholtz equation (18) is indeed
satisfied both in and out of. Based on this first result and
Maxwell’s equations

one may further verify that and satisfy throughout
space the equations and

.
Considering next the analytic and continuity properties of

the second derivatives it is better to examine and explain them
in connection with the electric field . Without actual loss
of generality and to avoid lengthy expressions, it is better to
restrict ourselves to the case and ; cyclical
permutation leads easily to the more general case .
Then, in and out of :

, while from

(22)

(23)

The analyticity of in and out of is again
obvious. However, as now crosses either of the
surfaces or of , four of the arguments
of in (23) jump from to and each
such from to . Therefore, exhibits
a step discontinuity , consistent with the continuity
relation or here with the constant
surface charge density generated on by
the abrupt change of the value of [2], [3]. remains
continuous at the other surfaces to which
is parallel and on which no surface charge accumulates.

Coming now to and we observe from (16) and (17)
that they become infinite at the edges and

, to which they are perpendicular, respectively.
The infinity is logarithmic, arising from terms of the form

—for —where
is the distance from the edge; as

these two terms behave as
for , as for and as

for . Therefore, in the last two cases,
is analytic at the extension of the edge in the exterior of

(it simply approaches infinity near the tip), but in the interior
goes to logarithmically. This behavior may

be explained by the abrupt termination ofat these edges
and has no counterpart for surfaceswith continuous normal
[2], [3], where , arising again from the normal component
of on , vanishes continuously rather than abruptly on.
It may be verified further by the exactly similar behavior near
the edges of the component of the electrostatic
field of a constant surface charge densityspread over an
infinite (in ) strip on the plane ; this
field can be obtained by simple integrals of the-field due
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to infinite line charges over . Therefore,
this logarithmic infinite behavior is characteristic of (dielectric)
edges of or . However, when is part of a larger volume
with continuous in it, all these discontinuities and infinities
cancel one another due to the opposite field values from the
adjacent to cells.

Before closing this section, following are some new results
for the value of at the center of :

(24)

In particular, for cubical , and

(25)

In the last expression, the constant value from the
singular term in the preceding integral (2) is the same as
at the center of a spherical [2], [3]. For cubes, it has been
known for a long time; for parallelepipeds, the first term of
(24) can also be found in [6], [9], and [10]. Here, we include
higher order terms and are able to evaluateat any interior
or near-exterior point.

IV. A PPLICATION TO THE SOLUTION OF THE EFIDE

The E-field expressions (3), (4), (16), and (17) can be used
immediately for the solution of the EFIDE (3), in which region

has been divided into a number of parallelepiped cells
. The last (integrodifferential) term on the

right of (3) is the E-field in arising from
and values of it at any fixed point of each cell (in particular
its center) due to in itself and in its neighboring cells
are directly obtainable, as long as is small. The influence
of more remote cells is easily evaluated using the “far-field”
expressions (26) and (27) given below. An important question,
is how small should be to insure the accuracy of these near-
field values. This question, directly related to the important
question of how small should be taken, can be
answered reliably if we compare these near-field values with
those obtained very simply from (2), when, at points exterior
to , the ratio ( being the greater among ) is large

enough to justify the approximation . The resulting
far-field (dipole) expressions are [6]

(26a)

(26b)

(27a)

(27b)

It is worth noticing that: 1) Both near- and far-field expressions
for yield—for real —imaginary values for zero
and second order terms and the same real and constant third-
order terms, namely, for and zero for

; 2) apart from the multiplying factor the far-field
expressions are insensitive to the shape of; they stand for the
dipole field that prevails away enough fromand contrasts
with the near-field expressions, which depend strongly on the
shape of ; and 3) comparing with terms of order and

and taking , for instance, one easily concludes
that retaining terms of order up to and including in (26b),
(27b) provides an accuracy better than 0.1% for and,
apart from directions for which , better than 0.5%
for . Even in the latter case, the accuracy continues to be
better than 0.1%, when it is realized that and/or are
now the prevailing components. Numerical and plotted results
that follow verify these remarks.

Proceeding now with comparisons of same-order-terms
from near- and far-field expressions, we consider two shapes
for : (cube) and . Numerical
results are shown in Tables I and II for the normalized and
dimensionless field quantity . Only positive
values of in half of the first octant need be considered,
owing to configurational symmetry. The following are worth
noticing.

1) The cube is the more advantageous shape, as far as
overlapping and least differing values between near-
and far-field expressions are concerned. The percent
difference of the dominant constant term for adjacent
cells in the and directions does not exceed 18.1% for
cubes. For longer parallelepipeds , it reaches
178% (and for much elongated ones it
grows to 1897%!) One has to move quite a bit away from

in the last two cases for the far-field expressions to take
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TABLE I
CUBE: a = b = c. VALUES OF THE DOMINANT TERM AND THE COEFFICIENT OF THEk2a2-TERM FROM NEAR- AND FAR-FIELD

EXPRESSIONS AT THECENTERS OF THESELF CELL AND NEARBY EXTERIOR ONES. SHOWN ARE ex AND ey VALUES FOR

THE NORMALIZED DIMENSIONLESS FIELD e = i4�!"E=Jx AND CORRESPONDINGPERCENT DIFFERENCES(a = �)

over satisfactorily. This, of course, is a manifestation of
the fact that in the exterior near field the influence of
shape is very important and that the far-field (dipole)
expressions do not yield acceptable field values at points
close to .

2) The percent difference of the less dominant terms
is consistently much smaller (even for adjacent cells),
while for the terms it was shown to be zero
everywhere.

3) In particular, in directions for which , the
dominant constant term of in the far field is zero,
as seen from (26b). The same term from the near-field
expression (22), is zero for cubes and very small for
more elongated ; here, dominant are the other field
components , (see Tables I and II).

4) Another proof of this relationship between near- and
far-field expressions is based on the diminishing percent
difference between their corresponding terms as the ratio

increases. The table results verify this remark for
point for which is large (particularly for the
dominant component of ) and there is a simple theoret-
ical explanation for this behavior. As increases, the
percent difference between corresponding terms in near-
and far-field expressions essentially reflects the same
difference between the exact integral
and its far-field approximation

for . As increases, the
obvious inequalities

(28)

lead to and,
finally, to

(29)

which, for the first few values of, verifies the preceding
statement.

It remains to answer how large (with the larger of
) can be taken for a prescribed accuracy forand at

what value the simple (complete) far-field values (26a)
and (27a) [not the restricted (26b) and (27b) ones] can take
over satisfactorily from the near-field ones. To this end, we
have calculated and plotted in Fig. 1 the total field

from the above
two sets of expressions, namely in the exterior of

for about , in three typical directions
, , ,

in half of the first octant and for cubical
with . These plots differ unnoticeably for other
values of , owing to the scales and to the small difference
between and . In order to select and transition-
value for a prescribed accuracy, more useful are the plots of
the percent difference (PCD) , which is
shown in Figs. 2 and 3, corresponding to the configurations
of Tables I and II, respectively, with as a parameter. We
further notice at this point, that the first two dominant terms
of the -components are real, while the third, the imaginary
one, is the same for both near- and far-field expressions; this
implies that the phase of is well taken into account in the
overlapping region (small PCD), even when the comparison
is limited between magnitude values. Looking at the plots
of the PCD in Figs. 2 and 3, we can easily conclude that
the and directions are the worst as far as the PCD in the



FIKIORIS: THE EM FIELD OF CONSTANT CURRENT DENSITY DISTRIBUTIONS IN PARALLELEPIPED REGIONS 1363

TABLE II
SAME AS TABLE I FOR b = c = a=2 (a = �)

Fig. 1. Cube:a = b = c. Exterior field valuesjenj; jef j versusr=a for
ka = 0:1.

overlapping region is concerned. This helps make the choice of
the optimum and transition values by just restricting the
calculations in either the or directions or both, at the most.

The following conclusions may then be drawn: For cubes
, Figs. 1 and 2 show that leads to a

PCD of less than 4% and transition around 3.8,
to a PCD of less than 2.7%, and transition around 4.1,
and so on. The overlapping region is quite wide, as could be
expected, while the resulting minimum PCD for eachin the
overlapping region insures an even higher accuracy when the
near/far-field expressions are used for points closer to/farther
from than the above transition- value. Higher values
of are possible at the expense of PCD and accuracy (for
instance, lowers the optimum PCD to 7% and
transition to 3.2). It should always be remembered in

Fig. 2. Cube:a = b = c. PCD of jenj; jef j versusr=a for variouska.

Fig. 3. Same as Fig. 2 forb = c = a=2.

this connection that larger values of , although desirable
when solving an EFIDE, are actually restricted from the
start by two fundamental assumptions of this approach: 1)
that can be maintained constant throughoutin an actual
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situation and 2) that the assumption in the phase
factors , as opposed to ,
requires definitely small ; otherwise the far-field expressions
(26a) and (27a) are useless, regardless of how largeis
taken. This latter restriction does not apply to the near-field
expressions, which can be extended to quite highervalues
by including terms of order higher than in the integration,
something not prohibitive as far as this author is concerned.
This appears quite unnecessary, however, as far as solving an
EFIDE with near cubical is concerned.

For elongated shapes smaller are required for the same
PCD; for instance, gives PCD of about 6% around

(Fig. 3 for ), while for thin ,
, it may not be possible to lower PCD below

5% even with . That is another case, where terms
of order higher than may be necessary for lower PCD
and larger .
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