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Ray-Optical Prediction of Radio-Wave Propagation
Characteristics in Tunnel Environments—
Part 1: Theory

Y. Hwang, Y. P. Zhang, and Robert G. Kouyoumijian

Abstract—A tunnel is modeled as congregates of walls, with the integrals in the solution since they were improper, with
the wall being approximated by uniform impedance surface. The meromorphic functions as their integrands.
aim is to get a solution for a canonical problem of a wedge Felson [6] solved the scalar diffraction problem for an

with uniform impedance surface. The diffraction by a right- bit | d hen th f . q
angle wedge with different impedance boundary conditions at arP!trary-angie weage when the surtace impedance was pro-

its two surfaces is first considered. A functional transformation Portional to the radial variable. Such special boundary

is used to simplify the boundary conditions. The eigenfunction condition had made the problem separable, with the Green’s
solutions for the transformed functions are replaced by integral function obtainable by standard methods.

representations, which are then evaluated asymptotically by the Mohsen and Hamid [7] adopted a different approximation

modified Pauli-Clemmow method of steepest descent. The asymp-. thei h to the diffracti f elect i
totic solution is interpreted ray optically to obtain the diffraction iN"Inelr approach 1o e Giiifaction of eleciromagnetic Waves

coefficient for the uniform geometrical theory of diffracton DY & perfectly conducting arbitrary-angle wedge covered by a
(UTD). The obtained diffraction coefficients are related directly to  thin dielectric slab on one surface. They treated the diffraction

_KeIIer Qiﬁraction coefficients in uniform version. _The tot_al fi_eld of an E-polarized plane wave normally incident on the edge. It
is continuous across the shadow of the geometrical optics fields. was assumed that the dielectric slab was thin with the relative
Index Terms—Geometrical theory of diffraction, radio propa-  permittivity not much larger than unity and that the slab was in
gation. the illuminated region. By imposing an approximate boundary

conditionE?® ~ I'E’ at the dielectric-covered surface, whére
|. INTRODUCTION represented the plane wave reflection coefficient for a dielectric

slab on an infinite ground plane the solution was obtained in

T UNNELS are common in metropolitan cities, mountain, jnteqgral form, which was then evaluated asymptotically in
areas, or under the sea. This paper is to study tﬁ,frms of Fresnel integrals.

propagation characteristics of tunnels by the uniform geomet-g ;- cideet al. [8] used a heuristic approach to modify the

rical theory of diffraction (UTD). The walls of tunnels areyraction coefficients of a perfectly conducting wedge to a
approximated by uniform impedance surface. Although thgite conductivity wedge by incorporating the reflection coef-
diffraction of electromagnetic waves by a perfectly-conductingient of the impedance surface in the diffraction coefficients.
wedge has been studied extensively [1], few practical resulls 5 resylt, the fields were continuous across the reflection

exist for the case where the surface of the wedge is subjectigy shadow boundaries. Such field, however, does not satisfy
the impedance boundary condition. the boundary condition.

Malyughinets [2], [3] considered the scalar diffraction by Rojas [9] presented a uniform asymptotic solution for the

an arbitrary-angle wedge, with different impedance boundagys tromagnetic diffraction by a wedge with impedance sur-

conditions on its two surfaces and the solution being restricted .« and included angles equal to 0, 90, 180,°27he

to plane wave illumination. The solution was obtained by Acident field was a plane wave of arbitrary polarization,
method analogous to the one used by Peters [4] and Senffiquely incident to the axis of the wedge. The formal
[5]. With this method, the differential equation and boundary;,| tion" was obtained by the generalized reflection method.
cond|t|9ns were expressed as a dlﬁergnce equation for tage integral was then evaluated asymptotically to yield the
determination of a regular function of which the real part repr%’eometrical optics fields, surface wave field, and the diffracted

sented the velocity potential. The exact solution, thus obtainq@d_ The numerical solution was obtained by computing the
can be applied to the problem for the plane wave i"”minatioﬂﬂaliuzhinets functions

Difficulty, however, was experienced in the computation of Pelosi et al. [10] used an incremental length diffraction

coefficient formulation for the canonical problem of a locally
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was decomposed into physical optics, surface wave, and fringe \'%
components due to the combined incident and surface wave
fields.

In our approach, the difficulty of a mixed boundary condi-
tion at a right-angle wedge is overcome by a simple functional
transformation [11]. The transformation is made in such a P" Line source
way that the impedance boundary condition is replaced by the
simpler Neumann or Dirichlet conditions. Thus, the Green’s ]
functions resulting from the transformation can be found in
the usual way. The final solution is obtained by an inverse
transformation. This method was first proposed by Lewy
[12] and Stoker [13], who studied problems in water wave
theory. The same idea has been applied by Karp and Karal
[14], [15], Chu [16], Karalet al. [17], and Chuet al. [18] @)
for solving electromagnetic diffraction problems for a right-
angle wedge, where one of the wedge surfaces sustained Y
a surface wave, while the other was perfectly conducting. A
They considered a wedge illuminated by a normally incident s
plane wave, a magnetic line source on the vertex or by an .(p,q),z)
incident surface wave. In all cases, two important constants 5 .
in their solutions were found by using continuity conditions ,’B"
for the total field and its derivative across one of the positive Source point F
axis. They completed their solution by determining the far- S(p.9.2) -,
zone field. In the case of a normally incident plane wave, :
their diffracted field became singular at the reflection and
shadow boundaries, because they did not obtain a uniform
asymptotic approximation. Karp [19] also obtained a two-
dimensional (2-D) Green'’s function for a right-angle wedge
with an impedance boundary condition, which did not support
surface waves. The calculation of the far-zone field depended Z
on one of the constants in his solution. The constant was given
by an expression which was difficult to compute. We have ®)
determined that this constant is one. Fig. 1. A two-impedance wall right-angle wedge. (a) A line source illumi-

. . . . nation. (b) A point source illumination.

In this paper, the transformation technique is used to solve

the diffraction of scalar waves. The scalar solution is related ] )
to the electromagnetic problem. Integral representations &@dition. The analysis can easily be extended to a wedge

obtained from the eigenfunction expansions of the Greeﬂ*@th tvv_o different impedancg surfaces_. Th_e relation of scalar
functions. They are evaluated asymptotically via the modiﬁéaﬁractlo.n to electromagnetlc_ diffraction is also presented.
Pauli-Clemmow method of steepest descent to obtain a faingularity of the transformation operator can be overcome
zone approximation valid at both the shadow and reflecti@fd is discussed in Section Ill. It is also shown that the
boundaries. The solutions are cast into the form of the gienctional transformation technique can be extended in an
ometrical optics fields and diffracted field. The geometric&\ppr()’('r'1"1‘t_e way to treat an arb|trgr_y-angle wedge, PfOY'Fied
optics field, which comes from pole contributions to th‘ghatone of |ts.surfaces sat|sf|esaD|r|c_hIet bo_undary condition.
integral, consists of the incident field and the reflected field®Me numerical results and comparison with other methods
Saddle point contributions from the integral yield the diffracte@® Shown in Section Ill. The surface wave is not analyzed in
field. The geometrical optics field is discontinuous across ttfee paper for it can _be_ derl_ved from the canonical prob!em
shadow and reflection boundaries: however, the total fief&f, a locally tangent infinite impedance surface. The excited
which is the sum of the geometrical optics field and thedrface wave has an important effect only when the field is
diffracted field, is continuous. close to the surface. The diffracted field due to a surface wave
The diffraction of scalar waves is treated in Section If/aS been given by Chu [16]-{18].
The cylindrical wave illumination is considered first. The
plane wave illumination can be treated as a special casH: DIFFRACTION BY A RIGHT-ANGLE IMPEDANCE WEDGE
of the cylindrical wave illumination. The spherical wave Consider az directed, uniform line source of unit strength
illumination can also be reduced to a two-dimensional (2adiating in the presence of a right-angle impedance wedge
D) problem via a Fourier integral transformation. For thé» = 1.5) with its edge also oriented in the direction, as
sake of clarity, we consider first the wedge with one side shown in Fig. 1. One side of the wedge surface has a uniform
the surface having a uniform impedance boundary condititmpedance boundary condition; the other has a Dirichlet or
and the other having either Dirichlet or Neumann boundalyeumann boundary condition. The total fiéidp, 7', &1, &2),

P Observation point

Observation point
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which consists of the incident field and the scattered fieldpnditions (1), (3), the Sommerfeld radiation condition, the

satisfies the scalar wave equation

Meixner edge condition, and the boundary condition

(V2@ 7, &, &) = =8z — )y —v). (1) aa_W 0. $=0 (11)
The surface impedance boundary condition is it can be shown that
3] . oo
<ay +£1) ! (/) ( ) W, = — E Z J(2m+1)/2n(kp<)H((27)n+1)/2n(kp>)
U =0; ¢ =nmw (3a) "2’=0 . ) .
m + m+
?9_’] =0;  $=nm (3b) - [COS 5, (@ = ¢) +Cos —— (¢ + </>’)} ;
X
e . - . for (3 12
In addition, it has to satisfy the Sommerfeld radiation condition or (3a) (12)
and the Meixner edge condition. o > ()
V? is the 2-D Laplacian operatofi(z — x') is the Dirac Wy = — 2 Z 5mJ2m/2n(/fp<)H2m/2n(kp>)
Delta function, andk is the wave number of the linear, "2’:0 5
homogeneous, isotropic medium surrounding the wedge. A . [Cos—m (6 —¢) +Cos—m (¢+¢/)}
time dependencexp(jwt) is assumed and suppressed. 2n 2n
By making the functional transformation for (3b) (13)

here0 < ¢, ¢; < nm; 0 < p p < o0, ande,, = 1 for m =0,
em = 2 for m # 0. J,, (kp) and Hﬁi?(kp) represent the
Bessel function of the first kind and Hankel function of the
second kind, respectively, and. = p for p < p/, p< = o’
for p > ¢, ps = p/ for p > o', ps = p/ for p < p'. The
function H = ((8G/dy’) + (8W/dy)) is a solution of the
homogeneous wave equation. The complete solutionifor
can then be expressed as

T @

dy

and using the properties that the operat¢vs + k%) and
((9/0y)+&1) commute andd /0y)é(y—y') = —(9/9y")6(y—
y'), V satisfies

(V2 112V = (% _ 51)6@ _Nsw—y)  6)

a oG oW
. . V=_[_—_ GirCol =— 4+ ). 14
together with the boundary conditions <8y’ 51) + <8y’ + 3y ) (14)
V=0 ¢=0 (62) Since G and W /dy are zero on¢ = 0, this implies
(C — 1)8G/3y' = 0. While 8G /8y’ is not zero,C must
{V =0; equal to one. Equation (14) becomes
v ¢ =nn (6b) P

T 0 W ad
Ox 0; V= B +& i (15)

Y Y

and the Sommerfeld radiation condition. By introducing thgr v~ anqWw can be expressed in the asymptotic forms as
Green’s function which satisfies T

o, exp(=gkp)

(VZ4E)G= —8a—a)oy-y)  0<¢<nx () Un=05 ua’v) 16)
G =0 =0 8 —
’ © v CREIN) g (17)
and conditions (3), the Sommerfeld radiation condition and the \/ﬁ.
Meixner edge condition show that Q ~ exp(—jkp) ol ', o) (18)
. oo VP o
J .
Go= =4 2o Emamanlbp )y (ko) W ST ot ). (19)
m=0 \/ﬁ
: {COS el (¢ — ') — Cos 2m (p+ ¢’)} ; Here,G, W, andV are known functions andf is to be found.
2Zn 2Zn Since the far-zone field is of interest, only those terms which
for (32) ) are ofO(1/,/p) are retained and the operai@dfdy can then
i @ be approximated by-jk Sin ¢; thus,
G, = — =— Jiom D(kp<)H 5 kp .
b o 7;) (2m41)/2 ( <) (2m+1)/2 ( >) (—ijIIl(/)-i-Sl)U% 1% (20)
2 1 2 1 ;
) [Cos m+ (¢ — &) — Cos m+ (6 + (7)/)} which leads to
2n 2n &G — jk Sin oW
for (3b) (10) Ur (21)

& — jkSing
—((8/8y) — &1)G is then the particular solution of. By In the Appendix, it is shown tha# and W are transformed
constructing another Green’s functid#i, which satisfies the into the integral representations and computed asymptotically
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for the large parametekpp’/(p + p’). From the asymptotic Dy, =[a (7)) F(Ka™(37)) + o (87 )F(Ka™ (87))]
solution, we can identify the contribution from the physical + [aT(BHF(KaT ()

poles, which yield the geometrical optics components. The +a (BHF(Ka™ (87))] (29)
saddle-point contribution yields the diffracted field, which is

related to the incident field upon the edge and is written aswhere

: —jkp) T+
Ut~ U D, , PIR) (22) = Co t< 5 (30)
5 \/ﬁ n
in which Note thatD, and D,, are the Keller diffraction coefficients
in uniform version for the horizontal and vertical polarization
Ui 7 27 (= ko) 23) for a perfectly conducting wedge. In the preceding equations
R =T o exp(—gkp
4 7r/€p/ + ’
B=p"=¢x¢ (31)
and D, , are the diffraction coefficients given as K= kpp (32)
ik Si pt+p
& Dg — jkSingD . .
De=" —irang o+ orGa (24 F(Ka*(8)) = 2j\/Ka*(B) Exp(jKa*(3))
_&Dg2 — jkSingDy : / Exp(—t%) dt (33)
Dy = 6 ksng for (3b) (24b) KB
where where the positive branch of the square root is taken and
. Exp(—j %) a*(B) = 1+ Cos(— B + 2nN*n). (34)
1= - ——
! 2nV2km The value of N* is determined by the integer which most
25in ™ [ Cos 2= + Cos B closely satisfies
2n 2n 2n Nt g 35
2 — ==
) T p= o
ay (B)F(Ka™ (87))] For the case of a right-angle wedge with two impedance
[ (/3+) F(Kat(81)) surfaces, we make another functional transformation
3+ +
GG} @) o=(2-c)v -
Exp( ) - n the diffract
Dgo = — _ N "4/ By repeating the same procedure, we obtain the diffraction
2nv/ 2k coefficients, as shown in (37) at the bottom of the page, where
B Bt ©® = n7w — #. The plane wave illumination can be treated
2 Sin —— | Cos 2— — Cos . o . -
2n 2n 2n as a special case of the cylindrical wave illumination. By
[ HB)F(Kat(87)) letting p” — oo in the line source case and factoring out
o () E(Ka™(57))] —(j/4)\/2j/7kp' Exp(—jkp’), the result for the plane wave
. o case can be obtained. The diffracted field is given by
[ (/3 JE(Ka™(57))
Exp(—jkp
o (OFUEa (| @ v = @)
where for a plane wave of unit amplitude and with its phase reference
P located at the edge, whet@ is given in (24) with the large
C 2<7> parameterk’ = kpp'/(p + p') — kp, sincep’ — .
aéﬁ Y (27) The spherical wave illumination is related to the cylindrical
sm<7r £ ) case by applying the Fourier transform with respect to the
N 2n N variable. For a source of unit strength, the total field due
— - - (3~ (3~ b
D, =[a™(B7)F(Ka™(87)) + o (B)F(Ka™ (57))] to spherical waves incident on the wedge satisfies
— [t (B F(Kat (7))
V24 kDU, 5 = —6(x — 2)o(y —y)6(z — 2/). (39
Oé_(ﬁ-i—)F(Ka_(ﬁ-i—))] (28) ( t + t) b(sv 5 (aj .’17) (y y) (7 7) ( )

JkSin@(jkD;, Sin ¢ — &1 Dgo) — §2(jkDg1 Sin ¢ — €1.D,)

b= (jSind— &)(jFSind — &)

(37)
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The Fourier transform of the above equation yields

(V2+/€t2)ﬁa(p, ¢7 h; p/7 (/)/7 75/) = _6($—$/)6(y—y/)efjhzl
b

(40)

. _ 1.5
where VZ = V7 + (8?/d=?) is used because of the special
geometry of the wedgé;? = k% — k2 and (U, U) are Fourier 8
transform pair. Ther variation of the functiori/ is removed. E |
Rewriting the above equation as ‘2%0
(V2+kt2)[ja(p7 ¢7 h’7 p/7 ¢/7 Z/)G_jh;/ = _6($_$/)6(y_y/)

b
. (41) 0.5 1
allows one to identify Us(p, ¢, h; o', ¢/, 2)e™ 7"  as

b

Ua (ﬁv

7)), which is a 2-D scalar Green’s function of (1).
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50 100 150 200 250

i i i 0 300
The diffracted field can be given by Observation Angle ( degrecs)
D\ Exp(—jkS’) s’ : Fig. 2. Pattern of the total field TE
Ud = E . /%S 1g. 2. attern o e total e case.
<sm /30> S’ (5 + 9 D(=IkS)
(42) 12 S
for a spherical wave of unit amplitude, whef2 is given in
(24) with the large parametek = kSS’/(S + S’) Sin? fo. " :
The 1/Sin 8y factor in (42) is to be expected because of the !
conical spreading of the diffracted rays. This conical spreading 8 Ei
is a consequence of the generalized Fermat's principle. g ]
The solutions of the above scalar cylindrical wave problems ‘E 6t
can be directly related to some electromagnetic cylindrical é" u
wave problems [20], [21]. The diffracted fields can be ex- at ]
pressed as .
4 H
{Eﬁ} N [Da } {E (Qp)} exp(—jkp) 43) 2 : n 1
B 0 (QE) VP L : :
50 100 150 200 250 300
|:Hji_:| — |:Db 0 :| |: (QE):| exp Jkp (44) Observation Angle ( degrees )
H 0 ) \/_ Fig. 3. Pattern of the total field TM case.
whereE, = E?e 2, E¢ = FE e ¢, Ei (Q ) =E{(Qg)e
i i =4 7 - / = 30° illuminating a right-angle wedge with two equal
and Bl (Qr) = B'(Qp)e(—¢); Hf = H'eg, HY =H'ez, & = |
4 —i - 4 face impedances witlf; = = —0.25jk. Our computed
Hiy(Qr) = H'(Qr) o (~4), and H, (Qr) = T (Qr) o 2 P o J P

I1l. DIscussIONS ANDNUMERICAL RESULTS

radiation pattern is given by solid curve while the singularity
is presented by dashed line. The prediction is again compared
with that of Tiberioet al. [22].

Fig. 2 compares the computed radiation patterns betweerThe formulation can be extended in an approximate way to

our formulation (shown by solid curve) and that of Tibeeb
al. [22], shown by discrete points, for a line sourcéat = 10,

an arbitrary-angle wedge where one of its surfaces satisfies
the Direchlet boundary condition. When the approximation

¢’ = 30° illuminating a right-angle wedge with two equal face)/dy ~ Sin ¢(d/Jp) is made,V = 0 at ¢ = nx and leads

impedances for TE case. The surface impedanéedis—4;k.

The diffraction coefficient becomes singular
—jkSin(6, ¢) + & =
transformation(9/9(zx,
divided by zero to obtairi/. When ((3/dy) + &)U

y)) + & The V in (35) cannot be
=0,

in (14) should be zero. This singularity can then be removed

by factoring out the same facterjk Sin ¢ + ¢ in (14), which
leads tol/ = G. The diffraction coefficient becomes

(JkDy, Sing — &1.D o)
(jkSing — &)
(JkDy, Sin® — €2D 1)
(jkSin b — &)

for jkSinf — & =0
D=

for jkSing — & =0
(45)

to /' = 0 at ¢ = nw, an approximation solution fof/ can

wheibe obtained by following the same procedure as that used in
0 due to the approximation of thea right-angle wedge.

IV. CONCLUSIONS

The diffraction by a right-angle wedge with different surface
boundary conditions has been derived. A functional transfor-
mation was used to simplify the boundary conditions. The
eigenfunction solutions for the transformed functions were
replaced by integral representations, which were evaluated
asymptotically by the modified Pauli-Clemmow method of
steepest descent. The solution was interpreted in terms of the
geometrical optics fields and the diffracted field. The diffracted

and is finite. Fig. 3 presents the correction of singularity théield is equal to the incident field on the edge multiplied by

takes place for a TM case for a line sourcekat = 10,

the associated uniform impedance diffraction coefficients. The
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diffraction coefficients are related directly to Keller diffractiorwhere
coefficients in uniform version for a perfectly conducting

wedge. In the case where the impedance surface suppo

a surface wave, the surface wave can be derived from

canonical problem of a locally tangent, infinite impedance
surface. The diffracted field due to the surface wave is then
added to give a total radiation field. We have shown that

i B) =

[

J(an—l—l)/?n kp )H((227)n+1)/2n(kp)

) T Ex < /3)}.

v

m+1

e

the functional transformation technique can be extended in (A-8)
an approximate way to an arbitrary-angle wedge where one
of its surfaces satisfies the Direchlet boundary condition. Fur- Substituting (A.3)~(A.5) into (A.8), we obain
thermore, when the transformation operator becomes singular, 1 c—joo
constaniC should be zero. The diffraction coefficients will be 9(7, 75 ) = m/
used in analyzing the propagation characteristics in tunnels in 1 0 )
Part 2. . Epr(t —E(p*+p Q)t_l)}
k2 /
. {/ Exp[ pe COS<:|
L
APPENDIX o0
2m+1
In (21) the far zone form of/ was shown to be ¢ Z EXp[j 2 €+ /3)} dc
m=0
&G — jkSingW k2po
U= & hSng (A1) +/, Exp[ Cos C}
where G,, Gy, W,, and W, are known special Green's s dt
functions given in (9), (10), (12), and (13). An integral * Z EXP[_J (€ "H})} dC} s
representation for the produdLm(kp’)H( )(kp) is given by m=0 (A.9)
[21] '
By noting that
T, (kY H) (kp) o
c—joo , . 2m 41
== EXPF(t — (P +p )t ) 2 EXp[ (C+8)
) 2 m=
Epp'\ dt < )
.Ivm< : ) " (A.2) C‘f‘ 8 (A.10)
2J Sin C —l— /3 2n '
wherec > 0, v, > —1and|¢’| < |p|. L, (k*pp’/t) represents
the modified cylindrical Bessel function of the first kind. The o0
integral representation fak, (k%pp’/t) is given by [20] Z EXp{ )}
m=0
2 Y+joo 2 3
Ium<k pe ) =—i/ EXp|:k P CosC—i—jvmg} d¢ Cos <C+/>
t 27 oo 1 ¢+ B
y—j = + Sinl (A.11)
(A.3) 2j Sin C+p 2n
2n,
here — ;< 0 and 27. Th
where—7 < v;< 0 andw < v < 27. Thus and from [20] that
k2 pp 1 k2 pp ) 1 /0 + 727 dt
IUm( ; ) = —g LEX}’)|: Cos ¢ +]Um<:| g —5/ ' EXp|:§ - §:| 7 KO(JZ) (A12)
c—j oo
(A.4)
or (A.9) can be simplified to
2 ./ 1 2 ./
fum<’“ oP ) - = Exp{’“ P 00s<—jvm<} dC. Co 2
t 27 Jr, S g 1 2n S; ¢+
as) 907 =om e 7M™ o
Sin| 7
Let us rewrite (10) and (12) as ,
(10) and (12) KoljZ(Q)] ¢ (A.13)
Gy =9, 75 87)~ 9@ 7 BT) (A-6) where Ky(jZ) is the modified cylindrical Bessel function
W.=gp 0;8)+a9m 7; B (A.7) of the second kind of order zero with argumef#, and



1334 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 9, SEPTEMBER 1998

Z(¢) = ky/p? + p'2 — 2pp’ Cos (. For large Z, Ko[iZ()] \
can be replaced by its large argument approximation o
T v
Kol3Z ~,|——=Exp(—jZ . A.14 a
0[1 (C)] 2JZ(C) Xp( 7 (C)) ( ) ® -fb 17 , ‘éb

The saddle points of interest occur @& = 4. In the

neighborhood of these saddle points P > U
Exp[—jkZ({)] & ®
= EXp[—jk‘\/(p +¢)? = 2pp'(1 + Cos C)} E N
, E‘ branch cut
zExp[—jk(p—i—pl) <1 — L/Q (1+COS<)>:|. 2
(p+ p) Complex &=U + jV Plane
(A.15)
Fig. 4. Steepest descent paths and the com@ipbane topology.
Thus
9(p, 7'; B) = Exp[—jk(p+ p')] enclosed byl, — L’ andSDP(jmr)}
./ 2 + Branch cut contributions, if any (A.21)
L-r \| jkm\/p* + p'? — 2pp’ Cos ¢ The bole sinaularit t
e pole singularities occur a
o Fy(C, B) BxplK F(O)]d¢ (A.16) pote Sing
where (p = —f+2nN, N=0, 41,42 ---. (A22)
COSz(C + /3> The residues corresponding dp are evaluated only for those
1 2n . f(C+ P |¢s] < . Let the contribution of the poles tg be denoted
F 3 =—|—F—— + Sin| — A.17 o
A =5 <<+/3> M < 2n ) AID by g7
Sinl
2n 5
F(O =71+ Cos( (A.18) , P53
() = ) L R by e e TTAT?

and K is the large parameter

_ kpp! (A19) . EXP[—J'k\/ p?p'? = 2pp' Cos ¢,
p+p ' e CosNwe H(w — | — B+ 2nNx|) (A.23)

The integral in (A.16) is in the proper form to be evaluated
by the method of steepest descent for a large parameter. Wnee

saddle points off(¢) occur at 0, t<0
0 A.20 HE) =13 t=
dCf(C) - (A.20) D

but only {; = 7 is considered because the steepest descenThe contribution of the saddle points gowhich is denoted
paths through{; = £+ allow us to close théL — L) contour. by ¢¢, is derived via the modified steepest descent method [21]
Note that whenk is large, the approximation of (A.14) iswhere the pole singularity close to the saddle point is taken
justified in the neighborhood of these saddle points. Fig.idto consideration. It can be shown that

shows the locations of the steepest descent paths through the
. _ L : 29 )
saddle points af, = &=. Therefore, 4B, 7 B) ~ l 2 ,TJEXP(—jkp)]
5 Qo
Exp[—jk(p+ ¢’ o/ Exp(—jk
p[—ik(p + 0] L \/jkw\/p2+p’2—2pp’COSC -dg(/i)% (A.24)
o F1(¢, 3) Exp[K f(Q)] d¢
= —Exp[—jk(p + 0] where
T : mo(15)
sppx)  Jpr(=x) \| jkry/p? + p = 2pp Cos ¢ W) = = = ot
e F1(C, B) Exp[K f({)] dC] _
n

+ [27rj Z The residues of the integrand
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Cos <7r + 5 ) with
+( T
ARG 2(5) = — Exp(_] Z)
2n N 2nV2kw
5)
2<7f2 5) . { [cm(WQJ;[ )F(Ka+(/3))
n
— F(Ka™(8)) (A.25) B
Sln< ) + C0t< )F(Ka_ (/3))} } (A.36)
2n 2n

Now, let us consider the pole singularity contribution for the
caseN =0 andjs~ = ¢ — ¢'. The equatiorjp — ¢'| < =, i.e.,
¢ < 7w+ ¢, describes an illuminated region for a cylindrical
wave illumination on the wedge. The spatial factor

with

CLZE — 94 a:t xp(j a:t -
F(Ka*(8)) =2j/Ka*(3) Bxp(i K (ﬁ”/\/m
-Exp(—t?)dt

EXP[—jk\/P2 +p'2 —2pp’ Cos(¢p — d)’)}
VP2 + 0% = 2pp Cos(p — @)
toay _ +
a=(f) = 1+ Cos(—f3 + 2nN=m). indicates that this pole singularity contribution yields the

The value of N is determined by the integer, which mos{nmdent field. Substituting (A.26), (A.28), (A.30), and (A.32)
closely satisfies nto (A.1) yields

where the positive branch of the square root is taken, and

+ _ : 7 27
Tk[p— 7|
Substituting (A.23) and (A.24) into (A.6) and (A.7), we
obtain REFERENCES

P(= S — P(5 A - 37 _ AP(5 A - AT [1] R. G. Kouyouijian and P. H. Pathak, “A uniform geometric theory of
Gi’l(p’ 7) —gd(p, P5p7) gd(p, P /3+) (A.26) diffraction for an edge in a perfectly conducting surfaderbc. IEEE,
G, P)=g%p,7; 8 )—g%p, 7: B8 A.27 vol. 62, pp. 1448-1461, Nov. 1974.

"(f fl) g (f p,’ [_) g (f p,’ [+) ( ) [2] G. D. MalyughinetsDokl. Akad. Naukyol. 121, no. 3, p. 436, 1958.
We(p, o) =g, 7;87)+4¢"(p, 0 BT) (A.28) [3] , Annal. Phys.yol. 6, nos. 1/2, pp. 107-112, 1960.

di— =1\ _ di— —1. d/— ot [4] A. S. Peters, “Water waves over sloping beaches and the solution of
Wo@,7)=9"p,7; 7))+, 7; B7) (A.29) a mixed boundary value problem f¢&? — k2)¢ = 0 in a sector,”

Commun. Pure Appl. Mathyol. 5, pp. 87-108, 1952.

T. B. A. Senior, “Diffraction by an imperfectly conducting wedge,”
Commun. Pure Appl. Mathvol. 12, pp. 337-372, 1959.

L. B. Felson, “Field solution for a class of corrugated wedge and cone
surface,” Polytechnic Inst. Brooklyn, NY, Microwave Res. Inst., Memo
32, July 1957.

A. Mohsen and M. A. K. Hamid, “Diffraction by a dielectric-loaded
wedge,”Radio Sci. vol. 8, no. 1, pp. 71-80, Jan. 1973.

W. D. Burnside and K. W. Bergener, “High-frequency scattering by thin
lossless dielectric slab[EEE Trans. Antennas Propagatol. 31, no.

where the superscript denotes the contribution from the pole [5]
singularities and the superscrigt denotes the contribution (6]
from the saddle points.

Equations (9) and (14) have been evaluated asympt0t|call¥
by Pathak and Kouyoumijian [21] in whic&, and W, are
given as 18]

GE(p, 7
G, ') =1'(p,
W¥(p, 0) =I*(p,

and
Wi(p, ')

where

=1(p,

P 87) -
7 87) -
P B7) +17(p,

75 87)+ 140,

p, 05 BT
5,75 BF)
7681

7Bt

2

P 9 B3) =
(.75 B) \/j/wr\/pQ—i-p’Q—QpP/COSCp

. Exp[—jk\/pr’2 — 2pp’ Cos Cp}

e H(m —|— S+ 2nNn|)

I(p, 7'; B) ~ [ bq/ k,EXP(—lkp)]

d(p)

Exp(—jkp)

NZ

(A.30)
(A.31)
(A.32)

(A.33)

(A.34)

(A.35)

El

[20]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

1, pp. 104-110, Jan. 1983.

R. G. Rojas, “Electromagnetic diffraction of an obliquely incident plane
wave field by a wedge with impedance facel§EE Trans. Antennas
Propagat.,vol. 36, pp. 956-970, July 1988.

G. Pelosi, S. Maci, R. Tiberio, and A. Michaeli, “Incremental length
diffraction coefficients for an impedance wedgEsEE Trans. Antennas
Propagat.,vol. 40, pp. 1201-1210, Oct. 1992.

Y. Hwang, “The diffraction at the edge of a uniform impedance sur-
face,” Ph.D. dissertation, Dept. Elect. Eng., The Ohio State University,
Columbus, OH, 1973.

H. Lewy, “Waves on sloping beache®Bull. Amer. Math. Socyol. 52,

pp. 737-773, 1946.

J. J. Stoker, “Surface waves in water of variable dep@uiart. Appl.
Math., vol. 5, pp. 1-54, 1947.
S. N. Karp and F. C. Karal,
face of a right-angle wedge,” New York Univ.,
Electromagn. Res., Rep. EM-124, 1959.

, “Generalized impedance boundary conditions with applications
to surface wave structures,” lroc. Symp. Electromagn. Wave Theory,
Delft, The Netherlands, Sept. 1965.

T. S. Chu, “Surface wave diffraction and its relationship to surface wave
antennas,” Ph.D. dissertation, Dept. Elect. Eng., The Ohio State Univ.,
Columbus, OH, 1960.

F. C. Karal, S. N. Karp, T. S. Chu, and R. G. Kouyoumijian, “Scattering
of a surface wave by a discontinuity in the surface reactance on a right-
angle wedge,"Commun. Pure Appl. Mathyol. 14, pp. 35-48, Feb.
1961.

“Vertex excited surface waves on one
Inst. Math. Sci., Div.




1336

(28]

[19]

[20]
[21]

[22]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 9, SEPTEMBER 1998

T. S. Chu, R. G. Kouyoumijian, F. C. Karal, and S. N. Karp, “TheY. P. Zhang received the B.Eng. and M.Eng. degrees from the Taiyuan
diffraction of surface waves by a terminated structure in the forrdniversity of Science and Technology, Taiyuan, Shanxi, R.O.C., and the Ph.D.
of right-angled bend,1EEE. Trans. Antennas Propagatpl. 10, pp. degree from the Chinese University of Hong Kong.

679-686, Nov. 1962. He was with the Shanxi Electronic Industry Bureau from 1982 to 1984,
S. N. Karp, “Two-dimensional Green’s function for a right-angled wedgthe Shanxi Institute of Mining and Technology from 1984 to 1989 (both

under an impedance boundary conditio@8mmun. Pure Appl. Math., in Shanxi, R.O.C.), the University of Liverpool, U.K., from 1990 to 1992,

vol. 13, pp. 203-216, 1960. ] ] ~and the City University of Hong Kong from 1996 to 1997. He taught
H. M. MacDonald Electric Waves. Cambridge, MA: Cambridge Univ. in the Institute of Confined Space Communications, Taiyuan University of
Press, 1902, pp. 186-198. Science and Technology, Taiyuan, Shanxi, R.O.C., and in the Department of

P. H. Pathak and R. G. Kouyoumjian, “The dyadic diffraction coefficieng|ectrical and Electronic Engineering at the University of Hong Kong. He is
for a perfectly conducting wedge,” Electrosci. Lab., Dept. Elect. Engnow a Lecturer with the School of Electrical and Electronic Engineering at
The Ohio State Univ., Rep. 2183-2184, June, 1970. ~ Nanyang Technological University, Singapore. His research interests are in
R. Tiberio, G. Pelosi, and G. Manara, “A uniform GTD formulationyhe areas of propagation of radio waves, characterization of radio channels,

for the diffraction by a wedge with impedance wedgtEEE Trans. gmall and smart antennas, and subsurface intrinsically safety digital-radio
Antennas Propagatyol. AP-33, pp. 867-872, Aug. 1985. communication systems.

Y. Hwang received the B.S. degree from the Department of Electric@{obert G. Kouyoumijian, for a photograph and biography, see p. 22 of the
Engineering of National Taiwan University, Taipei, Taiwan, in 1963, the M.Sjanyary 1996 issue of thisRANSACTIONS

degree from the Institute of Electronics of National Chiao-Tung University,

Hsin Chu, Taiwan, in 1965, the Ph.D. degree from the Department of Electrical

Engineering of the Ohio State University, Columbus, in 1973, and the M.B.A.

degree from Golden Gate University, San Francisco, CA, in 1982.

In

1974, he worked in the ElectroScience Laboratory of the Ohio State

University, Columbus. In 1975 he was with the Department of Antenna
Engineering of Ford Aerospace where he was a Section Supervisor in the
Advanced Antenna Technology Section. He left Aerospace in 1992. From
1993 to 1995 he was with the Department of Electronic Engineering of
the Chinese University of Hong Kong and from 1995 to 1998 he was
with the Department of Electronic Engineering of City University of Hong
Kong. He left Hong Kong in 1998 and went back to the United States
to start up a company, Pinnacle EMWave, of which he is the President.
He has been working on the geometrical theory of diffraction, satellite
antennas, and ground antennas and has developed a multibeam antenna system,
frequency selective surface for multifrequency bands reflector antenna system,
and high-power operation, a wide-band dual-circularly polarized microstrip
phased-array antenna aiiband monolithic microwave integrated circuits
(MMIC) phased-array antenna. Recently, he is developing a very compact
antenna employing very high permmittivity materials for size reduction with

high

gain and wide bandwidth, transmit phased array without beamforming

network, and studying electromagnetic wave propagation characteristics in a
confined space.

Dr. Hwang received the 1989 Space Systems Division Outstanding Re-
search Award and the 1990 Exceptional Inventiveness Award from Ford
Aerospace Space Division.



