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Ray-Optical Prediction of Radio-Wave Propagation
Characteristics in Tunnel Environments—

Part 1: Theory
Y. Hwang, Y. P. Zhang, and Robert G. Kouyoumjian

Abstract—A tunnel is modeled as congregates of walls, with
the wall being approximated by uniform impedance surface. The
aim is to get a solution for a canonical problem of a wedge
with uniform impedance surface. The diffraction by a right-
angle wedge with different impedance boundary conditions at
its two surfaces is first considered. A functional transformation
is used to simplify the boundary conditions. The eigenfunction
solutions for the transformed functions are replaced by integral
representations, which are then evaluated asymptotically by the
modified Pauli–Clemmow method of steepest descent. The asymp-
totic solution is interpreted ray optically to obtain the diffraction
coefficient for the uniform geometrical theory of diffraction
(UTD). The obtained diffraction coefficients are related directly to
Keller diffraction coefficients in uniform version. The total field
is continuous across the shadow of the geometrical optics fields.

Index Terms—Geometrical theory of diffraction, radio propa-
gation.

I. INTRODUCTION

T UNNELS are common in metropolitan cities, mountain
areas, or under the sea. This paper is to study the

propagation characteristics of tunnels by the uniform geomet-
rical theory of diffraction (UTD). The walls of tunnels are
approximated by uniform impedance surface. Although the
diffraction of electromagnetic waves by a perfectly-conducting
wedge has been studied extensively [1], few practical results
exist for the case where the surface of the wedge is subject to
the impedance boundary condition.

Malyughinets [2], [3] considered the scalar diffraction by
an arbitrary-angle wedge, with different impedance boundary
conditions on its two surfaces and the solution being restricted
to plane wave illumination. The solution was obtained by a
method analogous to the one used by Peters [4] and Senior
[5]. With this method, the differential equation and boundary
conditions were expressed as a difference equation for the
determination of a regular function of which the real part repre-
sented the velocity potential. The exact solution, thus obtained,
can be applied to the problem for the plane wave illumination.
Difficulty, however, was experienced in the computation of
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the integrals in the solution since they were improper, with
meromorphic functions as their integrands.

Felson [6] solved the scalar diffraction problem for an
arbitrary-angle wedge when the surface impedance was pro-
portional to the radial variable . Such special boundary
condition had made the problem separable, with the Green’s
function obtainable by standard methods.

Mohsen and Hamid [7] adopted a different approximation
in their approach to the diffraction of electromagnetic waves
by a perfectly conducting arbitrary-angle wedge covered by a
thin dielectric slab on one surface. They treated the diffraction
of an -polarized plane wave normally incident on the edge. It
was assumed that the dielectric slab was thin with the relative
permittivity not much larger than unity and that the slab was in
the illuminated region. By imposing an approximate boundary
condition at the dielectric-covered surface, where
represented the plane wave reflection coefficient for a dielectric
slab on an infinite ground plane the solution was obtained in
an integral form, which was then evaluated asymptotically in
terms of Fresnel integrals.

Burnsideet al. [8] used a heuristic approach to modify the
diffraction coefficients of a perfectly conducting wedge to a
finite conductivity wedge by incorporating the reflection coef-
ficient of the impedance surface in the diffraction coefficients.
As a result, the fields were continuous across the reflection
and shadow boundaries. Such field, however, does not satisfy
the boundary condition.

Rojas [9] presented a uniform asymptotic solution for the
electromagnetic diffraction by a wedge with impedance sur-
faces and included angles equal to 0, 90, 180, 270. The
incident field was a plane wave of arbitrary polarization,
obliquely incident to the axis of the wedge. The formal
solution was obtained by the generalized reflection method.
The integral was then evaluated asymptotically to yield the
geometrical optics fields, surface wave field, and the diffracted
field. The numerical solution was obtained by computing the
Maliuzhinets functions.

Pelosi et al. [10] used an incremental length diffraction
coefficient formulation for the canonical problem of a locally
tangent wedge with surface impedance boundary condition on
its faces. The solution was used to determine the incremental
contribution to the field which arose at any point of the
edge. The results were deduced in a rigorous fashion from
a Sommerfed spectral integral representation of the exact
solution for the canonical wedge problem. The scattered field
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was decomposed into physical optics, surface wave, and fringe
components due to the combined incident and surface wave
fields.

In our approach, the difficulty of a mixed boundary condi-
tion at a right-angle wedge is overcome by a simple functional
transformation [11]. The transformation is made in such a
way that the impedance boundary condition is replaced by the
simpler Neumann or Dirichlet conditions. Thus, the Green’s
functions resulting from the transformation can be found in
the usual way. The final solution is obtained by an inverse
transformation. This method was first proposed by Lewy
[12] and Stoker [13], who studied problems in water wave
theory. The same idea has been applied by Karp and Karal
[14], [15], Chu [16], Karalet al. [17], and Chuet al. [18]
for solving electromagnetic diffraction problems for a right-
angle wedge, where one of the wedge surfaces sustained
a surface wave, while the other was perfectly conducting.
They considered a wedge illuminated by a normally incident
plane wave, a magnetic line source on the vertex or by an
incident surface wave. In all cases, two important constants
in their solutions were found by using continuity conditions
for the total field and its derivative across one of the positive
axis. They completed their solution by determining the far-
zone field. In the case of a normally incident plane wave,
their diffracted field became singular at the reflection and
shadow boundaries, because they did not obtain a uniform
asymptotic approximation. Karp [19] also obtained a two-
dimensional (2-D) Green’s function for a right-angle wedge
with an impedance boundary condition, which did not support
surface waves. The calculation of the far-zone field depended
on one of the constants in his solution. The constant was given
by an expression which was difficult to compute. We have
determined that this constant is one.

In this paper, the transformation technique is used to solve
the diffraction of scalar waves. The scalar solution is related
to the electromagnetic problem. Integral representations are
obtained from the eigenfunction expansions of the Green’s
functions. They are evaluated asymptotically via the modified
Pauli–Clemmow method of steepest descent to obtain a far-
zone approximation valid at both the shadow and reflection
boundaries. The solutions are cast into the form of the ge-
ometrical optics fields and diffracted field. The geometrical
optics field, which comes from pole contributions to the
integral, consists of the incident field and the reflected field.
Saddle point contributions from the integral yield the diffracted
field. The geometrical optics field is discontinuous across the
shadow and reflection boundaries; however, the total field,
which is the sum of the geometrical optics field and the
diffracted field, is continuous.

The diffraction of scalar waves is treated in Section II.
The cylindrical wave illumination is considered first. The
plane wave illumination can be treated as a special case
of the cylindrical wave illumination. The spherical wave
illumination can also be reduced to a two-dimensional (2-
D) problem via a Fourier integral transformation. For the
sake of clarity, we consider first the wedge with one side of
the surface having a uniform impedance boundary condition
and the other having either Dirichlet or Neumann boundary

(a)

(b)

Fig. 1. A two-impedance wall right-angle wedge. (a) A line source illumi-
nation. (b) A point source illumination.

condition. The analysis can easily be extended to a wedge
with two different impedance surfaces. The relation of scalar
diffraction to electromagnetic diffraction is also presented.
Singularity of the transformation operator can be overcome
and is discussed in Section III. It is also shown that the
functional transformation technique can be extended in an
approximate way to treat an arbitrary-angle wedge, provided
that one of its surfaces satisfies a Dirichlet boundary condition.
Some numerical results and comparison with other methods
are shown in Section III. The surface wave is not analyzed in
the paper for it can be derived from the canonical problem
of a locally tangent infinite impedance surface. The excited
surface wave has an important effect only when the field is
close to the surface. The diffracted field due to a surface wave
has been given by Chu [16]–[18].

II. DIFFRACTION BY A RIGHT-ANGLE IMPEDANCE WEDGE

Consider a directed, uniform line source of unit strength
radiating in the presence of a right-angle impedance wedge
( ) with its edge also oriented in the direction, as
shown in Fig. 1. One side of the wedge surface has a uniform
impedance boundary condition; the other has a Dirichlet or
Neumann boundary condition. The total field ,
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which consists of the incident field and the scattered field,
satisfies the scalar wave equation

(1)

The surface impedance boundary condition is

(2)

(3a)

(3b)

In addition, it has to satisfy the Sommerfeld radiation condition
and the Meixner edge condition.

is the 2-D Laplacian operator, is the Dirac
Delta function, and is the wave number of the linear,
homogeneous, isotropic medium surrounding the wedge. A
time dependence is assumed and suppressed.

By making the functional transformation

(4)

and using the properties that the operators and
commute and

, satisfies

(5)

together with the boundary conditions

(6a)

(6b)

and the Sommerfeld radiation condition. By introducing the
Green’s function which satisfies

(7)

(8)

and conditions (3), the Sommerfeld radiation condition and the
Meixner edge condition show that

for (3a) (9)

for (3b) (10)

is then the particular solution of . By
constructing another Green’s function, which satisfies the

conditions (1), (3), the Sommerfeld radiation condition, the
Meixner edge condition, and the boundary condition

(11)

it can be shown that

for (3a) (12)

for (3b) (13)

here , ; , and for ,
for . and represent the

Bessel function of the first kind and Hankel function of the
second kind, respectively, and for ,
for , for , for . The
function is a solution of the
homogeneous wave equation. The complete solution for
can then be expressed as

(14)

Since and are zero on , this implies
. While is not zero, must

equal to one. Equation (14) becomes

(15)

, , , and can be expressed in the asymptotic forms as

(16)

(17)

(18)

(19)

Here, , , and are known functions and is to be found.
Since the far-zone field is of interest, only those terms which
are of are retained and the operator can then
be approximated by ; thus,

(20)

which leads to

(21)

In the Appendix, it is shown that and are transformed
into the integral representations and computed asymptotically
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for the large parameter . From the asymptotic
solution, we can identify the contribution from the physical
poles, which yield the geometrical optics components. The
saddle-point contribution yields the diffracted field, which is
related to the incident field upon the edge and is written as

(22)

in which

(23)

and are the diffraction coefficients given as

for (3a) (24a)

for (3b) (24b)

where

(25)

(26)

where

(27)

(28)

(29)

where

(30)

Note that and are the Keller diffraction coefficients
in uniform version for the horizontal and vertical polarization
for a perfectly conducting wedge. In the preceding equations

(31)

(32)

(33)

where the positive branch of the square root is taken and

(34)

The value of is determined by the integer which most
closely satisfies

(35)

For the case of a right-angle wedge with two impedance
surfaces, we make another functional transformation

(36)

By repeating the same procedure, we obtain the diffraction
coefficients, as shown in (37) at the bottom of the page, where

. The plane wave illumination can be treated
as a special case of the cylindrical wave illumination. By
letting in the line source case and factoring out

, the result for the plane wave
case can be obtained. The diffracted field is given by

(38)

for a plane wave of unit amplitude and with its phase reference
located at the edge, where is given in (24) with the large
parameter , since .

The spherical wave illumination is related to the cylindrical
case by applying the Fourier transform with respect to the
variable. For a source of unit strength, the total field due

to spherical waves incident on the wedge satisfies

(39)

(37)
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The Fourier transform of the above equation yields

(40)
where is used because of the special
geometry of the wedge, and are Fourier
transform pair. The variation of the function is removed.
Rewriting the above equation as

(41)
allows one to identify as

, which is a 2-D scalar Green’s function of (1).

The diffracted field can be given by

(42)
for a spherical wave of unit amplitude, where is given in
(24) with the large parameter .
The factor in (42) is to be expected because of the
conical spreading of the diffracted rays. This conical spreading
is a consequence of the generalized Fermat’s principle.

The solutions of the above scalar cylindrical wave problems
can be directly related to some electromagnetic cylindrical
wave problems [20], [21]. The diffracted fields can be ex-
pressed as

(43)

(44)

where , , ,

and ; , ,

, and .

III. D ISCUSSIONS ANDNUMERICAL RESULTS

Fig. 2 compares the computed radiation patterns between
our formulation (shown by solid curve) and that of Tiberioet
al. [22], shown by discrete points, for a line source at ,

illuminating a right-angle wedge with two equal face
impedances for TE case. The surface impedance is .

The diffraction coefficient becomes singular when
due to the approximation of the

transformation . The in (35) cannot be
divided by zero to obtain . When ,
in (14) should be zero. This singularity can then be removed
by factoring out the same factor in (14), which
leads to . The diffraction coefficient becomes

for

for

(45)
and is finite. Fig. 3 presents the correction of singularity that
takes place for a TM case for a line source at ,

Fig. 2. Pattern of the total field TE case.

Fig. 3. Pattern of the total field TM case.

illuminating a right-angle wedge with two equal
face impedances with . Our computed
radiation pattern is given by solid curve while the singularity
is presented by dashed line. The prediction is again compared
with that of Tiberioet al. [22].

The formulation can be extended in an approximate way to
an arbitrary-angle wedge where one of its surfaces satisfies
the Direchlet boundary condition. When the approximation

is made, at and leads
to at , an approximation solution for can
be obtained by following the same procedure as that used in
a right-angle wedge.

IV. CONCLUSIONS

The diffraction by a right-angle wedge with different surface
boundary conditions has been derived. A functional transfor-
mation was used to simplify the boundary conditions. The
eigenfunction solutions for the transformed functions were
replaced by integral representations, which were evaluated
asymptotically by the modified Pauli–Clemmow method of
steepest descent. The solution was interpreted in terms of the
geometrical optics fields and the diffracted field. The diffracted
field is equal to the incident field on the edge multiplied by
the associated uniform impedance diffraction coefficients. The
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diffraction coefficients are related directly to Keller diffraction
coefficients in uniform version for a perfectly conducting
wedge. In the case where the impedance surface supports
a surface wave, the surface wave can be derived from the
canonical problem of a locally tangent, infinite impedance
surface. The diffracted field due to the surface wave is then
added to give a total radiation field. We have shown that
the functional transformation technique can be extended in
an approximate way to an arbitrary-angle wedge where one
of its surfaces satisfies the Direchlet boundary condition. Fur-
thermore, when the transformation operator becomes singular,
constant should be zero. The diffraction coefficients will be
used in analyzing the propagation characteristics in tunnels in
Part 2.

APPENDIX

In (21) the far zone form of was shown to be

(A.1)

where , , , and are known special Green’s
functions given in (9), (10), (12), and (13). An integral
representation for the product is given by
[21]

(A.2)

where , and . represents
the modified cylindrical Bessel function of the first kind. The
integral representation for is given by [20]

(A.3)

where and . Thus

(A.4)

or

(A.5)

Let us rewrite (10) and (12) as

(A.6)

(A.7)

where

(A.8)

Substituting (A.3)–(A.5) into (A.8), we obtain

(A.9)

By noting that

(A.10)

(A.11)

and from [20] that

(A.12)

(A.9) can be simplified to

(A.13)

where is the modified cylindrical Bessel function
of the second kind of order zero with argument , and
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. For large ,
can be replaced by its large argument approximation

(A.14)

The saddle points of interest occur at . In the
neighborhood of these saddle points

(A.15)

Thus

(A.16)

where

(A.17)

(A.18)

and is the large parameter

(A.19)

The integral in (A.16) is in the proper form to be evaluated
by the method of steepest descent for a large parameter. The
saddle points of occur at

(A.20)

but only is considered because the steepest descent
paths through allow us to close the contour.
Note that when is large, the approximation of (A.14) is
justified in the neighborhood of these saddle points. Fig. 4
shows the locations of the steepest descent paths through the
saddle points at . Therefore,

The residues of the integrand

Fig. 4. Steepest descent paths and the complex�-plane topology.

enclosed by and

Branch cut contributions, if any (A.21)

The pole singularities occur at

(A.22)

The residues corresponding to are evaluated only for those
. Let the contribution of the poles to be denoted

by

(A.23)

where

.

The contribution of the saddle points to, which is denoted
by , is derived via the modified steepest descent method [21]
where the pole singularity close to the saddle point is taken
into consideration. It can be shown that

(A.24)

where
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(A.25)

with

where the positive branch of the square root is taken, and

The value of is determined by the integer, which most
closely satisfies

Substituting (A.23) and (A.24) into (A.6) and (A.7), we
obtain

(A.26)

(A.27)

(A.28)

(A.29)

where the superscriptdenotes the contribution from the pole
singularities and the superscript denotes the contribution
from the saddle points.

Equations (9) and (14) have been evaluated asymptotically
by Pathak and Kouyoumjian [21] in which and are
given as

(A.30)

(A.31)

(A.32)

and

(A.33)

where

(A.34)

(A.35)

with

(A.36)

Now, let us consider the pole singularity contribution for the
case and . The equation , i.e.,

, describes an illuminated region for a cylindrical
wave illumination on the wedge. The spatial factor

indicates that this pole singularity contribution yields the
incident field. Substituting (A.26), (A.28), (A.30), and (A.32)
into (A.1) yields
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