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Abstract—A hybrid technique combining the shooting-and-
bouncing-ray (SBR) method and the method-of-moments (MoM)
is presented for analyzing scattering by large conducting bodies
having small protrusions. In this technique, the MoM with an
approximate Green’s function is used to characterize the small
protrusions, yielding an admittance matrix, which, when multi-
plied with the incident field on the protrusions, yields the currents
induced on the protrusions. The incident field in the presence of
the large bodies is calculated using the SBR method. The field
radiated by the currents on the protrusions is also calculated
using the SBR method with the aid of reciprocity. Furthermore,
an iterative approach is developed, which can reduce the error
introduced by the use of the approximate Green’s function.
Numerical results are given to demonstrate the accuracy and
capability of the hybrid technique.

Index Terms—Electromagnetic scattering, geometrical theory
of diffraction, moment methods.

I. INTRODUCTION

FOR analysis of large-scale electromagnetic scattering
problems, high-frequency asymptotic methods are fast

but approximate, whereas low-frequency numerical methods
are accurate but slow. Neither can produce an efficient and
accurate solution to scattering by large bodies containing
small structures. A promising approach is to combine the
best features of both types of methods to produce a hybrid
technique that is sufficiently fast, reasonably accurate, and
applicable to a class of unsolvable problems such as the
scatterers mentioned above. There are two extremes for
this type of hybridization. One is simply to superimpose
solutions from asymptotic and numerical methods. While this
approach is most widely used in practical applications, it
neglects the interactions between the two solutions, which
can be significant in many problems. The other extreme is to
combine an asymptotic and a numerical method in an exact
manner, such as the classical work of combining the method-
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of-moments (MoM) with the geometrical theory of diffraction
(GTD) by Thiele et al. [1]–[3]. In this approach, the effect
of a large body is included by incorporating its diffraction
into the Green’s function in the integral equation for the
small structures, which accounts for all interactions. The
approach is particularly attractive for analyzing the radiation
of an antenna placed on a large body and it has recently
been extended to scattering by finned convex objects [4].
While this approach is accurate, it is difficult to implement
in a general-purpose computer code because of its complex
nature. A more practical approach is to develop a technique
that can include all significant interactions and neglect all
trivial interactions. A successful example is given in [5] and
[6] where the shooting-and-bouncing-ray (SBR) method is
combined with the finite-element method (FEM) to solve
for the scattering and radiation by a large body with cracks
and cavities on its surface. The resulting hybrid technique
can produce sufficient accuracy and can be implemented in
a general-purpose computer code. In this paper, we employ
the same philosophy to develop a technique that combines
the SBR method and the MoM to solve for the scattering
by large conducting bodies with small structures mounted
on their surfaces. We note that since the nature of this
problem is different from that in [5], the formulation is also
different. To be more specific, in the proposed technique,
an integral equation is first derived for the currents in the
entire object, including the large body and the small structure.
By choosing a proper Green’s function that satisfies certain
boundary conditions on the surface of the large body, the
integral equation is reduced to an integral equation over the
surface of the small structure. Application of the MoM to
this equation with an approximate Green’s function yields an
admittance matrix, which characterizes the small structure.
When multiplied by the incident field on the small structure,
which is calculated using the SBR method, the admittance
matrix yields the currents on the small structure, which radiate
in the presence of the large body. The radiated field from these
currents or the scattered field contributed by the small structure
is then calculated using the SBR method with the aid of the
reciprocity theorem.

For most problems, the formulation described above can
yield a satisfactory solution. However, for some problems, an
approximate Green’s function can be difficult to obtain and
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(a)

(b)

Fig. 1. (a) Original problem. (b) Decomposed problem.

the resultant solution can be rather inaccurate. In this case,
the accuracy of the approximate solution can be improved
using an iterative approach, similar to the methods employed in
[7]–[9]. This iterative approach can also be applied to the case
of multiple small structures having mutual interactions. As a
result, although the hybrid technique presented is approximate,
its accuracy can be improved systematically when necessary.
This technique has been implemented successfully for two-
dimensional scattering and yielded excellent results [10]. In
this paper, we implement this technique for three-dimensional
(3-D) scattering to evaluate its accuracy and capability.

II. THE HYBRID SBR/MoM TECHNIQUE

In this section, the basic principle of the hybrid SBR/MoM
technique is described, followed by a discussion of the appli-
cation of SBR and MoM in the hybrid technique.

A. The Basic Principle

Consider the problem of wave scattering by a large perfectly
conducting body with a small protruding structure, illustrated
in Fig. 1(a). The electric field satisfies the vector wave equa-
tion

(1)

where denotes the source of the incident field. To find the
electric field, we introduce the dyadic Green’s function,
which satisfies the equation

(2)

and the Sommerfeld radiation condition. Multiplying (1) by
and applying the vector-dyadic Green’s theorem [11], we

obtain the electric field integral equation (EFIE)

(3)

where denotes the surface of the entire scatterer,is the
surface current density induced on, and represents the
incident electric field given by

(4)

in which denotes the volume occupied by. If is the
free-space dyadic Green’s function, is then the electric
field produced by in the free-space without the protrusion.

Equation (3) with the free-space dyadic Green’s function
provides the necessary integral equation for a MoM solution of

and then . However, since includes the entire surface of
the scatterer, a MoM solution of (3) requires the discretization
of the entire surface, resulting in a very large number of
unknowns for a large scatterer. As a result, the size of a
scatterer to be handled by MoM is very limited because of
the limitation of computer memory and time. To alleviate
this limitation for the special scatterers considered here, we
decompose the scatterer in Fig. 1(a) into two parts: one is the
large body whose surface is denoted asand the other is
the small protrusion whose surface is represented by, as
illustrated in Fig. 1(b). Assuming that is a dyadic Green’s
function that satisfies the boundary condition

for on (5)

in addition to (2) and the Sommerfeld radiation condition, (3)
then becomes

(6)

and (4) becomes

(7)

Clearly, is the electric field produced by in the
presence of the large body without the protrusion. Sinceis
small, (6) can be solved by MoM efficiently. The formulation
described above can be readily applied to problems where
the large body has one of the canonical shapes for which the
dyadic Green’s function is available. However, for a general
shape of , the explicit expression of is usually unknown.
As a result, the MoM solution of (6) has three difficulties: 1)
the required excitation cannot be calculated using (7);
2) the elements of the MoM impedance matrix cannot be
computed; and 3) the field radiated bycannot be evaluated
even if is obtained. In the following, we discuss the
approaches to alleviate these difficulties.

B. The SBR Application

The first difficulty can be alleviated by using a different
method to calculate . Since is the incident electric
field in the presence of the large body without the protrusion,
it can be calculated efficiently and accurately using the SBR
method with proper care.

The SBR method is a high-frequency technique for com-
puting scattering of electromagnetic waves by electrically
large bodies [12]–[14]. In the method, a dense grid of rays,
typically 10–20 rays per wavelength representing the incident
field, is launched toward the target. Each ray is traced as
it bounces around within the target region and is governed
by the geometrical optics (GO). At the last hit point or
at each and every hit point, a physical optics (PO)-type
integration is performed to determine the ray contribution to
the scattered field. The total scattered field is the summation of
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the contributions from all the rays. The SBR method has been
implemented into a computer code, known as XPATCH [15],
which can compute the radar cross section (RCS) of realistic 3-
D targets. Although the SBR method can be employed directly
to calculate on , it can be time consuming since
the total computing time is proportional to ,
where denotes the number of rays that hit the large
body ( ) and denotes the number of triangular elements
resulting from the MoM discretization of the protrusion (),
and denotes the number of MoM integration points within
each triangular element (typically from three to seven). A
more efficient method is to trace each ray and when a ray
passes through a triangular element on (remember that
the protrusion has been removed), its contribution to the field
at the integration points on that element is calculated. Doing
this, the computing time can be reduced to that proportional to

, where denotes the number
of rays that hit the protrusion. The implementation of this
approach, however, has a problem, as explained below. In
practical applications, most targets have curved surfaces, in-
stead of planar surfaces. When a curved surface is represented
by a facet model, each facet actually represents a small portion
of the curved surface, although each facet itself is flat or planar.
Thus, when a ray hits one of these curved facets, its reflecting
ray tube must either converge (when reflected from a concave
surface), diverge (when reflected from a convex surface), or do
a combination of the two (when reflected from a saddle point)
in order to accurately model the physics. Neglecting the effect
of the curved facets on ray tubes will lead to an erroneous
calculation of the near field, though its effect on the far field
calculation is insignificant since the latter is calculated by
integrating the surface field as described above. This problem
is illustrated in Fig. 2(a), where a plane wave is incident on a
circular cylinder from the left side. Clearly, the reflecting ray
tubes fail to cover the entire space and there are large gaps
between the adjacent ray tubes. A simple method to solve this
problem is to multiply each ray tube with a diverging factor
determined at the hit point of the center of the tube, so that each
ray will diverge as it leaves the curved surface. This method
works satisfactorily for a surface having the same curvature
such as a cylindrical and spherical surface. However, most
curved surfaces have different curvatures at different points.
For such surfaces, the simple method described above still
leads to gaps or false overlapping between adjacent ray tubes,
resulting in errors in the near field calculation. To solve this
problem, instead of tracing the centerline of a ray tube and
determining the reflecting direction and diverging factor based
on the hit point of the center of the ray tube, we trace the four
corner rays of a ray tube separately. Each corner ray is reflected
into the direction based on its hit point and the reflecting
ray tube is then formed by connecting the four corners. The
diverging factor used to calculate the field is determined from
the ratio of the cross section of the ray tube at the field point to
its original size. The detailed implementation of this method
is described by Carolan and Jin [16]. When this method is
applied to the problem in Fig. 2(a), the reflecting ray tubes
are shown in Fig. 2(b), yielding a very satisfactory result in
the near field calculation.

(a)

(b)

Fig. 2. Ray tube coverage reflecting from a cylinder. (a) Divergence off. (b)
Divergence on.

As it turns out, the procedure described above works well
in most cases, but some problems arise due to finite round-
off errors in the computations. Ideally, the grid of ray tubes
shot into the scene is intended to uniformly cover the space,
but in cases where a point lies on or very near the border
of two ray tubes, it can often be either double-counted (hit
by two adjacent ray tubes) or missed completely. This can
lead to inaccurate field calculations. The solution to this
problem is to redefine the ray tube and introduce ray-tube
basis functions. Instead of having a grid of barely touching
ray tubes with a constant magnitude within each ray tube, the
new ray tubes are defined with twice the width and the height
so that the ray tubes are overlapping. To ensure a uniform
field, a ray-tube basis function is then introduced such that
at any point in space the contribution from all overlapping
tubes add up to unity. This basis function can be written
as for a ray tube extends over

and in normalized ray-tube
coordinates. Clearly, the magnitude is one at the center of the
ray tube and varies to zero at the edges of the tube. With this
modification, we can calculate accurately the field reflected to

by the large body.
In addition to the reflected field, another major contribution

to is the direct illumination (zero bounce). This field can
be calculated efficiently by launching a ray from the field point
on toward the source. If the ray is not intercepted by the
large body, the field point is directly illuminated and a direct
incident field is then added to that point.
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Fig. 3. Effects included in the hybrid technique: direct and indirect incident
fields and direct and indirect scattered fields.

Fig. 4. Effects not included in the hybrid technique, but can be recovered
by an iterative approach: field scattered by the protrusion, diffracted and/or
reflected back to the protrusion by the large object, and scattered by the
protrusion again.

C. The MoM Application

As mentioned above, the second difficulty caused by the
lack of a closed-form expression for is in the evaluation
of the elements of the MoM impedance matrix. To alleviate
this difficulty, we first consider the role of in the MoM
solution. To solve (6) by MoM, we apply it on and take
the cross product with the normal of , yielding

for on (8)

Since both and are on , the in this equation
represents the interaction between the two points on the
protrusion. This interaction includes three contributions. The
first is the direct interaction between the two points (the field
produced by the point source at reaches directly at) and
this interaction can be represented by the free-space dyadic
Green’s function. The second is the interaction through the
base (assuming locally flat) on which the protrusion is placed
(the field produced by the point source atis reflected by the
base to the point) and this interaction can be represented by
the free-space dyadic Green’s function with thereplaced by
the image point . The combination of these two interactions
can be represented by the half-space dyadic Green’s function
denoted as . The third contribution is the interaction
through the other parts of the large body such as the edges
(the field produced by the point source atis diffracted by
the edges to the point). We denote this interaction as ,
which is the difference between and . Therefore, we
have

(9)

Using a local coordinate system for the MoM analysis which
places the plane on the base of the protrusion,

(a)

(b)

Fig. 5. Monostatic RCS of a plate attached to a finite circular cylinder in the
xz plane. (a) Vertical (VV) polarization. (b) Horizontal (HH) polarization.

is then given by

(10)
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(a)

(b)

Fig. 6. Monostatic RCS of two small plates placed on a large thick plate
in thexz plane (multiple interactions are included in the MoM solution). (a)
VV polarization. (b) HH polarization.

where and
denotes the image point of . Whereas

the expression for is available, the expression for
is often difficult, if not impossible, to obtain. Although the ef-
fect of can still be included in the MoM solution, as was

(a)

(b)

Fig. 7. Monostatic RCS of two small plates placed on a large thick plate in
thexz plane (multiple interactions are not included in the MoM solution, but
recovered by the iterative approach). (a) VV polarization. (b) HH polarization.

done in [1]–[4], its numerical implementation is complicated
and dependent on the geometry of the large object. To simplify
the MoM solution and effectively decouple the MoM and SBR
computations, we neglect in the MoM solution of (8)
and doing so we neglect the field scattered by the protrusion,



1354 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 9, SEPTEMBER 1998

diffracted and/or reflected back to the protrusion by the large
body and scattered by the protrusion again. In most cases,
this field is unimportant. However, when necessary it can be
recovered by using an iterative approach discussed in the next
section. The MoM solution of (8) is straightforward. First,
is subdivided into small triangular elements and the current
on is expanded as

(11)

where is the number of unknowns and denotes the
vector basis functions. In this work, the Rao–Wilton–Glisson
(RWG) basis functions [17] are used as . In the usual
MoM analysis, includes only the interior edges; however,
here must include the boundary edges connecting the
protrusion to the large body to allow the continuous flow of
the current from the protrusion to the large body or vice versa.
Applying Galerkin’s method to (8) results in a matrix equation

(12)

whose elements are given by

(13)

(14)

where (or ) denotes the triangular elements covered by
(or ).

D. Scattered-Field Computation

Once the surface current on the protrusion is obtained, the
scattered field radiated by this current in the far zone can be
evaluated using

(15)

Since in this equation represents the observation point in
the far zone, one cannot replace with because
such a replacement would neglect the field scattered by the
protrusion and diffracted and/or reflected to the observation
point, resulting in an error whose magnitude is comparable to
the field scattered directly to the observation point. There are
two approaches to alleviate this problem. One approach is to
first compute the field scattered by the protrusion over a small
half-spherical surface enclosing the protrusion. This field is
then converted into many rays which shoot along the radial
directions. The contribution of each ray to the observation
point is then calculated by the SBR method described earlier.
This approach has the advantage of simultaneously computing
the scattered field in all directions. However, to obtain accurate
results the field on the half-spherical surface enclosing the

(a)

(b)

Fig. 8. (a) The almond (20 m long, 7.2 m wide, and 2.6 m thick) with a
mushroom-shaped protrusion. (b) The VFY218 airplane (15.5 m long, 9 m
wide, and 4.1 m thick) with a mushroom-shaped protrusion. The protrusion
consists of a tapered circular disk, having a radius of 0.8 m and thickness of
0.6 m at the center, supported by a circular cylinder having a radius of 0.25
m and height of 0.7 m.

protrusion must be divided into many rays and to trace each
ray, its divergence factor must be calculated and tracked.
Moreover, the process has to be repeated for each element
in the protrusion. In this work, we use the second approach,
which employs reciprocity theorem. In this approach, we place
an infinitesimal electric current element at the observation
point, either vertically polarized or horizontally polarized. We
then compute the electric field produced by this current
element on in the presence of the large body without the
protrusion using the SBR method. In the backscatter case,

is the same as . From the reciprocity theorem, the
scattered field can be obtained as

(16)

The total scattered field from the entire scatterer is the super-
position of this field and the field scattered by the large body
without the protrusion, which can be calculated efficiently and
accurately using the SBR method.

III. I TERATIVE IMPROVEMENT

Because of the use of the SBR method, in (6) includes
not only the direct incident field, but also the fields multiply
reflected by the large body. Generally speaking, the magnitude
of the indirect incident field is comparable to that of the
direct field, so neglecting either of them will result in a
significant error in the calculation of . Similarly, since
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(a)

(b)

Fig. 9. Monostatic RCS of the almond with a mushroom-shaped protrusion
at f = 300 MHz. (a) VV polarization. (b) HH polarization.

in (16) is calculated using the SBR method, the reflection
and multiple bounces are also included in the scattered-field
calculation. Therefore, all major interactions, as illustrated in
Fig. 3, between the SBR and MoM have been included in the
hybrid technique.

The only approximation in the hybrid technique is in-
troduced by the approximate Green’s function, formed by
neglecting the second term in (9). As pointed out earlier,
this neglects the field scattered by the protrusion, reflected
and/or diffracted back to the protrusion by the large object,
and scattered by the protrusion again, as illustrated in Fig. 4.
In most problems, this contribution is insignificant. However,
when the protrusion is very close to edges and reflecting
surfaces, this contribution can become significant and its
omission can cause a substantial error in the solution. Here,
we describe an iterative approach, similar to those in [7]–[9],
to reduce the error systematically.

In this iterative approach, we use the current on the protru-
sion obtained from (12) as the initial value and then calculate

the field produced by this current in the presence of the large
body. This field can be considered as the secondary incident
field, which, when superimposed to the , yields a new
incident field on the protrusion. Using this as the incident field
in (14), we obtain a new improved current on the protrusion.
This process is repeated several times until a stable value for
the current is reached. The iterative process can be expressed
as

(17)

where denotes the number of iteration, denotes
the field on the protrusion produced by the current
on the protrusion, which can be calculated using either PO
or the SBR method. A similar approach can be employed for
large bodies with multiple protrusions. When each protrusion
is characterized using the MoM, the interaction between them
is neglected. To recover this interaction, we can first analyze
protrusions separately and obtain the current on each protru-
sion. We then choose the current on one of the protrusions as
the excitation to obtain the secondary incident fields on other
protrusions, which then yield new currents. This process can
be repeated until the convergence is reached. For the case with
two protrusions, the process can be expressed as

(18)

(19)

where denotes the field on theth protrusion pro-
duced by the current on theth protrusion, which can again
be calculated using either PO or the SBR method.

IV. NUMERICAL RESULTS

To demonstrate the accuracy and capability of the proposed
hybrid technique, we present some examples in which the
incident wave is assumed to be a plane wave. In all the exam-
ples, the hybrid solution is compared to another independent
solution.

The first example is a scatterer consisting of a 11 plate
placed on a finite circular cylinder having a diameter of 4and
length of 8 . The hybrid solution is compared to the MoM
solution obtained by applying MoM to the entire scatterer.
This MoM solution is calculated using the fast Illinois solver
code (FISC) which implements the multilevel fast multipole
algorithm (MLFMA) [18]. The results are given in Fig. 5,
showing a good agreement between the two solutions.

The second example is a scatterer consisting of two plates
of different size (2 2 and 1 1 , respectively) placed
1 apart on an 8 8 large plate having a thickness of 1.
The hybrid solution is again compared to the result obtained
using FISC and the comparison is shown in Fig. 6. Again, the
agreement between the two solutions is good. In calculating
the hybrid solution, we applied a single MoM to the two small
plates or, in other words, the two small plates were treated as a
single protrusion. As a result, the multiple interactions between
the two small plates are included in the MoM solution.

To show the effectiveness of the iterative approach, we
reconsider the second example. We first apply the MoM to
each of the two plates independently and, hence, no interaction
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(a)

(b)

Fig. 10. Monostatic RCS of the VFY218 airplane with a mushroom-shaped
protrusion atf = 300 MHz. (a) VV polarization and (b) HH polarization.

between them is included. The hybrid solution so obtained
is represented by the dotted line in Fig. 7, which shows a
significant disagreement with the FISC result, especially in the
region between 130and 160, because of the strong multiple
interactions. This error is, however, reduced significantly when
the iterative approach is applied with only two iterations. The
result is shown by the dashed line which agrees with the FISC
solution very well.

In the next two examples, the protrusion is a geometrically
tapered circular disk supported by a small circular cylinder
having a radius of 0.25 m and a length of 0.7 m. This
object is placed on an almond and the VFY218 airplane, as
shown in Fig. 8. The RCS of these two targets is given in
Figs. 9 and 10, respectively. The hybrid solution is compared
with the result obtained by XPATCH, which applies the
SBR directly to the entire target. The two solutions agree
remarkably well. It is evident in the almond case that the
multiple interaction between the protrusion and the almond is
predicted correctly. Also shown is the RCS of the two targets
without the protrusion calculated using XPATCH. The results

(a)

(b)

Fig. 11. Range profile of the VFY218 airplane with a mushroom-shaped
protrusion for the head-on incidence. (a) VV polarization. (b) HH polarization.

show that the protrusion has a significant contribution to the
total RCS (30 dB in the almond case and 20 dB in the VFY218
case) in the low-observable directions. Finally, Fig. 11 gives
the range profile of the VFY218 airplane with the protrusion
for the head-on incidence.

V. CONCLUSION

A hybrid technique is presented for scattering by large
bodies having small protruding structures. The technique in-
vokes the equivalence principle to replace the protrusions
with equivalent electric currents. The incident fields on the
protrusions are calculated using the modified SBR method. The
equivalent currents are then computed using the MoM method
with an approximate dyadic Green’s function. Finally, the
scattered fields are evaluated using the SBR method with the
aid of the reciprocity theorem. The hybrid technique combines
the SBR method with the MoM in such a manner that the
SBR and MoM computations are carried out separately and yet
all significant interactions are included. For problems which
require higher accuracy than the hybrid solution would give, an
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iterative approach was designed to systematically improve the
accuracy. The accuracy and capability of the hybrid technique
were demonstrated using 3-D scattering examples.
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