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ITD Formulation for the Currents
on a Plane Angular Sector

Stefano MaciMember, IEEE Matteo Albani,Member, IEEE and Filippo CapolinoMember, IEEE

Abstract—Approximate high-frequency expressions for the The approximate solution presented here exhibits useful
currents induced on a perfectly conducting plane angular sector properties. First, it includes contributions from first- and

are derived on the basis of the incremental theory of diffraction _ ; ; ;
(ITD). These currents are represented in terms of those predicted second-order UTD grazing rays, including slope effects far

by physical optics (PO) plus fringe contributions excited by singly from.their pertir.]?m Shad.ow boun(_jaries; .ne?(t' ?t provides
and doubly diffracted (DD) rays at the two edges of the angular Via simple transition functions a uniform distribution of the
sector. For each of these two contributions, additional currents currents everywhere; finally, it exhibits away from the vertex

associated to vertex diffracted rays are introduced that provide the appropriate behavior near the edges, which is embedded
continuity at the relevant shadow boundary lines. The transition in the exact solution for the local half-planes

region of DD rays is described by a transition function involving
cylinder parabolic functions. The asymptotic solution presented ~ 1h€ problem of the plane angular sector has been exten-
here is constructed in such a way to satisfy far from the vertex Sively treated in the literature by resorting to both exact and
the expected edge singularities, which tend to be the same asapproximate high-frequency solution. The exact solution of
e o i o et o o o e oo (12 Sl protiem fo SOt boundery condiions e ane
and with mome?nts method results for scattering from polr))/gonal an.gular sector was obtalqed by Radlow [5], who used the
plates. Wiener—Hopf technique; his work was recently extended to
the electromagnetic case by Albertsen [6]. For arbitrary corner
angle, the exact electromagnetic solution was first found by
Satterwhite and Kouyoumijian [7], [8]; however, the series
expansion representation of the solution is slowly convergent
l. INTRODUCTION when the distance from the tip increases and no practical
perfectly conducting corner at the interconnection of tw@symptotic approximation has been found yet. An alternative
straight edges, joined by a plane angular sector isdgrivation of the same solution was given in [9]; in the works
basic canonical problem for the high-frequency descriptidly Smyshlyaev [10], [11] the exact solution was obtained as a
of electromagnetic scattering phenomena. This problem d@a'ticular case of an elliptical degenerated cone. The solution
be used within the framework of the geometrical theory df [7], [8] was used in [12] to obtain an interpolation of the
diffraction (GTD) [1] and of its uniform extension (uniformfringe currents in a region close to the tip after extracting the
theory of diffraction (UTD) [2]), to find diffraction coefficients UTD dominant terms. In [13], a hybrid method of moments
for application to complex structures. The same canoniddloM)-UTD procedure was applied to a square plate in order
problem is also useful to obtain an estimate of fringe curreris derive approximate analytical expressions for the currents
close to vertex discontinuity. Referring to terminology of theén a right-angled plane angular sector.
physical theory of diffraction (PTD) [3], [4], fringe currents Asymptotic fringe currents have also been derived by using
denote those currents that are induced on the metallic faggproximate, but practical high-frequency solutions, which are
of the plane angular sector by the diffracted fields; thelrased on modeling the vertex geometry as a superposition
radiation in free-space provides high-frequency augmentatiohtwo or more wedges. In this framework, first-order vertex
of the physical optics (PO) field. Simple tools for providingliffraction coefficients were formulated in [14] in order to
an estimate of the currents associated to vertex discontinuiympensate for the discontinuity of first-order UTD diffrac-
is useful for improving without substantial additional effortstion contributions without including second-order interactions
those numerical codes that use the direct integration of thetween the edges. Double diffraction at skew edges has been
PO currents to predict radar cross section (RCS) or antertreated in [15], [16] neglecting the contribution of the vertex.
radiation. This is the major maotivation in developing asympFhe formulation presented in [16], which is based on the
totic current expressions for the basic canonical problems eftension of the spectral formulation given in [17] for parallel
a plane angular sector illuminated by a plane wave. edges, also includes double interactions for soft polarization.
Manuscript received April 30, 1997; revised January 7, 1998. This worlkrl [18] an.d [.19]’ the scattering from pqugon_al structures was
was supported by MOTHESIM, Les Plessis Robinson, Paris, France. treated within the framework of PTD including second order
S. Maci is with the Department of Electrical Engineering, University ofnteractions; in [18] vertex contributions were also included.
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order interactions between the two edges and explicitly satisfy A A
reciprocity. The same formulation has been used in [21] to B o) P )%(\’
find, via spectral synthesis, a uniform solution for observation T g
points at finite distances from the tip. The solution in [21]
as well as other solutions presented in the literature [14]@2
[18] are expressed in terms of a generalized Fresnel integral
[22], which may appear to require significant computional
efforts when the currents are used in a radiation integral.
Nevertheless, the generalized Fresnel integral is essentially
required to describe the field at those observation points
where transition regions of different nature overlap; when the
observation point is on the surface (i.e., when calculating the
currents) such situations never occur, so that the currents may
be conveniently described by ordinary Fresnel integrals. Trg%_ 1. Geometry of the plane anular sector.
also provides more manageable expressions for users familiar
with UTD.

It should also be noted that in applying the above-mentioned
approximate solutions to calculate the field on the plane
angular sector itself, practical inconveniences may occur.
Indeed, the high-frequency vertex coefficients typically are
not valid close to and at the two edges while it should be
desirable to construct currents that exhibit there the appropriate
behavior. The accurate description of the near-edge behavior
becomes particularly important when the electric currents are
used to find couplings with magnetic distributions located

: : : ot ig. 2. Ray contributions associated to edge 1 of the plane angular sector;
on the surface, as it occurs when dea“ng with radiation §psingly diffracted ray originates &' ; a vertex ray arises from the vertex

apertures on finite ground planes. V'; a DD ray arises from a poir; on edge 2 after diffracting at the point
For the reasons described above (i.e., to avoid the usedjf on edge 1.
generalized Fresnel functions in radiation or coupling integrals

and to preserve the near-edge behavior), in this paper, Bihavior is discussed to find the convenient terms to retain in
expressions of the fringe currents are derived by a completgh¢ asymptotic expansion. Finally, in Section V, this estimate
different formulation with respect to our previous solutiongf the currents is compared with that calculated from the
[16], [20], [21]. The problem is formulated by distributing,exact solution [7], [8]. Also, examples of radar cross section
on the semi-infinite edges of the plane angular sector, firgl polygonal plates are presented and compared with MoM
and second-order incremental diffraction coefficients basgficulations.

on the incremental theory of diffraction (ITD) [23], [24].

The use of ITD in this application is particularly effective, Il. FIELD REPRESENTATION

since the relevant incremental diffraction contributions satisfy h | | ith |
the boundary conditions (BC's) of their pertinent tangent '€ 9eometry at a plane angular sector with aperture angle

canonical wedge, so that they are expected to provide gn's shown in Fig. 1. At bOth_ edges 1 and_ 2, a sphFricaI
3., ¢n) With relevant unit vectors#(

accurate estimate of the currents. A significant example §gordinate systemr( 5, ¢,) with _
shown in [25], where a circular perfectly conducting dis_@"’ d)_") IS m'Froduced, W'th.'ts origin at the_ up. A planelwave
illuminated by a vertical dipole was treated. |Ilum!na_t|on IS assum_ed_wng direction of |n<_:|denqé;( d)")'_

In deriving the present solution, terms of order ugke)—2 1he incident magnetic field!* at the vertex is defined by its
(where r is the distance from the tip) are retained in th§omponentst —and Hg , along the unit vectorss;,, and
asymptotic expansion, unlike our previous work [21], in whicky,, respectively. In our description, the total currestis
only order up to(kr)~! was considered. These higher ordefepresented as

contributions are consistent with those required to reconstruct J=JroL 4 34 (1)
> Rt J=". J{+ J3
the near-edge behavior, that are of ordér)~> owing to
their reactive nature. where JTC =24 x H* (7 normal to the face) denotes the PO

In the present formulation, the ITD fringe currents are deurrent and.J?, ?]5, are fringe current contributions induced
composed into the sum of two contributions that are associatedthe diffracted field arising from edge 1 and 2, respectively.
with single and double diffraction mechanisms, respectivelyhe ray contributions arising from edge 1 are those represented
Both these contributions are, in turn, decomposed into twio Fig. 2. In particular: 1) a singly diffracted ray originates
terms that are associated with the edges and the vertex, respe?’; 2) a vertex ray arises from the tip; and 3) a doubly
tively. In Section I, the field representation is presented; thiiffracted (DD) ray arises from a poin®3 on edge 2 after
currents relevant to single and double diffraction mechanisrdifracting at the point)/ on edge 1. Analogous mechanisms
are formulated in Sections Ill and IV, respectively. Theioccur at edge 2. In the following, we will discuss only the
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Q> QS where

e—jkr cos(B1—87)

FHE() = 21,

/
V/2jmkr sin ] sin B cos<%>

Fy(kréy) cos 3
2jkr sin 31 sin 51

SBL of I tays

= x [F(lﬂréi)&(ﬁi) + 21} (6)
Fig. 3. Shadow boundary lines (SBL's) of the currents induced by sing@rnd

(82 = B%) and doubly(3. = 3} — Q) diffracted rays. —Jkr cos(B1—01)

&4
V2jmkr sin ] sin B
contributions J/ associated to the rays depicted in Fig. 1(b), ) 4
namely those in which the first diffraction occurs at edge 1, sl o F,(kré)) R
the other contribution/] can be easily obtained from? by X - < & ) [ijr sin /3 sin 3, Zl} (7)
2

JE () =2H],

oo

interchanging 1 by 2 and introducing a minus sign (due to the
left-handness of the reference system assumed for edge 2).

Let us denote byJ¢ and J%¢ the currents induced by
the singly and DD rays, respectively. In a ray-optics rep? Which
resentation, these contributions are discontinuous when the
observation point is such th&}; or @ (n =1, 2) disappear
from the vertex, respectively, as depicted in Fig. 3. This occurs
at the shadow boundary lines (SBL'’s) definedhy= 3; and
B2 = f3, — Q, respectively. The discontinuitieg{ and J¢¢ |, ©). (7)
have to be compensated by current contributions associated to
vertex diffracted rays. The latter are conveniently subdivided R
into two terms J¢ and Jv, that are intended to provide the $1(B1) = sin(f — 1)Pr + cos(By — )7 9)
continuity of J¢ and J%¢, respectively. The termg? and Jv*
will be referred to as currents induced by vertex rays of thg the unit vector directed along the grazing ray @nds the
first and second kind, respectively. Thus, our representation gfit vector along edge 1. Furthermore
the fringe currentJ? is

/
8] =2 sin B, sin 3] cos? <%) (8)

. oo .2
g =3+ 3 F(y) =25 yeﬂy/ eI dt:
H=3+7 @) W =2y |
3 s
- 5 arg < —
where 5 < arg(y) < 5 (10)
and
W =Ji+ Jy 3) Fo(y) =2jy(1 - F(y)) (11)
and B | )
7 = Jad 4 G () are the UTD transition function and the UTD slope-transition
Y1 T V1 Y1 -

function, respectively.
The current contributions along, in (6) and (7) become
In Sections Il and IV, high-frequency approximations of thelominant approaching the edges, where they exhibit singu-

two contributions.7{" and 7{" are derived, respectively.  larities. It is worth noting that (6) and (7) do not derive
from any kind of asymptotic approximation of the half-plane

[Il. CURRENT INDUCED BY SINGLY DIFERACTED solution, but they are exact; consequently, they satisfy the edge

RAYS AND BY VERTEX RAYS OF THE FIRST KIND conditions and provide the exact reactive field components

. o _ : %Jose to the edge.
Let us consider an infiniie hali-plane with its edge aligne According to the ITD localization process, the current of
with edge 1 of the plane angular sector. The current cont{h—e canonical problem is represented as '
butions relevant tad; and H|, are denoted by superscripts
H andFE, respectively. These contributions correspond to hard 3d T 2d) ke cos B g

' ” Jio(B1) = 1{(z s A 12
and soft boundary conditions on the faces of the angular sector, (M) iz)e A1 (12)

. _’d ! .
respectively. We denote by'i,(4) the summation of the The above expression can be thought of as a superposition of

fringe currents on the two faces of this infinite structure; these & "~ "~ =" = . . ! L
. an infinite distribution of incremental diffraction contributions
are expressed in exact closed form as [26]

I9(z]) that are localized along edge 1 and excited with a phase
. . . factor exp(—jkz' cos ') which is dictated by the incident
Joo(P1) = 280 + JTL(BY) (5) plane wave.

ade o)
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The phase termxp(—jkr cos(1 — /1)), which appears in the
expression of J¢__(6;) provides a saddle point # = /3.
The contourCy, is now deformed onto the steepest descent
path (SDP) through this saddle point; in this deformation, the
pole atf; = 3] whose residue represents the singly diffracted
field j‘f is captured whem; < /3;. To evaluate the integral on
the SDP, the modified Pauli-Clemmow method is then applied
as in the UTD [2], thus, leading to the vertex contributiﬁ'ifl.
Finally, the representation (3) is obtained, in which

%’ JE=U(B - p) T4 (8D (16)
and
Jv=JvH 4 JvE (17)
where
=0 < EF(krm) 1
JPH = —2H},
! 1 (cos B, — cos f1) cos [
(b) 2
Fig. 4. ITD synthesis of the diffraction mechanisms. (a) Singly diffracted eIk N FS(IW-(SI) cos /31 ki
incremental contributions from edge 1. (b) DD incremental contribution at X S iler F(/W’(Sl)T - W ¢ 1
edge 2. IR m(kr)? sin® py is)
(/)/
The above expression establishes a Fourier transfoIm pair ke Sin<?l> F,(kréy)
relationship between the incremental current contributign f]’;E = — 2H;, ¢ i 5 -
and the current/¢__ of the canonical half plane. Thug¢ can dg(kr sin 3;) cos2 <ﬁ)
be calculated as inverse Fourier transformation/éf_, i.e., 2
. F(krm) R
- k b L 21
B =5 [ Ha@)siwoi o na ag) X Tcos i — cos ) (19)
Co

. . . . . o In (18) and (19)
in which Cy, is the contour € joo, 7+ joo). The contribution

f‘f(z’l)_ represents an incremental fringe current outgoing from 71 =2 sin2 </3’1 - /ﬁ) (20)
the pointz; on edge 1, with a spherical spreading factor. As de- 2

picted in Fig. 4(a), the fringe current contributioi relevant and )

to the semi-infinite edge can be constructed by superimposing 61 =2 sin® B cos? <ﬁ> (21)
the spherical incremental fringe currents on the semi-infinite

2
extentz; > 0 of the edge, namel T .
A= g y The contributions J¢# in (16) is exactly the same as that

i /oo jd(zl)c,jkzi cos B 1! (14) for the infinite half plane except for a unit-step functiéh
L o Tt o that drops these contributions to zero when passing the SBL

— / H H H
This integral provides two asymptotic contributions for Iarggl = /1. This guarantees a good gpprommatlon of the currents
very close to the edge and sufficiently far from the vertex;

kr. The first one (/4 + J9¢E) arises from the stationary phase

point of the integrand occurring @’; and it may be easily !nd:f;jc,tthe representation of the half-plane current in (5)—(7)

recognized as the one produced by the singly diffracted rd ‘The representation in (3) is continuous everywhere. Indeed,

The second contribution.y* + J{*) arises from the end- _ o S aH b :
point at the vertex, and provides the desired continuity of tﬁbge ;y:}s}qcont(ljng]%o;{ lt ar;qbilth at ﬂtf SBLis cqn;pensate?
currents J{ at the single diffraction SBLA, = £3,). dinCOII’]ti:lTity ile’ at exhibit there the appropriate opposite

To asymptotically evaluate/{ , (13) is introduced in (14) N B B
and the order of integration is changed. Assuming small lim  JVF =L i F (22)

. : - . 81 —8! —0F

losses in the surrounding medium allows the integralzbn s
to be expressed in a closed-form, thus leading to the spectrak above expression is deduced by the approximation

representation I(z) ~ y/mjx of the UTD transition function for a small
o 1 . sin @ value of its argument.
I == J1oo(61) - dfi.  (15) It is now useful to discuss the asymptotic behavior of
L7 ony Co, Loo (cos B — cos 61) ymp

the various contributions. Far out from the SBL'S[¢H
The integrand in (15) exhibits a pole 6t = 3,; owing and J¢F decay askr) /2 and (kr)~3/2, respectively. The

to the vanishing losses we have assumed, a counterclockwisatribution j‘fE is asymptotically weaker because the soft

indentation of the integration path around this pole is requireBC’s force to zero thekr)~*/? terms of the diffracted field.
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When the incident plane wave crosses the grazing directionwhich

(¢4 = =), an abrupt swap between the lit and the shadowed . )

face occurs so that the PO curreif-Case) or its derivative 3(62) = (2rjkr sin Bo sin 6)1/2
(E-case) exhibits a discontinuity due to the inversion of 2 2

the normal to the lit face. Consequently, closegfp = , X | F(2kr sin (3 sin 02)32(62)

J¢H  and J¢F change their spreading factor infér)° and
(kr)~%/2, respectively, to compensate for this discontinuity. S _
The dominant contribution of the vertex currenty” 2gkr sin 3 sin 0,
asymptotically decay agkr)~!, owing to the spherical , _— N7 ,
spreading of the scattered power density. It is directed alofi§ dePicted in Fig. 4(b), the contributiod; is obtained by

#, since the magnetic field of each vertex ray is transverse¥&'9nting each incremental current contributiﬁj‘_ i’ by the
the same ray. Close to the SBI3, = 3!) JvH pecomes Pertinent incident field in (23) and by integrating along the
ol semi-infinite extent of the second edge, i.e.,

L (kr sin (B2 sin 63) cos 63 5 @

of the same ordefkr)~1/2 of J¢# to compensate for its
disappearance. Analogously/“F is of order (kr)~1/2 and
grows up to the ordefkr)~3/2 close to the SBL. In the
following section, the current induced by the DD rays and i
relevant vertex contribution are derived.

H = [ Hy ) da. (28)
0

t?he asymptotic evaluation of this integral provides two con-
tributions. The first one is associated to the stationary phase
point that occurs af) (Fig. 2) and provides/4?; the second
contribution J¥¥ arises from the end-point at the vertex and

. . o o ) provides the desired continuity of the currerﬁﬁ” at the SBL

The first gtgp in derlylng the. DD contr|but|on consists 0 3, — 3, — Q) of the DD rays, namely, when both the points
properly defining and interpreting the diffracted wave frorgy, 44 Q disappear from the vertex. The integral in (28) is

edge 1 that illuminates edge 2. To this end, the _magneﬂglymptotically evaluated in the Appendix, thus leading to
diffracted field is decomposed into the two contributidids

andH,, alongf, ands,, respectively, where, is the direction JI7 = JadH | jeeH | jooR (29)

of the singly diffracted grazing ray and is the unit vector )

transverse to the grazing ray. Only the field relevant to ti#¢ shown in (30)(37), at the bottom of the/ next page. In
J7¢ will be considered, while that associated witly will be ~ (31) the upper (lower) sign applies # < = (¢| > 7). The

neglected because of its higher order. At each pejnf the ~ransition function

IV. CURRENT INDUCED BY DouUBLY DIFFRACTED
RAYS AND BY VERTEX RAYS OF THE SECOND KIND

second edge, the contributidt,, is defined as W(z) = 6.732/4\/5D_(1/2)(x) (38)
N _ ¢ 3d AN f
Hy (%) = (J1x 7)1 (23) is the same as that is used in [21] in which
where# normal to the top face. The contributid#;, can be 2 G0F (42 1oy
expressed in terms of the electric field componEﬁt D (z) = /%) A i dt (39)
_ r)=¢c
5 (1/2) /o /_ - NG
Hs, =  jk(on (Bv) 24 s a cylinder parabolic function of order3; in [21], an

so that it can be interpreted as the normal derivative afZan efficient algorithm is suggested for its numerical calculation.

; i GFAdE
polarized grazing plane wave. Owing to thigpolarization, It is worth while to stress that the DD termi{“* is of order

Y—3 H H
the latter wave produces a slope-type DD field contributiof”)”~ @nd has been neglected in the above formulation.
which is of order(kr)=2 when observed out from the face The functionW (z) is defined in such a way to become one

and of order(kr)=3 just on the face. Consequentlyf,, for a large argument that is far from the SBL of the DD rays

— ing JHdd
produces a DD current contribution that can be neglected 2 = £1 — ¢2), thus allowing /17 to recover exactly the
our asymptotic expansion. DD grazing ray as predicted by UTD. In particular, far from

The magnetic field,, (}) can be interpreted as a lock this SBL and when the incident field is far from the grazing

; : . o FddH FovH
polarized plane wave. This wave excites, at any peiptan aSPeCt, both the contributiong{™" and .Jy*™" are of order

- N1 inci —
incremental current contributiof(z}) that according to the (k7)”"- When the |nC|1d(25nt plane wave approagh= r, they
ITD localization process is defined as become of ordefkr)~!/2 to compensate for the discontinuity

of the singly diffracted rays.
G () = i/ FI7 () sin fye7%%2 < 02 49, (25) In the transition region close to the SBL of the DD rays,
27 Je, the two DD points merge and both the argumentVif in
(30) and (31) tend to vanish; thuB; also vanishes. At the

L . . - _same time, a square-root-type singularity withif™*” and
accomplishing the following operations: 1) substituting 1 wnﬁ»Hdd q yp. g . ty . .
. N . . J1'** occurs so that the transition functid#i provides during
2 and changing sign; 2) normalizing with respect to th

incident field; 3) setting#, = 0: and 4) changing?} with fhe transition a_unlform of the sum of these. This contl_nwty
9. This leads to can be proved in the same way as that demonstrated in [21,
2 ~ ’ Appengix B]. Insjde this DD rays transition region, both the
JEH (0y) = j(By)edkr cos(F2=02) (26) termsJ¢¢H and Ji*H elsewhere of the ordéfr)~! become

in which J¢2(4,) is derivable from JL(3)) in (6), by

oo
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of order (kr)~3/%. It is also worth noting that the transition 0.008
region provided byW(x) is very narrow when compared

with the transition region of the familiar UTD transition 0.006
function F'(z).

1)

0.004
V. NUMERICAL RESULTS

The results from the present formulation are compared g0
with those the exact solution [7], which are reported in
[12]. Figs. 5-7 are relevant to a plane angular sector with .
© = 90°, which is illuminated as depicted in the insets. o 10 20 8 40 50 60 70 8 90
These figures show the amplitude of the total radial currents B.(deg.)

_(GPOo_ Ff 4 Ffy.» ; ;

S = (7 T Tt J3) ‘" against the anglél,_at a distance . Fig. 5. Amplitude of the radial currents, versus3; on a plane angular

from the tip. Our solution (continuous line) is compared WitBector with2 = 90° at a distance: = 0.5\ from the tip. The plane of

the exact solution (dashed line, from [12]) and with the firstacidence contains the bisectrix of the angular sector and the incidence aspect
i ; ; inR7PO | Fd . 7dY s is at 150 from the face; the polarization is parallel to the incidence plane.

order sqlutlon W!thOUt Vertex Cont”buuoh‘( +Ji+ JQ].7 ! Exact solution (dashed line)- - -; singly diffracted ray solution (dotted line)

dotted line). This latter is the same as the one obtained RY: |1p solution (continuous line) _

applying UTD, except for the fact that the reactive components

along z,, [see (6) and (7)] have also been included. i )

For the case in Fig. 5+( = 0.5)), the illumination is to the total current at the SBL of the singly diffracted rays
such that DD contributions do not occur. The first-orde’s = 38°). The SBL of the DD rays occurs @ = 52° in
solution without vertex contribution exhibits discontinuities aR0th Fig. 6(a) and (b); at these aspects, the discontinuity of the
the two SBL’s (3, ~ 38° and 3, ~ 52°) that are uniformly DD current./% is smoothly compensated by the relevatt’
compensated by the first-order vertex contributions; the totg@rm. The contribution/¢¢ + J** provides, in both cases, a
calculated current well agree with that of the exact solutiongood agreement with the exact solution.

In both the case of Fig. 6(ay & 1.2)) and 6(b) ¢ = 0.5)), In Fig. 7 the radial current is plotted versus the distance
the vertex contribution./¥ provides the expected continuityfrom the tip, at * from an edge. Our solution exhibits a

e—Jkr cos(f1—Q—p2) F(/W’u(lld)W(\/Hal)U(ﬁi Q- /32)
il /
2k 08 <%> Vsin(B) — Q — f2) sin B sin Bs sin Q

THdd _ %
Jidd = —op,

. o R F.(krd) cos(3] — Q)
X [F(/W’Vfd)[sm(/}]’L — Q= 32)P2 +cos(By — Q — Ba)P] + 27’/6(7‘ SiIi [32 Sin(([;’ — Q)) 22} (30)
: 1
and
= Hov P Flkrpi)U(B, — Q
T U 0 Y
<‘ cos ?1 V/2 sin 3] sin €+ \/cos(8], — Q) — cos [32>
¢
1 2
ZEW(J\/EO—I) COS< 2 ) o /31 |:F(k‘ 'U'U)A + FS(kTV’ZlL;’U) CcoS /32 ~ :| (31)
V) F 3
Veos(B) — ) — cos s /2 sin 3] sin Q ' 2jkr sin® [y 2
, F(krpy?)sin % cos 3
jE’U’U _ 2H7 G_JkT ! 2 L U(ﬁi — Q)
L T A il / \/7,
2n gkt ‘cos(%) ‘ V/2 sin Q sin B + y/cos(B] — Q) — cos 6> 2 sin fiy sin €2
o Fs(krv{V) cos By
X |:F(/€7‘l/l' )+ ;jkrlsile /32/2 22} (32)
1t = cos(B, — Q — Ba) — cos(Bo — 35) (33)
Vit =2 sin(B] — Q) sin By (34)
'O A
pYY =2 sin? <W) (35)
PV =2 sin? By (36)

o1 =27/ Dsin L8] — Q- ). (37)
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0.008 0.008 [T

0.006 0.006

1
1)

0.004 0.004

0.002 0.002

B,(deg.)

@ Fig. 8. Amplitude of the radial currentd, versusg; atr = 0.5A on a

plane angular sector witlt = 60°; the incidence aspect hat = 100°
and¢} = 160°. The polarization is along B; + (v/3/2)¢}. Total current
(continuous line) ____; J¥ .7 (dashed line) - - - -; and 794 + J4) . #
(dotted line)- - -.

0.008

0.008

10,

compared with.J¢ - # (dashed line) and witl J4¢ + J<) . 7

(dotted line). It is found thatJ provides a significant

contribution where it exists/ > 20°) due to the fact that

the plane wave is close to grazing. By comparing the curves,

it can also be deduced that the temii is important fromg3;

ranging from O to 18 and that.J** compensates well for the

B (deg.) discontinuities of /%4 at 3, = 20°.

) In the results presented next, the currents of the present
formulation are used in a radiation integral for calculating

Fig. 6. Amplitude of the radial currents versfis at a distance (a) = 0.5\ _fi i
and (b) = 1.2 from the tip, The incidence aspect is at3Bom the face. the far-field pattern of flat polygonal plates. In particular, the

0.004

0.002

Exact solution (dashed line) - - - -; singly diffracted ray solution (dotted lindfiNg€ currents of each corner of the plate are integrated over
--+; and ITD solution (continuous line) . the finite-plate surface, obviously retaining only one time the
fringe contribution due to the singly diffracted rays arising
0.04 from the same edge. The test cases that have been chosen
E-field are the same as that in [18], so that our results can be
0.03 - compared with other approaches based on first- and second-
. order PTD [18]. It is worth noting that the integration of our
=) fringe currents over the finite surface of the plate introduce
0.02

an end-point-type description of the diffraction contributions
associated to the following additional mechanisms:

1) interaction between nonadjacent edges;

2) interaction of each vertex with nonadjacent edges;

0.01 [

o 3) interaction between the DD field of two adjacent edge
0 025 05 075 1 1.25 15 with a third edge (triple diffraction).
HA The above interactions are described here only by abruptly

Fig. 7. Amplitude of the radial currents verspsat 3; = 1° from edge 1. truncating the integration domain without introducing the
The incidence aspect is at 3drom the face. Exact solution (dashed line)correct half-plane diffracted field at the nonadjacent edge.
- - - - singly difffacted ray solution (dotted ine).-; and ITD solution £\ o yore  corner-to-corner and edge-wave effects are not
(continuous line)___. » g
correctly described.
) ) ) In Fig. 9, the bistatic RCS of the square plate depicted in

reasonable agreement with the exact solution. This latter shayg inset is presented; the two contributiong, and o,
a more oscillatory behavior that induces one to think that &ffe shown in Fig. 9(a) and 9(b), respectively. The numerical
additional contribution arising from the vertex occurs; due fsults from the present formulation (continuous line) are
the vicinity to the edge, this can be attributed to edge wavesmpared with those from an MoM solution (dashed line,
[27], that have been neglected in the present solution.  from [18]) The agreement is quite satisfactory. In the same

Fig. 8 shows an example in which the double diffractiofigure, calculations are presented (dotted line) that have been
contribution and the vertex contributions play an importamialculated by applying the diffraction coefficients obtained in
role; a plane angular sector wiflh = 60° is illuminated from [20], which are the nonuniform (far-field) version of those
a direction it} = 100°, ¢y = 160° with an E-field along derived in [21]. The two high-frequency methods very closely
(%/3’1 + (v/3/2)¢;). The total current (continuous line) arecompare, as expected, except for aspects close to grazing, were
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Fig. 10. Monostatic echo area of a triangular plateo{@y . (b) o4/
integration of ITD currents; - - - MoM (from [17]); solution presented
in [18].

o2 (dB)

320 360
adequate prediction for this case is obtained by using a vertex
current correction directly derived from the exact solution [7].
Fig. 9. Bistatic echo area of a\Ssquare plate. (a)gs. (b) oo, (6 = 0 This _stresses again that the vertex contribution of the present
6 = 45°); integration of ITD currents; - - - - MoM (from [18]); Solution should be improved for narrow corner angle.
~~~~~~ solution presented in [20]).

VI. CONCLUSIONS

the present solution provides better agreement with MoM. ThisHigh-frequency expressions of the currents induced by the
may be attributed to the additional end-point-type descriptiodgffracted field on a plane angular sector have been derived on
of the interaction mechanisms 1)-3) that are not includelde basis of the ITD. Both singly and DD fringe currents have
by our previous solution [20]. This is particularly evidenbeen accounted for and two types of vertex fringe currents
in Fig. 9(b), where the present solution, unlike [20], predicare also introduced; these latter contributions provide the
vanishing field at grazing aspects, as expected from physicahtinuity of the currents induced by both singly and DD
considerations. rays, respectively. The final expressions have been obtained
Finally, Fig. 10 shows the monostatic copolar RCS on the terms of the familiar UTD transition function, and of a
principal plane of a 3Disosceles triangular plate. As pointectylinder parabolic transition function which is very simple to
out in [18], this case is particularly difficult to simulate incompute [21].
high-frequency regime, since vertex diffraction from a very In deriving the present high-frequency solution, the reactive
acute angle and vertex/edge interactions via edge waves ptaynponents of the half-plane canonical field are retained
an important role at grazing aspects. In particular, for theto the ITD solution, so that the final expressions tend to
case of polarization parallel to the plate [Fig. 10(a)], oueconstruct the near-edge behavior at a certain distance from
prediction fails close to nose-on incidence due to the preseribe tip. The currents close to the vertex are not correctly
of significant edge-wave effects. Including these effects prestimated by the present formulation, especially for narrow
duces improvement, as appears in the solution from [18] (alsorner angles. However, it is found that it provides satisfactory
reported here for convenience). For polarization at grazimgsults for a 90 corner also at a half wavelength from the tip.
incidence, which is orthogonal to the plate [Fig. 10(b)], a A part from the prediction of the scattered field from
large lobe at 150appears that is not completely reconstructegblygonal plates in both far and near zone, a further application
neither by our solution nor by the inclusion of the edgesf this formulation regards the description of the radiation
wave contributions. In [12], it is demonstrated that a mongattern of aperture antennas on finite ground planes. Indeed,
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by using reciprocity, the tangent magnetic field on a planehere(f‘fd)nu and(i?v)nu derive from nonuniform approx-
angular sector (which is directly related to the current of oumation of the stationary phase-point contribution and of the
formulation) can be interpreted as the normalized far-fielhd-point contribution, respectively, of the integral in (41)

radiated by an elementary magnetic dipole located on the same . oIk cos(F—QB) /7
angular sector. (34, =
Vkr 2v/2m
APPENDIX J(BL — Qa(By — Q) sin(B] — Q)
X == — (50)
In order to asymptotically evaluate the integral (28) for Vsin(B) — Q) sin(3] — Q — o)
large, (25) is introduced in (28); after changing the order of Zooy e IR k\/j = )
integration this leads to (F1")ne = NN 1(P2) Av(P2) sin B (51)
74" — U3 — ) - i 2§1 + 4§2 cos? _’1 cos? 3, From (47)-(51), it is a straightforward matter to obtain
! ! o 2 1) (30)~(32).
i = . P & , The technique for deriving (48) and (49) is discussed in
+4Hy %, sin o cos T cos fi [21] and is summarized here. As a first step, the incidence

(40) aspect is supposed to be far from grazigg far from =) and
an asymptotic evaluation is accomplished, which is uniformly
where valid across the SBL of the DD rays{ = /31 — ). For

=k - ‘ —jkr cos(Ba—ba) obtaining this, the contour is deformed into a SDP through

Y=o c, 302 Ai(B2)e™ IR X270 sin 6, db, the pointd, = A3, on the top Rieman sheet. The integration
i=1,2 (41) along the SDP gives thg{¥ contribution. In this deformation,
and the branch point singula}rity aﬁ’l — Q is captured when

% L[ — (—1)7] — (—1) F(y122) B2 < 1 — 2 so that an integration along a contour around

A;(6) :/ 2 . 12 the branch cut has to be included, which is asymptotically

0 VT2 dominated by the branch point. This latter integration leads to
x ¢ IKlcos(B1—S)—cos 6212 (42) the contributionJ¢¢. The uniform description of the field at

the SBL (merging between saddle point and branch point) is
treated by introducing the transition functid#i. As a second
) step, the observation point is supposed to be far from the above
v = 2k sin Q sin 3, cos? <ﬁ> (43) SB_L, and an asymptot?c e_valuation_ is carrie(_j out which is_also
valid for near-grazing incidence. Finally, uniform expressions
The integrals in (42) can be calculated in the exact closed-fofth the currents are deduced from the previous steps, which
[28, eq. 6.283] are valid everywhere except when simultaneoysly= 7 and
B2 = B — Q that corresponds to the special case in which

in which F(x) is the UTD transition function defined in (10)
and

Ai(62) = a(f2) (44) the SBL'’s of singly and DD rays merge. However, also in this
Veos(B] — Q) — cos by pathological situation, our solution remains well-behaved and
a(é numerically stable.
Ay (b2) = () (45) Y

PN e
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