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Scattering of Electromagnetic Pulses by
Simple-Shaped Targets with Radar Cross
Section Modified by a Dielectric Coating

Hans C. Strifors,Member, IEEE, and Guillermo C. Gaunaurd,Senior Member, IEEE

Abstract—We study the scattering interaction of electromag-
netic pulses with a spherical target. The target is a perfectly
conducting sphere coated with a thin dielectric layer. Two dif-
ferent hypothetical materials are specified: a lossy dielectric and
a dielectric that also has magnetic losses. The monostatic radar
cross section (RCS) is computed in each case and we examine the
influence of the coating on the RCS. In particular, we compare
the RCS of the coated sphere with the (normalized) backscattered
power when a large perfectly conducting flat plate coated with
the same dielectric layer is illuminated at normal incidence by the
same waveform. In particular, we find that except for frequencies
below those within the efficiency band of the absorbent material,
the normalized RCS of the coated sphere agrees well with the
power reflection coefficient of the plate covered with the same
kind of coating. For low-frequency incidences, the peaks and dips
in the RCS are more prominent for the coated target than they
are for the bare one. Analyzing the response of the spherical
targets in the combined time-frequency domain we demonstrate
that the coating itself, although reducing the RCS could introduce
additional resonance features in the target’s signature at low
frequencies that could be used for target recognition purposes.
This observation is also confirmed by a study of the bistatic RCS
of these coated objects, which we have displayed in various color
graphs.

Index Terms—Electromagnetic scattering, radar cross sections.

I. INTRODUCTION

T HE determination of radar cross-sections (RCS’s) of
targets of simple shape has received much attention and

is now a well-studied problem area [1], [2]. The analytical
treatment of scattering by penetrable spherical or cylindrical
targets has, in general, considered material compositions of
the targets that produce only small amounts of absorption of
the incident signal power, if any at all. When the material
composition of the target includes a radar absorbing material
(RAM), complex-valued arguments enter the Bessel functions
in the partial wave solution of the scattered field. This causes
the break down of conventional evaluation algorithms [3],
which require stable recurrence relations. By coating a given
target with a thin layer of suitable electromagnetic properties,
the RCS can be reduced and it is of interest to investigate the
resulting radar cross-section reduction (RCSR). It is also of
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interest to investigate the effect of the RCSR on the scattering
of pulses of short duration. We study the scattering interaction
of ultrawide-band (UWB) electromagnetic pulses of short
duration with a spherical target. The target is either a perfectly
conducting sphere (for comparison) or such a sphere coated
with a thin homogeneous dielectric (Dällenbach [1], [2]) layer.

For the dielectric layer, two different hypothetical materials
and a single thickness are specified. It is an established
procedure to specify the radar absorbing properties of a
material by referring to its reflection characteristics when
the material is in the shape of a plane layer of specified
thickness, which is then applied on a metal (or perfectly
conducting) backing. As it turns out in this study, the RCSR of
a RAM-coated target of three-dimensional (3-D) shape cannot,
in general, be determined from the properties of the RAM
applied to a flat plate. Following the traditional procedure,
we characterize each dielectric layer by computing the power
reflection coefficient when a flat perfectly conducting plate
coated with the layer is illuminated by a continuous wave
(CW) at normal incidence in a selected frequency band. Each
one of the coatings is then applied on the perfectly conducting
sphere, the (monostatic) RCS is computed, and we compare it
with the returned power from the coated plate normalized to
that of the incident wave.

The analysis of returned echoes has been traditionally done
in the frequency domain [1], [2], [4]–[8]. A recent method of
processing echoes that is gaining acceptance is to analyze them
in thecombinedtime-frequency domain. This approach seems
to offer more advantages because both the spectral content
of the target response and its time evolution can be utilized
for target recognition purposes. The identifying signature
features of a target can be displayed in a general time-
frequency-amplitude plot in 3-D space. Usually, projections
of a number of contour levels of these 3-D surfaces are
shown in the two-dimensional (2-D) time-frequency plane;
e.g., [9]–[11]. However, contour plots tend to emphasize the
gradient of a 3-D surface rather than the amplitude level.
To emphasize the amplitude displayed in the surface plot
of each time-frequency signature, the 3-D surface is shown
in color using an arbitrary color scale and is projected to
obtain a 2-D intensity image in the time-frequency plane. The
evolution of the signature features is extracted by means of
any of the many distributions that are members of the general
bilinear class [12], [13]. This includes the distributions at-
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tributed to Wigner, Ville, Margenau-Hill, Kirkwood-Rihaczek,
Choi-Williams, etc., each with its own characteristics, though
sharing the essential properties of time-frequency distributions.
As we demonstrated earlier [9], [10], the target resonances
that can be extracted from an echo backscattered from a target
when a short pulse (from an impulse radar) is incident on it
can be used to identify the target. These transient interactions
were preliminary analyzed in the time-frequency domain using
a pseudo-Wigner distribution (PWD) [9]. The advantages of
the PWD become more obvious when it is compared with
the standard spectrum (or the RCS) of the considered echo
returns. Thus, using a PWD we extend the analysis to the time-
frequency domain of the target by examining the backscattered
echo when each of these spherical targets is illuminated by
a short broad-band pulse resembling the one that was used
in [6]. The computational machinery illustrated here with the
PWD can be implemented withany of the other distributions
members of the bilinear class [12]–[14]. It can be stated that
all bilinear distributions can be viewed as smoothed versions
of the WD with their amount of smoothing determining the
amount of suppression of the cross-term interference and the
loss of time-frequency concentration of features. Finally, we
generate bistatic RCS plots of these coated objects for two
pertinent polarizations using a suitable color scale and we
use them to confirm observations already extracted from the
time-frequency (i.e., PWD) plots.

II. STEADY-STATE SCATTERING

A. Scattering from Spherical Targets

A steady-state continuous plane electromagnetic wave
polarized in the direction is

incident on the North pole (defined by the spherical coordinate
) of a perfectly conducting sphere of radius, where

is the amplitude of the field, the angular frequency,
and the wave number in the surrounding medium
taken to be free-space. Henceforth, we use the notation

for the nondimensional frequency, where
is the wavelength in free-space.

The scattered electric far field at the distance
from the origin of the sphere can be written in the form [1],
[4], [7] (cf. Fig. 1)

(1)

where and are the colatitude and azimuth angles, respec-
tively, and unit vectors in these directions, and

(2)

Fig. 1. Scattering geometry for plane wave incidence on a perfectly con-
ducting sphere with a dielectric coating.

Here, the functions and are defined by

(3)

denoting the associated Legendre functions of first kind,
first order, and th degree, and the scattering coefficients

and are given by

(4)

where the Sommerfeld functions and
are defined by the spherical Bessel

functions of the first kind and the spherical Hankel functions
of the second kind, respectively.

The (normalized) radar cross section (RCS) is then defined
by

(5)

where the dependence on the anglesand are emphasized
and the form-function can be read off from
(1)–(5). We note that the monostatic (backscattering) case is
defined by .

When the target is the above perfectly conducting sphere
of radius with a dielectric coating of thicknessapplied on
it, the scattering coefficients (4) assume forms given in [7],
though slightly modified because the coating is here assumed
to be magnetic. In terms of the relative dielectric permittivity
and magnetic permeability of the coating layer, the index of
refraction, the relative impedance, and admittance are defined
by and . These
quantities are, in general, functions of the angular frequency

. The arguments that occur in the Sommerfeld functions
defining the form function in this case are

and where
is the wave number in the dielectric coating of
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refractive index . The scattering coefficients then assume
the forms

(6)

where the ten functions are given by

(7)

B. E- and H-Plane Scattering

We consider two particular cases of polarization, namely
those defined by and , which are referred to
as -plane and -plane (bistatic) scattering, respectively. The
case of -plane (or -plane) scattering is defined by the inci-
dent -field (or -field) being parallel to the plane spanned by
the direction of incidence and the scattering direction. Only
in these two cases are the scattered electromagnetic far fields
parallel to the incident electromagnetic field for any angle
and any frequency . The scattered -field (polarized in the
plane of the incident -field) is in these two cases given by

(8)

respectively, where -plane or -plane scattering is indicated
by the index and the unit vectors are located in theplane.

C. Bessel functions of Complex-Valued Arguments

A distinguishing property of dielectric coatings used for
reducing the RCS of objects is that the index of refraction
is a complex-valuedfunction of the frequency due to a
complex permittivity or permeability or both. The presence
of complex arguments, often with a large imaginary part
in the form function, severely restricts successful numerical
evaluation using traditional algorithms for the Bessel functions
since the ordinary recurrence relations become unstable. To
surmount the difficulties, we use an algorithm for calculating
the spherical Bessel functions of the first kind that was
developed by Lentz [15], [16]. This algorithm is based on a
continued fraction representation of the ratios .

The continued fraction approach could also be used for com-
puting the spherical Bessel functions of the second kind. We
found, however, that the corresponding continued fraction
representation of the ratios of the spherical
Bessel functions of the second kind [15] is not stable enough
to be computed with the numerical precision available in a
personal computer (PC). Instead, the spherical Bessel functions
of the second kind and the spherical Hankel functions of the
second kind are calculated using the cross products [17, eq.
(10.1.31)]

(9)

where the latter equation is a reformulation of the former
using the definition of the spherical Hankel function [17,
eq. (10.1.1)]. These calculations can then be conveniently
performed using a PC. The recurrence formula given by (9)
was, in fact, recommended by Lentz [15] for calculations of the
spherical Bessel function of the second kind. The recurrence
formula for the spherical Hankel function given by (9)has
been tested by us in several instances and found to be stable
and accurate at all occasions. We remark that in scattering
applications where the absorption of incident signal power
is large and the scattered energy quite small within a given
frequency band, it turns out that the modulus of the pertinent
spherical Hankel function (the second kind in our formulation)
is also quite small in that band. As a consequence, the accurate
calculation of the spherical Hankel function using the ordinary
definition in terms of the spherical Bessel functions of first
and second kind (viz., ) would require a large
number of significant digits. This is because in many cases
of practical interest the spherical Hankel function will come
out as an exceedingly small difference of the spherical Bessel
functions resulting in ruinous loss of accuracy.

D. Normal Incidence on a Coated Flat Plate

We consider a perfectly conducting plate (of infinite extent)
coated by a homogeneous dielectric layer of thicknesswith
a CW illuminating its surface at normal incidence. It can be
shown that the reflection coefficient in this case assumes the
form [2]

(10)

The modulus of the normalized reflected power is then given
by the “power reflection coefficient” .

III. T RANSIENT SCATTERING

We generalize the analysis to pulsed incidences [7], [9] by
introducing a Fourier transform pair , where
is the incident pulse and its spectrum

(11)
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The scattered electric far field can then be shown to assume
the form [7]

(12)

where we remember that positive values are obtained for the
arrival time at the observation point for scattered pulses if
is chosen to be larger than 2.

When using the discrete-time Fourier transform (DFT) [19]
in numerical calculations where the incident pulse is given
in the form of a discrete-time series, which is assumed
periodic, the above formulation of the continuous-time Fourier
transform pair is conveniently converted to

(13)

where the sequences and both contain elements.

IV. TARGET RESPONSES IN THE

JOINT TIME-FREQUENCY DOMAIN

The analysis of the returned echoes has been traditionally
done in the frequency domain [1], [2], [4]. A recent method
of processing signals that has been gaining acceptance is to
work in thecombinedtime-frequency domain. This approach
seems to give the largest amount of information since it can
display the evolution of the identifying resonance features of
the scatterer and their amplitudes as surfaces in a general time-
frequency-amplitude plot in 3-D space. Usually, projections of
a number of contour levels of these 3-D surfaces are shown
in the 2-D time-frequency plane. The evolution of signature
features is extracted by any of the many distributions that are
members of the general bilinear class, [12]–[14]. The (auto-)
Wigner distribution (WD) of the function

(14)

is a member of the general bilinear class that shares with some
other time-frequency distributions the property of preserving
the time and frequency energy marginals of a signal, i.e.,

integration of the WD over the frequency variable at a generic
time (or over the time variable at a generic frequency) yields
the signal’s instantaneous power at that time (or energy density
spectrum at that frequency) [14]. Another property of the
WD, which is desirable for target recognition purposes, is its
excellent ability ofconcentratingthe features of a function in
the combined time-frequency domain.

Digital evaluation of the WD of continuous-time functions
requires a reformulation of (14) to its analogue for discrete-
time functions. Existing algorithms for fast Fourier transform
(FFT) can then be adapted to the discrete Wigner distribution.
Analogous to (13), the discrete-time version of (14), for a
sequence containing elements is

(15)

where represent frequency and time,
respectively, and is substituted for
whenever . Comparing (15) with (13) shows that
the WD is periodic with period rather than , as is the case
for the DFT. Thus, aliasing is, in general, present in the WD
even when the sampling rate satisfies the Nyquist criterion.
An approach to avoid aliasing (which we will use here) is
to use the “analytic function” when computing the WD. This
function is defined by , where is
a given real-valued function and is the discrete Hilbert
transform [19] of . When analytic functions are used, the
distribution in (14) or (15) is often called the Wigner–Ville
distribution.

Practical applications of the WD are limited by the presence
of “cross-terms.” The cross-terms attributed to the bilinear na-
ture of the distribution, generate features that lie between two
autocomponents and can have peak values larger than those
of the autocomponents. However, using the analytic function

eliminates cross-terms between positive and negative
frequency components. There is a tradeoff between high
feature concentration in the time-frequency domain and the
suppression of cross-terms interference that can be achieved
using any kind of smoothing of the WD. Thus, it is possible to
suppress the remainingcross-terms interference by weighting
the function before evaluating the WD using a window func-
tion. This window function can be made to slide along the time
axis with the instant at which the WD is being evaluated.
Different window functions will place different weights on the
time segments of the time-varying function , which will
yield different physical interpretations of the resulting pseudo-
Wigner distribution (PWD). Another important property of
the window function is that, if narrow enough, it suppresses
the influence of noise on the PWD. If is the window
function, the PWD of is

(16)
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Fig. 2. Modulus of the RCS (main plot) and impulse response (insert plot)
of a perfectly conducting sphere of diameter 500 mm.

and the corresponding discrete pseudo-Wigner distribution
(DPWD) is given by

(17)

A convenient window function is a Gaussian of the form
, where is a positive real number that

controls the width of the time window.

V. NUMERICAL RESULTS

We examine the effect of dielectric coatings on the backscat-
tered pulses returned by the target when the applied coatings
are made of two different hypothetical materials. Coating
“A” is a nonmagnetic (i.e., ) lossy dielectric layer
with relative permittivity and thickness 5
mm and coating “B” has the magnetic permeability

, permittivity , and thickness 5 mm.
The electromagnetic properties of the coating materials are
assumed to be independent of the frequency in the broad
band GHz, which is not an entirely realistic
assumption. The assumption means that the energy dissipation
(or absorption) is instantaneous and it is made here for
convenience. Generally, the electromagnetic constitutive equa-
tions for dissipative materials are assumed to be functionals
of the more realistic Volterra-integral type for which the
Kramers–Kr̈onig relations apply.

For comparison, we first compute the monostatic RCS of
a perfectly conducting sphere of radius mm in the
frequency band GHz and the result is displayed
in Fig. 2, main plot. Fig. 2, insert plot, displays the impulse
response of the target. Fig. 3, main plot, displays the power
reflection coefficient when a plate covered with coating A is
illuminated at normal incidence, and the insert plot shows
the response of the coated plate to an ideal impulse (i.e., a

Fig. 3. Power reflection coefficient (main plot) and impulse response (insert
plot) of a flat plate covered with coating A.

Fig. 4. Modulus of the RCS (main plot) and impulse response (insert plot)
of a perfectly conducting sphere covered with coating A.

Dirac delta pulse). We notice the narrow absorption band of
this type of coating, which has an echo reduction better than
30 dB within an extremely narrow band centered about 3.9
GHz. Fig. 4 (main plot) displays the monostatic RCS of a
perfectly conducting sphere of radius mm with the
same type (viz. A) of coating applied. Comparing the main
plots of Figs. 3 and 4 we see that the modulus of the RCS of
the coated sphere agrees very well with the power reflection
coefficient of the coated plate for frequencies above3 GHz.
At lower frequencies the RCS exhibits the peaks and dips
characteristic of the influence of the secondary surface-wave
returns, which can be seen in the impulse response of the
target (Fig. 4, insert plot) in the time interval ns. A
closer examination of the lower-frequency portion of the RCS
reveals that the RCS relative to the RCS of the uncoated sphere
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Fig. 5. Modulus of the RCS (main plot) of a perfectly conducting sphere
covered with coating A relative to the RCS of the uncoated sphere.

in Fig. 2 reaches peak values that are almost twice as large in
a 1-GHz band around the frequency 2 GHz. Fig. 5, main plot,
displays the modulus of the RCS of the coated sphere relative
to the RCS of the uncoated sphere. We also notice that only
a slight amount of RCSR (viz. a single dB, as is apparent
from Fig. 2 main plot) is sufficient at higher frequencies for
the contribution to the RCS from the secondary echo returns
to be annihilated (cf. Fig. 4, main plot).

In the present work, all calculations of reflected power and
RCS are carried out using 4096 equal frequency steps. To
avoid aliasing errors each impulse response is computed from
the respective electric field in the frequency domain after
lowpass filtering has been performed using a second-order
Butterworth filter with a cutoff frequency of 8.5 GHz and,
since the time-domain functions should be real valued, the
reversed complex conjugate sequence has been appended to
the computed sequence. Fourier transforms (13) or pseudo-
Wigner distributions (17) are then computed using the com-
plete sequence of elements.

For comparison with the RCSR achieved with the aid of a
coating with a broad efficiency band, we contrast these results
with the corresponding results when coating B is applied to a
plate and to a sphere of radius mm, as displayed in
Figs. 6 and 7 main plots, respectively. The power reflection
coefficient of the coated plate (Fig. 6 main plot) is practically
identical to the normalized RCS for the coated sphere (Fig. 7
main plot) when the frequency is larger than about 1 GHz
and at lower frequencies the occurrence of peaks and dips in
the RCS again reveals the influence of the secondary (i.e.,
“creeping wave”) returns. The impulse response of the coated
plate and the initial return of the impulse response of the coated
sphere (Figs. 6 and 7 insert plots) have very low amplitudes
compared with the cases displayed in Figs. 3 and 4. They can
both be seen to be comprised of one (tiny) portion that has
been reflected at the outer surface of the coating and another
portion that has traveled round-trip through the dielectric layer

Fig. 6. Power reflection coefficient (main plot) and impulse response (insert
plot) of a flat plate covered with coating B.

with a time separation (viz. 0.63 ns) that corresponds to
the speed of propagation in the layer (viz.,15.8 mm/ns).
We remark that the agreement obtained between the power
reflection coefficient and the RCS in broad frequency bands
only holds whennormal incidenceon the coated plate and
monostaticscattering by the coated sphere are compared.
Fig. 8 main plot displays the modulus of the RCS of the
sphere coated with layer B relative to that of the uncoated
sphere. This relative RCS exhibits characteristics analogous
to those obtained for coating A (cf. Fig. 5 main plot). Thus,
for frequencies below the efficiency band of the coating, it
acts as a lossless waveguide and intensifies the constructive
and destructive interactions of the primary, specular return and
the secondary (creeping) return that has circumnavigated the
target. In this manner, the coating actually contributes to the
RCS in several narrow frequency bands.

A theoretical model of the pulses being transmitted by an
impulse radar can be conveniently obtained by filtering an
ideal impulse using a Butterworth bandpass filter of suitable
filter order and cutoff frequencies [9], [10]. To achieve a broad-
band, fictitious, but realistic, waveform for illuminating targets
we select a filter of order six and cutoff frequencies of value
0.2 and 5.0 GHz. Fig. 9 displays the waveform (insert plot) and
its spectrum (main plot) that results from this design. As the
first target to be illuminated with the designed pulse we choose
an uncoatedperfectly conducting sphere of radius 250 mm.
We compute the modulus of the PWD of the backscattered
pulse using a window size specified by (ns) and
we display it using the 3-D surface plot and its plane 2-D
projection contour plot in Fig. 10. The lateral grid planes
display the waveform and power density spectrum of the
returned pulse using (unnumbered) linear scales. We contrast
this PWD of the perfectly conducting sphere with the PWD
for the same target when it is covered with coating A (or B)
in Fig. 11 (or 12). The relative strength of the returned pulses
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Fig. 7. Modulus of the RCS (main plot) and impulse response (insert plot)
of a perfectly conducting sphere covered with coating B.

Fig. 8. Modulus of the RCS (main plot) of a perfectly conducting sphere
covered with coating B relative to the RCS of the uncoated sphere.

(best noticed in the impulse responses in Figs. 4 and 7 insert
plots) are not evident from the PWD plots since arbitrary units
are used for all plotted functions to more clearly exhibit the
resonance features of the PWD’s. We conclude from those
PWD’s that resonance features can be best extracted at low
frequencies where, possibly, the RCSR is not strong enough to
suppress the effect of the secondary echo returns on the RCS.
Absorbing coatings have long been known to be ineffective
at (sufficiently) low frequencies [20]. Our findings verify
this point and further show that they can generate additional
resonance features that may be used as identifying clues at
those low frequencies [21]–[23]

Finally, we analyze bistatic RCS. Combining (5) and (8)
for the -plane and -plane scattering cases, we obtain

Fig. 9. The spectrum of the designed incident pulse (main plot) and its
waveform (insert plot).

Fig. 10. Surface plot and its plane projection intensity image of the PWD
together with the returned waveform and its power density spectrum when a
perfectly conducting sphere is illuminated in monostatic mode by the designed
incident pulse.

(normalized) cross-sections in these respective planes given by

(18)

where and are given in (2)–(4) for the
bare sphere. For the sphere covered with either coating, the
coefficients and appearing in (2) are replaced by those
in (6) and (7). These bistatic cross-sections are displayed in
Figs. 13 and 14 for the bare sphere, in Figs. 15 and 16 for the
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Fig. 11. Surface plot and its plane projection intensity image of the PWD
together with the returned waveform and its power density spectrum when
a perfectly conducting sphere covered with coating A is illuminated in
monostatic mode by the designed incident pulse.

Fig. 12. Surface plot and its plane projection intensity image of the PWD
together with the returned waveform and its power density spectrum when
a perfectly conducting sphere covered with coating B is illuminated in
monostatic mode by the designed incident pulse.

sphere covered with the nonmagnetic lossy dielectric “A,” and
in Figs. 17 and 18 for the sphere covered with the magnetic
coating layer “B.” Figs. 13, 15, and 17 pertain to the-plane
scattering, and Figs. 14, 16, and 18 to the-plane scattering
cases. These bistatic (normalized) cross-sections as defined by
(18) are represented in an arbitrary color scale (pseudocolors)
graded from dark blue (0), through shades of magenta, green,
yellow, and red, to brown (3 and higher levels). The direction
of wave incidence is always from the left (i.e., ) of the
plots. The outer radius of the bare sphere is mm and
the thickness of the coating is always 5 mm, making the outer
radius for the coated spheres mm. The frequency scale
is displayed in the radial direction and it ranges in gigahertz
units from 0 at the center to 5 at the outermost circle shown.

Fig. 13. Bistatic radar cross section (RCS) for an uncoated perfectly con-
ducting sphere of radiusa = 250 mm. For theE-plane scattering case.

This is equivalent to 5.2 (nondimensional)-values per circle,
up to at the outermost circle.

Cross-section levels considerably higher than 3 occur in
the forward scattering direction (i.e., ) for all three
targets, coated or not. However, the forward scattered power
is usually 180 out of phase with the incident field, and
forms, when added to the incident field, a shadow region
behind the scattering object [2]. Away from the forward
scattering direction there are noticeable differences in the
cross-sections displayed in Figs. 13–18. For the uncoated
sphere (see Figs. 13 and 14) there are fringes of higher and
lower values that are more noticeable in Fig. 13 (-plane
case) than in Fig. 14 (-plane case). These values oscillate
about the unit value and are due to constructive or destructive
interference between the specularly reflected wave in a given
direction and the creeping wave that radiates off the target
in the same direction. As it should be, there is no difference
between the two scattering cases (i.e.,- and -plane) in
the monostatic backscattering direction (i.e., ) since the
two cases are here identical. The fringe pattern in this direction
indicates the graduated weakening of the scattering amplitudes
in agreement with Fig. 2 (i.e., about four fringes per gigahertz
division). One apparent result of this bistatic analysis is that
the occurrence of noticeable signature features in the frequency
domain depend in general on the polarization of the incident
waveform.

For the sphere with coating “A” and away from the forward
scattering direction, there are about a dozen color fringes
oscillating about a unit value up to a frequency of 3 GHz,
again more clearly visible in the -plane case (Fig. 15) than
in the -plane case (Fig. 16). For higher frequencies there
occurs a substantial decrease to very low values of the cross-
section at about 4 GHz followed by increasing values for
yet higher frequencies. This agrees with the low dip this
coating introduces in the monostatic backscattering ( )
case, as seen in Fig. 4. The dozen fringes seen correspond
to the curvature-induced oscillations present in Fig. 4 for
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Fig. 14. Same as Fig. 13, but for theH-plane scattering case.

Fig. 15. Bistatic RCS for a perfectly conducting sphere of radiusa = 250

mm covered with the (nonmagnetic) coating “A.” ForE-plane scattering.

backscattering and its vicinity. For the sphere covered with
the magnetic coating “B” we see that the scattering amplitudes
are practically zero (dark blue) almost everywhere away from
the forward scattering direction (see Figs. 17 and 18). In the
backscattering direction ( ) this is in agreement with
Fig. 7, particularly above 1 GHz. In brief, the most effective
coating is “B”; it is the most broad band and it is effective
down to frequencies of 1 GHz. The region below 1 GHz
for backscattering is the only one showing relatively high
amplitudes, which agrees with the findings in Fig. 12. Only
at low frequencies that strong RCS values are observed and
we note in particular that those values occur for a larger range
of the bistatic angle in the -plane case (Fig. 18). Hence,
even when one has such an effective coating above 1 GHz,
high-resonance scattering amplitudes then appearing at lower
frequencies can be used for target identification purposes [20],
[21] and for a wider range of the bistatic angle using-
plane scattering.

Fig. 16. Same as Fig. 15, but for theH-plane scattering case.

Fig. 17. Bistatic RCS for a perfectly conducting sphere of radiusa = 250

mm covered with the magnetic coating B described in the text. ForE-plane
scattering.

VI. CONCLUSIONS

We have studied the scattering interactions present when
a waveform is incident on a few targets of simple shape
in the traditional frequency and time domains and also in
the combined time-frequency domain using a pseudo-Wigner
distribution. In the latter case, the waveform incident on the
targets was a short ultrawide-band pulse resulting from a filter
design technique we developed earlier. We have demonstrated
the close relation between the backscattering RCS of a simple
target and the power reflection coefficient of an infinite flat
plate at normal incidence when both are covered with the same
type of coating made of a microwave absorbing material. We
have also demonstrated the distinctive differences in both those
target responses that are present at low frequencies.

Comparing the PWD’s of a simple-shaped target without
any coating or with one of two different applied coatings
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Fig. 18. Same as Fig. 17, but for theH-plane scattering case.

clearly demonstrated that the coating itself, although reducing
the RCS, could induce additional resonance features in the
target’s signature at low frequencies. If extracted by a suitable
radar, those low-frequency features can be used for target
recognition purposes. It also follows from our analysis that an
absorbing coating would also make high-frequency resonance
features negligible even when there is only a small amount of
absorption present.

Finally, a study of bistatic RCS of these bare and coated
objects confirms the above observations extracted from the
PWD plots in Figs. 10–12. It further permits the quantita-
tive display of the angular (sectors) and frequency (annu-
lar) regions in which the cross-sectional features of interest
appear. Although these features are reduced in some re-
gions, they are enhanced in others and, thus, this behavior
becomes the tool to be used for identification of coated
targets [21], [22].

ACKNOWLEDGMENT

The authors would like to thank the Independent Research
Boards of their respective institutions for their support.

REFERENCES

[1] G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum,Radar
Cross Section Handbook. New York: Plenum, 1970, vol. 1.

[2] E. F. Knott, J. F. Shaeffer, and M. T. Tuley,Radar Cross Section, 2nd
ed. Norwood, MA: Artech House, 1993.

[3] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling, Numerical Recipes: The Art of Scientific Computing.New York:
Cambridge Univ. Press, 1986.

[4] A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from
two concentric spheres,”J. Appl. Phys.,vol. 22, pp. 1242–1246, Oct.
1951.

[5] J. Rheinstein, “Scattering of electromagnetic waves from dielectric
coated conducting spheres,”IEEE Trans. Antennas Propagat., vol. 12,
pp. 334–340, May 1964.

[6] G. Gaunaurd, H.̈Uberall, and P. J. Moser, “Resonances of dielectrically
coated spheres and the inverse scattering problem,”J. Appl. Phys.,vol.
52, pp. 35–43, Jan. 1981.

[7] G. C. Gaunaurd, H. C. Strifors, and W. H. Wertman, “Transient effects
in the scattering of arbitrary EM pulses by dielectric spherical targets,”
J. Electromagn. Waves Applicat., vol. 5, pp. 75–92, Jan. 1991.

[8] H. T. Kim, “High-frequency analysis of EM scattering from a conduct-
ing sphere coated with a composite material,”IEEE Trans. Antennas
Propagat., vol. 41, pp. 1665–1674, Dec. 1993.

[9] H. C. Strifors, S. Abrahamson, B. Brusmark, and G. C. Gaunaurd,
“Bistatic scattering by a spherical dielectric target illuminated by an
electromagnetic pulse,” inAutomat. Object Recogn. III—Proc. SPIE, F.
A. Sadjadi, Ed., vol. 1960, pp. 2–13, 1993.

[10] H. C. Strifors, G. C. Gaunaurd, B. Brusmark, and S. Abrahamson,
“Transient interactions of an EM pulse with a dielectric spherical shell,”
IEEE Trans. Antennas Propagat., vol. 42, pp. 453–462, Apr. 1994.

[11] H. C. Strifors and G. C. Gaunaurd, “Scattering of short, ultra-wideband
electromagnetic pulses by simple targets with reduced radar cross-
section,” inUltra-Wideband, Short-Pulse Electromagnetics 2, L. Carin
and L. B. Felsen, Eds. New York: Plenum Press, 1995, pp. 447–454.

[12] L. Cohen, “Time-frequency distribution—A review,”Proc. IEEE, vol.
77, pp. 941–981, July 1989.

[13] , Time-Frequency Analysis.Englewood Cliffs, NJ: Prentice-
Hall, 1995.

[14] T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The Wigner
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