1998 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 46 Number 10, October 1998
Table of Contents for this issue
Complete paper in PDF format
Extrapolation Methods for Sommerfeld Integral Tails
Krzysztof A. Michalski, Senior Member, IEEE
(Invited Review Paper)
Page 1405.
Abstract:
A review is presented of the extrapolation methods for
accelerating the convergence of Sommerfeld-type integrals (i.e.,
semi-infinite range integrals with Bessel function kernels), which arise
in problems involving antennas or scatterers embedded in planar
multilayered media. Attention is limited to partition-extrapolation
procedures in which the Sommerfeld integral is evaluated as a sum of a
series of partial integrals over finite subintervals and is accelerated
by an extrapolation method applied over the real-axis tail segment
({{a}}, {{\infty}}) of the integration
path, where {{a}} {>} {{0}} is
selected to ensure that the integrand is well behaved. An analytical
form of the asymptotic truncation error (or the remainder), which
characterizes the convergence properties of the sequence of partial sums
and serves as a basis for some of the most efficient extrapolation
methods, is derived. Several extrapolation algorithms deemed to be the
most suitable for the Sommerfeld integrals are described and their
performance is compared. It is demonstrated that the performance of
these methods is strongly affected by the horizontal displacement of the
source and field points {{\rho}} and by the choice of
the subinterval break points. Furthermore, it is found that some
well-known extrapolation techniques may fail for a number of values of
{{\rho}} and ways to remedy this are suggested.
Finally, the most effective extrapolation methods for accelerating
Sommerfeld integral tails are recommended.
References
-
K. A. Michalski and J. R. Mosig, "Multilayered media Green's
functions in integral equation formulations,"
IEEE Trans. Antennas Propagat., vol.
45, pp. 508-519, Mar. 1997.
-
I. M. Longman, "Note on a method for computing infinite
integrals of oscillatory functions," Proc.
Cambridge Phil. Soc., vol. 52, pp. 764-768,
1956.
-
M. Blakemore, G. A. Evans, and J. Hyslop, "Comparison of some
methods for evaluating infinite range oscillatory integrals,"
J. Comput. Phys., vol. 22, pp.
352-376, 1976.
-
S. K. Lucas and H. A. Stone, "Evaluating infinite integrals
involving Bessel functions of arbitrary order,"
J. Comput. Appl. Math., vol. 64, pp.
217-231, 1995.
-
M. Abramowitz and I. A. Stegun, Eds., Handbook of
Mathematical Functions.New York: Dover,
1965.
-
J. R. Mosig, "Integral equation technique," in
Numerical Techniques for Microwave and Millimeter-Wave
Passive Structures, T. Itoh, Ed.New York:
Wiley, 1989, pp. 133-213.
-
T. O. Espelid and K. J. Overholt, "DQAINF: An algorithm for
automatic integration of infinite oscillating tails,"
Num. Algorithms, vol. 8, pp.
83-101, 1994.
-
J. N. Lyness, "Integrating some infinite oscillating
tails," J. Comput. Appl. Math.,
vols. 12/13, pp. 109-117, 1985.
-
C. Brezinski and M. Redivo Zaglia, Extrapolation
Methods, Theory and Practice.New York:
North-Holland, 1991.
-
W. Squire, "Partition-extrapolation methods for numerical
quadrature," Int. J. Computer Math., Section
B, vol. 5, pp. 81-91, 1975.
-
E. J. Weniger, "Nonlinear sequence transformations for the
acceleration of convergence and summation of divergent series,"
Comput. Phys. Rep., vol. 10, pp.
189-371, Dec. 1989.
-
T. J. I'A. Bromwich, An Introduction to the Theory
of Infinite Series.New York: Macmillan,
1965.
-
F. C. Frischknecht, "Fields about an oscillating magnetic
dipole over a two-layer earth, and application to ground and airborne
electromagnetic surveys," Quart. Colorado School
Mines, vol. 62, Jan. 1967.
-
M. Siegel and R. W. P. King, "Electromagnetic fields in a
dissipative half-space: A numerical approach," J.
Appl. Phys., vol. 41, pp. 2415-2423, May
1970.
-
J. Ryu, H. F. Morrison, and S. H. Ward, "Electromagnetic
fields about a loop source of current,"
Geophys., vol. 35, pp. 862-896,
Oct. 1970.
-
H. L. Gray and T. A. Atchison, "Nonlinear transformations
related to the evaluation of improper integrals. I,"
SIAM J. Num. Anal., vol. 4, no. 3,
pp. 363-371, 1967.
-
H. L. Gray, T. A. Atchison, and G. V. McWilliams, "Higher
order G transformations,"
SIAM J. Num. Anal., vol. 8, pp.
365-381, June 1971.
-
P. Cornille, "Computation of Hankel transforms,"
SIAM Rev., vol. 14, pp.
278-285, Apr. 1972.
-
J. S. R. Chisholm, A. Genz, and G. E. Rowlands, "Accelerated
convergence of sequences of quadrature approximations,"
J. Comput. Phys., vol. 10, pp.
284-307, 1972.
-
P. Wynn, "On a device for computing the
e_m(S_n) transformation,"
Math. Tables Aids Comput., vol. 10,
pp. 91-96, 1956.
-
D. Shanks, "Nonlinear transformations of divergent and slowly
convergent sequences," J. Math.
Phys., vol. 34, pp. 1-42, 1955.
-
C. M. Bender and S. A. Orszag, Advanced
Mathematical Methods for Scientists and
Engineers.New York: McGraw-Hill, 1978.
-
D. Levin, "Development of nonlinear transformations for
improving convergence of sequences," Int. J.
Comput. Math., Section B, vol. 3, pp. 371-388,
1973.
-
A. Alaylioglu, G. A. Evans, and J. Hyslop, "The evaluation of
oscillatory integrals with infinite limits," J.
Comput. Phys., vol. 13, pp. 433-438, 1973.
-
D. M. Bubenik, "A practical method for the numerical
evaluation of Sommerfeld integrals," IEEE Trans.
Antennas Propagat., vol. AP-25, pp. 904-906,
Nov. 1977.
-
P. Hillion and G. Nurdin, "Integration of highly oscillatory
functions," J. Comput. Phys.,
vol. 23, pp. 74-81, 1977.
-
G. J. Burke, E. K. Miller, J. N. Brittingham, D. L. Lager, R. J.
Lytle, and J. T. Okada, "Computer modeling of antennas near the
ground," Electromagn., vol. 1,
pp. 29-49, Jan.-Mar. 1981.
-
C. C. Lin and K. K. Mei, "Radiation and scattering from
partially buried vertical wires,"
Electromagn., vol. 2, pp.
309-334, Oct.-Dec. 1982.
-
A. Sidi, "The numerical evaluation of very oscillatory
infinite integrals by extrapolation," Math.
Comput., vol. 38, pp. 517-529, Apr. 1982.
-
J. R. Mosig and F. E. Gardiol, "A dynamical radiation model
for microstrip structures," in Adv. Electron.
Electron Phys., P. W. Hawkes, Ed.New York:
Academic, 1982, vol. 59, pp. 139-237.
-
--, "Analytic and numerical techniques in the Green's
function treatment of microstrip antennas and scatterers,"
Proc. Inst. Elect. Eng., vol. 130,
pt. H, pp. 175-182, Mar. 1983.
-
A. D. Chave, "Numerical integration of related Hankel
transforms by quadrature and continued fraction expansion,"
Geophys., vol. 48, pp.
1671-1686, Dec. 1983.
-
P. Hänggi, F. Roesel, and D. Trautmann, "Evaluation of
infinite series by use of continued fraction expansions: A numerical
study," J. Comput. Phys., vol.
37, pp. 242-258, 1980.
-
R. Piessens, E. deDoncker-Kapenga, C. W. Überhauer, and D. K.
Kahaner, QUADPACK: A Subroutine Package for Automatic
Integration.New York: Springer-Verlag,
1983.
-
J. N. Lyness and G. Hines, "Algorithm 639: To integrate some
infinite oscillating tails," ACM Trans. Math.
Software, vol. 12, pp. 24-25, Mar. 1986.
-
T. Hasegawa and T. Tori, "An automatic integration of
oscillatory functions by the Chebyshev series expansion,"
J. Comput. Appl. Math., vol. 17, pp.
21-29, 1987.
-
A. Sidi, "Extrapolation methods for divergent oscillatory
infinite integrals that are defined in the sense of summability,"
J. Comput. Appl. Math, vol. 17, pp.
105-114, 1987.
-
--, "Generalizations of Richardson extrapolation with
applications to numerical integration," in
Numerical Integration III, H. Brass
and G. Hämmerlin, Eds.Basel, Germany:
Birkhäuser-Verlag, 1988, vol. 85, pp. 237-250.
-
--, "A user-friendly extrapolation method for
oscillatory infinite integrals," Math.
Comput., vol. 51, pp. 249-266, July 1988.
-
T. Hasegawa and A. Sidi, "An automatic integration procedure
for infinite range integrals involving oscillatory kernels,"
Num. Algorithms, vol. 13, pp.
1-19, 1996.
-
U. T. Ehrenmark, "A note on an extension of extrapolative
techniques for a class of infinite oscillatory integrals,"
BIT, vol. 30, pp. 152-155,
1990.
-
K. J. Overholt, "The
P-algorithms for
extrapolation," Det. Kong. Norske Vid. Selsk.
Skr., vol. 2, pp. 121-129, 1989.
-
N. Kinayman and M. I. Aksun, "Comparative study of
acceleration techniques for integrals and series in electromagnetic
problems," Radio Sci., vol. 30,
pp. 1713-1722, Nov./Dec. 1995.
-
C. Brezinski, "Some new convergence acceleration
methods," Math. Comput., vol.
39, pp. 133-145, July 1982.
-
J. Wimp, "Toeplitz arrays, linear sequence transformations
and orthogonal polynomials," Num.
Math., vol. 23, pp. 1-17, 1974.
-
--, Sequence Transformations and their
Applications.New York: Academic, 1981.
-
P. J. Davis and P. Rabinowitz, Methods of
Numerical Integration.New York: Academic,
1984.
-
G. Evans, Practical Numerical
Integration.New York: Wiley, 1993.
-
A. Sidi, "An algorithm for a special case of a generalization
of the Richardson extrapolation process," Num.
Math., vol. 38, pp. 299-307, 1982.
-
T. Fessler, W. F. Ford, and D. A. Smith, "HURRY: An
acceleration algorithm for scalar sequences and series,"
ACM Trans. Math. Software, vol. 9,
pp. 346-354, Sept. 1983.
-
D. A. Smith and W. F. Ford, "Numerical comparisons of
nonlinear convergence accelerators," Math.
Comput., vol. 38, pp. 481-499, Apr. 1982.
-
J. E. Drummond, "Convergence speeding, convergence and
summability," J. Comput. Appl.
Math., vol. 11, pp. 145-159, 1984.
-
J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K.
Mesztenyi, J. R. Rice, H. G. Thacher, and C. Witzgall,
Computer Approximations.New
York: Wiley, 1968.
-
L. T. Hildebrand and D. A. McNamara, "A guide to
implementation aspects of the spatial-domain integral equation analysis
of microstrip antennas," Appl. Comput.
Electromagn. Soc. J., vol. 10, no. 1, pp. 40-51,
1995.
-
C. Schneider, "Vereinfachte Rekursionen zur
Richardson-extrapolation in Spezialfällen,"
Num. Math., vol. 24, pp.
177-184, 1975.
-
T. Ha˚vie, "Generalized Neville type extrapolation
schemes," BIT, vol. 19, pp.
204-213, 1979.
-
C. Brezinski, "A general extrapolation algorithm,"
Num. Math., vol. 35, pp.
175-180, 1980.
-
--, "Algorithm 585: A subroutine for the general
interpolation and extrapolation problems," ACM
Trans. Math. Software, vol. 8, pp. 290-301,
Sept. 1982.
-
W. F. Ford and A. Sidi, "An algorithm for a generalization of
the Richardson extrapolation process," SIAM J.
Num. Anal., vol. 24, pp. 1212-1232, 1987.
-
S. Bhowmick, R. Bhattacharya, and D. Roy, "Iterations of
convergence accelerating nonlinear transforms,"
Comput. Phys. Commun., vol. 54, pp.
31-46, 1989.
-
G. A. Baker and P. Graves-Morris, Pade
Approximants.Cambridge, U.K.: Cambridge Univ.
Press, 1996.
-
P. Wynn, "Acceleration techniques in numerical analysis, with
particular reference to problems in one independent variable," in
Proc. Int. Federation Inform. Processing
Congress, Amsterdam, The Netherlands, 1962, pp.
149-156.
-
L. M. Milne-Thomson, The Calculus of Finite
Differences.London, U.K.: Macmillan,
1951.
-
D. A. Smith and W. F. Ford, "Acceleration of linear and
logarithmic convergence," SIAM J. Num.
Anal., vol. 16, pp. 223-240, Apr. 1979.
-
W. G. Bickley and J. C. P. Miller, "The numerical summation
of slowly convergent series of positive terms,"
Phil. Mag., vol. 22, pp.
754-767, July-Dec. 1936.
-
H. H. H. Homeier, "A hierarchically consistent, iterative
sequence transformation," Num.
Algorithms, vol. 8, pp. 47-81, 1994.
-
--, "Analytical and numerical studies of the
convergence behavior of the
alJ
transformation," J. Comput. Appl.
Math., vol. 69, pp. 81-112, 1996.
-
W. C. Pye and T. A. Atchison, "An algorithm for the
computation of the higher order
G-transformation,"
SIAM J. Num. Anal., vol. 10, pp.
1-7, Mar. 1973.
-
P. Wynn, "On a procrustean technique for the numerical
transformation of slowly convergent sequences and series," in
Proc. Cambridge Phil. Soc., 1956,
vol. 52, pp. 663-671.
-
A. Cuyt and L. Wuytack, Nonlinear Methods in
Numerical Analysis.New York: North-Holland,
1987.
-
S. Lubkin, "A method of summing infinite series,"
J. Res. Nat. Bur. Stand., vol. 48,
pp. 228-254, Mar. 1952.
-
E. J. Weniger, "On the derivation of iterated sequence
transformations for the acceleration of convergence and the summation of
divergent series," Comput. Phys.
Commun., vol. 64, pp. 19-45, 1991.
-
A. Sommerfeld, Partial Differential Equations in
Physics.New York: Academic, 1949.
-
P. Gay-Balmaz and J. R. Mosig, "3-D planar radiating
structures in stratified media," Int. J.
Microwave Millimeter-Wave Comput.-Aided Eng., vol. 7,
pp. 330-343, Sept. 1997.
-
T. N. L. Patterson, "Algorithm 468: Automatic numerical
integration over a finite interval," Commun.
ACM, vol. 16, pp. 694-699, Nov. 1973.
-
F. T. Krogh and W. Van Snyder, "Algorithm 699: A new
representation of Patterson's quadrature formulae,"
ACM Trans. Math. Software, vol. 17,
pp. 457-461, Dec. 1991.