1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 10, October 1998

Table of Contents for this issue

Complete paper in PDF format

Extrapolation Methods for Sommerfeld Integral Tails

Krzysztof A. Michalski, Senior Member, IEEE (Invited Review Paper)

Page 1405.

Abstract:

A review is presented of the extrapolation methods for accelerating the convergence of Sommerfeld-type integrals (i.e., semi-infinite range integrals with Bessel function kernels), which arise in problems involving antennas or scatterers embedded in planar multilayered media. Attention is limited to partition-extrapolation procedures in which the Sommerfeld integral is evaluated as a sum of a series of partial integrals over finite subintervals and is accelerated by an extrapolation method applied over the real-axis tail segment ({{a}}, {{\infty}}) of the integration path, where {{a}} {>} {{0}} is selected to ensure that the integrand is well behaved. An analytical form of the asymptotic truncation error (or the remainder), which characterizes the convergence properties of the sequence of partial sums and serves as a basis for some of the most efficient extrapolation methods, is derived. Several extrapolation algorithms deemed to be the most suitable for the Sommerfeld integrals are described and their performance is compared. It is demonstrated that the performance of these methods is strongly affected by the horizontal displacement of the source and field points {{\rho}} and by the choice of the subinterval break points. Furthermore, it is found that some well-known extrapolation techniques may fail for a number of values of {{\rho}} and ways to remedy this are suggested. Finally, the most effective extrapolation methods for accelerating Sommerfeld integral tails are recommended.

References

  1. K. A. Michalski and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propagat., vol. 45, pp. 508-519, Mar. 1997.
  2. I. M. Longman, "Note on a method for computing infinite integrals of oscillatory functions," Proc. Cambridge Phil. Soc., vol. 52, pp. 764-768, 1956.
  3. M. Blakemore, G. A. Evans, and J. Hyslop, "Comparison of some methods for evaluating infinite range oscillatory integrals," J. Comput. Phys., vol. 22, pp. 352-376, 1976.
  4. S. K. Lucas and H. A. Stone, "Evaluating infinite integrals involving Bessel functions of arbitrary order," J. Comput. Appl. Math., vol. 64, pp. 217-231, 1995.
  5. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions.New York: Dover, 1965.
  6. J. R. Mosig, "Integral equation technique," in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh, Ed.New York: Wiley, 1989, pp. 133-213.
  7. T. O. Espelid and K. J. Overholt, "DQAINF: An algorithm for automatic integration of infinite oscillating tails," Num. Algorithms, vol. 8, pp. 83-101, 1994.
  8. J. N. Lyness, "Integrating some infinite oscillating tails," J. Comput. Appl. Math., vols. 12/13, pp. 109-117, 1985.
  9. C. Brezinski and M. Redivo Zaglia, Extrapolation Methods, Theory and Practice.New York: North-Holland, 1991.
  10. W. Squire, "Partition-extrapolation methods for numerical quadrature," Int. J. Computer Math., Section B, vol. 5, pp. 81-91, 1975.
  11. E. J. Weniger, "Nonlinear sequence transformations for the acceleration of convergence and summation of divergent series," Comput. Phys. Rep., vol. 10, pp. 189-371, Dec. 1989.
  12. T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series.New York: Macmillan, 1965.
  13. F. C. Frischknecht, "Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys," Quart. Colorado School Mines, vol. 62, Jan. 1967.
  14. M. Siegel and R. W. P. King, "Electromagnetic fields in a dissipative half-space: A numerical approach," J. Appl. Phys., vol. 41, pp. 2415-2423, May 1970.
  15. J. Ryu, H. F. Morrison, and S. H. Ward, "Electromagnetic fields about a loop source of current," Geophys., vol. 35, pp. 862-896, Oct. 1970.
  16. H. L. Gray and T. A. Atchison, "Nonlinear transformations related to the evaluation of improper integrals. I," SIAM J. Num. Anal., vol. 4, no. 3, pp. 363-371, 1967.
  17. H. L. Gray, T. A. Atchison, and G. V. McWilliams, "Higher order G transformations," SIAM J. Num. Anal., vol. 8, pp. 365-381, June 1971.
  18. P. Cornille, "Computation of Hankel transforms," SIAM Rev., vol. 14, pp. 278-285, Apr. 1972.
  19. J. S. R. Chisholm, A. Genz, and G. E. Rowlands, "Accelerated convergence of sequences of quadrature approximations," J. Comput. Phys., vol. 10, pp. 284-307, 1972.
  20. P. Wynn, "On a device for computing the e_m(S_n) transformation," Math. Tables Aids Comput., vol. 10, pp. 91-96, 1956.
  21. D. Shanks, "Nonlinear transformations of divergent and slowly convergent sequences," J. Math. Phys., vol. 34, pp. 1-42, 1955.
  22. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers.New York: McGraw-Hill, 1978.
  23. D. Levin, "Development of nonlinear transformations for improving convergence of sequences," Int. J. Comput. Math., Section B, vol. 3, pp. 371-388, 1973.
  24. A. Alaylioglu, G. A. Evans, and J. Hyslop, "The evaluation of oscillatory integrals with infinite limits," J. Comput. Phys., vol. 13, pp. 433-438, 1973.
  25. D. M. Bubenik, "A practical method for the numerical evaluation of Sommerfeld integrals," IEEE Trans. Antennas Propagat., vol. AP-25, pp. 904-906, Nov. 1977.
  26. P. Hillion and G. Nurdin, "Integration of highly oscillatory functions," J. Comput. Phys., vol. 23, pp. 74-81, 1977.
  27. G. J. Burke, E. K. Miller, J. N. Brittingham, D. L. Lager, R. J. Lytle, and J. T. Okada, "Computer modeling of antennas near the ground," Electromagn., vol. 1, pp. 29-49, Jan.-Mar. 1981.
  28. C. C. Lin and K. K. Mei, "Radiation and scattering from partially buried vertical wires," Electromagn., vol. 2, pp. 309-334, Oct.-Dec. 1982.
  29. A. Sidi, "The numerical evaluation of very oscillatory infinite integrals by extrapolation," Math. Comput., vol. 38, pp. 517-529, Apr. 1982.
  30. J. R. Mosig and F. E. Gardiol, "A dynamical radiation model for microstrip structures," in Adv. Electron. Electron Phys., P. W. Hawkes, Ed.New York: Academic, 1982, vol. 59, pp. 139-237.
  31. --, "Analytic and numerical techniques in the Green's function treatment of microstrip antennas and scatterers," Proc. Inst. Elect. Eng., vol. 130, pt. H, pp. 175-182, Mar. 1983.
  32. A. D. Chave, "Numerical integration of related Hankel transforms by quadrature and continued fraction expansion," Geophys., vol. 48, pp. 1671-1686, Dec. 1983.
  33. P. Hänggi, F. Roesel, and D. Trautmann, "Evaluation of infinite series by use of continued fraction expansions: A numerical study," J. Comput. Phys., vol. 37, pp. 242-258, 1980.
  34. R. Piessens, E. deDoncker-Kapenga, C. W. Überhauer, and D. K. Kahaner, QUADPACK: A Subroutine Package for Automatic Integration.New York: Springer-Verlag, 1983.
  35. J. N. Lyness and G. Hines, "Algorithm 639: To integrate some infinite oscillating tails," ACM Trans. Math. Software, vol. 12, pp. 24-25, Mar. 1986.
  36. T. Hasegawa and T. Tori, "An automatic integration of oscillatory functions by the Chebyshev series expansion," J. Comput. Appl. Math., vol. 17, pp. 21-29, 1987.
  37. A. Sidi, "Extrapolation methods for divergent oscillatory infinite integrals that are defined in the sense of summability," J. Comput. Appl. Math, vol. 17, pp. 105-114, 1987.
  38. --, "Generalizations of Richardson extrapolation with applications to numerical integration," in Numerical Integration III, H. Brass and G. Hämmerlin, Eds.Basel, Germany: Birkhäuser-Verlag, 1988, vol. 85, pp. 237-250.
  39. --, "A user-friendly extrapolation method for oscillatory infinite integrals," Math. Comput., vol. 51, pp. 249-266, July 1988.
  40. T. Hasegawa and A. Sidi, "An automatic integration procedure for infinite range integrals involving oscillatory kernels," Num. Algorithms, vol. 13, pp. 1-19, 1996.
  41. U. T. Ehrenmark, "A note on an extension of extrapolative techniques for a class of infinite oscillatory integrals," BIT, vol. 30, pp. 152-155, 1990.
  42. K. J. Overholt, "The P-algorithms for extrapolation," Det. Kong. Norske Vid. Selsk. Skr., vol. 2, pp. 121-129, 1989.
  43. N. Kinayman and M. I. Aksun, "Comparative study of acceleration techniques for integrals and series in electromagnetic problems," Radio Sci., vol. 30, pp. 1713-1722, Nov./Dec. 1995.
  44. C. Brezinski, "Some new convergence acceleration methods," Math. Comput., vol. 39, pp. 133-145, July 1982.
  45. J. Wimp, "Toeplitz arrays, linear sequence transformations and orthogonal polynomials," Num. Math., vol. 23, pp. 1-17, 1974.
  46. --, Sequence Transformations and their Applications.New York: Academic, 1981.
  47. P. J. Davis and P. Rabinowitz, Methods of Numerical Integration.New York: Academic, 1984.
  48. G. Evans, Practical Numerical Integration.New York: Wiley, 1993.
  49. A. Sidi, "An algorithm for a special case of a generalization of the Richardson extrapolation process," Num. Math., vol. 38, pp. 299-307, 1982.
  50. T. Fessler, W. F. Ford, and D. A. Smith, "HURRY: An acceleration algorithm for scalar sequences and series," ACM Trans. Math. Software, vol. 9, pp. 346-354, Sept. 1983.
  51. D. A. Smith and W. F. Ford, "Numerical comparisons of nonlinear convergence accelerators," Math. Comput., vol. 38, pp. 481-499, Apr. 1982.
  52. J. E. Drummond, "Convergence speeding, convergence and summability," J. Comput. Appl. Math., vol. 11, pp. 145-159, 1984.
  53. J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. G. Thacher, and C. Witzgall, Computer Approximations.New York: Wiley, 1968.
  54. L. T. Hildebrand and D. A. McNamara, "A guide to implementation aspects of the spatial-domain integral equation analysis of microstrip antennas," Appl. Comput. Electromagn. Soc. J., vol. 10, no. 1, pp. 40-51, 1995.
  55. C. Schneider, "Vereinfachte Rekursionen zur Richardson-extrapolation in Spezialfällen," Num. Math., vol. 24, pp. 177-184, 1975.
  56. T. Ha˚vie, "Generalized Neville type extrapolation schemes," BIT, vol. 19, pp. 204-213, 1979.
  57. C. Brezinski, "A general extrapolation algorithm," Num. Math., vol. 35, pp. 175-180, 1980.
  58. --, "Algorithm 585: A subroutine for the general interpolation and extrapolation problems," ACM Trans. Math. Software, vol. 8, pp. 290-301, Sept. 1982.
  59. W. F. Ford and A. Sidi, "An algorithm for a generalization of the Richardson extrapolation process," SIAM J. Num. Anal., vol. 24, pp. 1212-1232, 1987.
  60. S. Bhowmick, R. Bhattacharya, and D. Roy, "Iterations of convergence accelerating nonlinear transforms," Comput. Phys. Commun., vol. 54, pp. 31-46, 1989.
  61. G. A. Baker and P. Graves-Morris, Pade Approximants.Cambridge, U.K.: Cambridge Univ. Press, 1996.
  62. P. Wynn, "Acceleration techniques in numerical analysis, with particular reference to problems in one independent variable," in Proc. Int. Federation Inform. Processing Congress, Amsterdam, The Netherlands, 1962, pp. 149-156.
  63. L. M. Milne-Thomson, The Calculus of Finite Differences.London, U.K.: Macmillan, 1951.
  64. D. A. Smith and W. F. Ford, "Acceleration of linear and logarithmic convergence," SIAM J. Num. Anal., vol. 16, pp. 223-240, Apr. 1979.
  65. W. G. Bickley and J. C. P. Miller, "The numerical summation of slowly convergent series of positive terms," Phil. Mag., vol. 22, pp. 754-767, July-Dec. 1936.
  66. H. H. H. Homeier, "A hierarchically consistent, iterative sequence transformation," Num. Algorithms, vol. 8, pp. 47-81, 1994.
  67. --, "Analytical and numerical studies of the convergence behavior of the alJ transformation," J. Comput. Appl. Math., vol. 69, pp. 81-112, 1996.
  68. W. C. Pye and T. A. Atchison, "An algorithm for the computation of the higher order G-transformation," SIAM J. Num. Anal., vol. 10, pp. 1-7, Mar. 1973.
  69. P. Wynn, "On a procrustean technique for the numerical transformation of slowly convergent sequences and series," in Proc. Cambridge Phil. Soc., 1956, vol. 52, pp. 663-671.
  70. A. Cuyt and L. Wuytack, Nonlinear Methods in Numerical Analysis.New York: North-Holland, 1987.
  71. S. Lubkin, "A method of summing infinite series," J. Res. Nat. Bur. Stand., vol. 48, pp. 228-254, Mar. 1952.
  72. E. J. Weniger, "On the derivation of iterated sequence transformations for the acceleration of convergence and the summation of divergent series," Comput. Phys. Commun., vol. 64, pp. 19-45, 1991.
  73. A. Sommerfeld, Partial Differential Equations in Physics.New York: Academic, 1949.
  74. P. Gay-Balmaz and J. R. Mosig, "3-D planar radiating structures in stratified media," Int. J. Microwave Millimeter-Wave Comput.-Aided Eng., vol. 7, pp. 330-343, Sept. 1997.
  75. T. N. L. Patterson, "Algorithm 468: Automatic numerical integration over a finite interval," Commun. ACM, vol. 16, pp. 694-699, Nov. 1973.
  76. F. T. Krogh and W. Van Snyder, "Algorithm 699: A new representation of Patterson's quadrature formulae," ACM Trans. Math. Software, vol. 17, pp. 457-461, Dec. 1991.