1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 10, October 1998

Table of Contents for this issue

Complete paper in PDF format

A Fast Full-Wave Analysis of Scattering and Radiation from Large Finite Arrays of Microstrip Antennas

Chao-Fu Wang, Member, IEEE, Feng Ling, Student Member, IEEE, and Jian-Ming Jin, Senior Member, IEEE

Page 1467.

Abstract:

A fast full-wave analysis technique that can be used to analyze the scattering and radiation from large finite arrays of microstrip antennas is presented. The technique discretizes the mixed potential integral equation (MPIE) in the spatial domain by means of a full-wave discrete complex image method. The del operators on the Green's functions are transferred from the singular kernel to the expansion and testing functions. The resultant system of equations is solved using the biconjugate gradient (BCG) method in which the matrix-vector product is evaluated efficiently using fast Fourier transform (FFT). This results in an efficient and accurate computation of the scattering and radiation from finite arrays of microstrip antennas. Several numerical results are presented, demonstrating the accuracy, efficiency, and capability of this technique.

References

  1. D. M. Pozar and D. H. Schaubert, "Scan blindness in infinite phased arrays of print diploes," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 602-610, June 1984.
  2. --, "Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1101-1107, Oct. 1984.
  3. C. C. Liu, J. Shmoys, A. Hesel, J. D. Hanfling, and J. M. Usoff, "Plane wave reflection from microstrip-patch array--Theory and experiment," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 426-435, Apr. 1985.
  4. D. M. Pozar, "Analysis of finite phased arrays of printed dipoles," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 1045-1053, Oct. 1985.
  5. --, "Finite phased arrays of rectangular microstrip patches," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 658-665, May 1986.
  6. A. S. King and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., vol. 40, pp. 770-774, July 1992.
  7. K. L. Wu, M. Spenuk, J. Litva, and D. G. Fang, "Theoretical and experimental study of feed network effects on the radiation pattern of series-fed microstrip antenna arrays," Proc. Inst. Elect. Eng., vol. 138, pt. H, pp. 238-242, June 1991.
  8. D. G. Fang, J. J. Yang, and G. Y. Delisle, "Discrete image theory for horizontal electric dipole in a multilayer medium," Proc. Inst. Elect. Eng., vol. 135, pt. H, pp. 297-303, Oct. 1988.
  9. Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 588-592, Mar. 1991.
  10. N. N. Bojarski, "k-space formulation of the electromagnetic scattering problem," Air Force Avionics Lab., Tech. Rep. AFAL-TR-71-75, Mar. 1971.
  11. A. P. M. Zwamborn and P. M. van den Berg, "A weak form of the conjugate gradient FFT method for plate problems," IEEE Trans. Antennas Propagat., vol. 39, pp. 224-228, Feb. 1991.
  12. J. M. Jin and J. L. Volakis, "A biconjugate gradient solution for scattering by planar plates," Electromagn., vol. 12, pp. 105-119, 1992.
  13. T. K. Sarkar, E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., vol. AP-34, pp. 635-640, May 1986.
  14. M. F. Catedra, J. G. Cuevas, and L. Nuno, "A scheme to analyze conducting plates of resonant size using the conjugate gradient method and fast Fourier transform," IEEE Trans. Antennas Propagat., vol. 36, pp. 1744-1752, Dec. 1988.
  15. Y. Zhuang, K. L. Wu, C. Wu, and J. Litva "A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays," IEEE Trans. Antennas Propagat., vol. 44, pp. 102-109, Jan. 1996.
  16. C. Lanczos, "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators," J. Res. Nat. Bur. Stand., vol. 45, pp. 255-282, 1950.
  17. R. Fletcher, "Conjugate gradient methods for indefinte systems," in Numerical Analysis Dundee, G. A. Watson, Ed.New York: Springer-Verlag, pp. 73-79, 1975/1976.
  18. D. A. H. Jacobs, "The exploitation of sparsity by iterative methods," in Sparse Matrices and Their Uses, I. S. Duff, Ed.Berlin, Germany: Springer-Verlag, pp. 191-222, 1981.
  19. C. F. Smith, A. F. Peterson, and R. Mittra, "The biconjugate gradient method for electromagnetic scattering," IEEE Trans. Antennas Propagat., vol. 38, pp. 938-940, June 1990.
  20. N. G. Alexopoulos and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 807-816, Aug. 1984.
  21. M. F. Catedra and M. Gago, "Spectral domain analysis of conducting patches of arbitrary geometry in multilayer media using the CG-FFT method," IEEE Trans. Antennas Propagat., vol. 38, pp. 1530-1536, Oct. 1990.
  22. S. A. Bokhari, J. R. Mosig, and F. E. Gardiol, "Radar cross section computation of microstrip patches," Electromagn., vol. 14, pp. 19-32, 1994.
  23. J. T. Aberle, D. M. Pozar, and C. R. Birtcher, "Evaluation of input impedance and radar cross section of probe-fed microstrip patch elements using an accurate feed model," IEEE Trans. Antennas Propagat., vol. 39, pp. 1691-1696, Dec. 1991.