1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 10, October 1998

Table of Contents for this issue

Complete paper in PDF format

Integrated Modified Rectangular Loop Slot Antenna on Substrate Lenses for Millimeter- and Submillimeter-Wave Frequencies Mixer Applications

Pablo Otero, George V. Eleftheriades, Member, IEEE, and Juan R. Mosig, Senior Member, IEEE

Page 1489.

Abstract:

In this work, a coplanar waveguide (CPW)-fed rectangular-loop slot antenna with built-in tuning and dc-return capabilities on extended hemispherical lenses is examined. The proposed configuration is scalable up to the submillimeter-wave frequencies. For designing and analyzing the impedance characteristics of the proposed antenna, a multilayer method of moments (MoM) solver has been developed based on the mixed potential integral equation (MPIE) formulation. The corresponding patterns through the lens are obtained using geometrical optics and the surface equivalence principle. Three models have been simulated and one of them has been built and tested at 65 GHz. The integrated antenna exhibits tuning capability, rotationally symmetric patterns, high directivity, good Gaussian coupling efficiency, and a reasonable bandwidth. In addition, computed results agree well with measurements and are used to characterize the input impedance and pattern behavior of the antenna.

References

  1. D. B. Rutledge, D. P. Neikirk, and D. P. Kasilingam, "Integrated-circuit antennas," in Infrared and Millimeter Waves, K. J. Button, Ed.New York: Academic, 1983, vol. 10, ch. 1, pp. 1-90.
  2. S. S. Gearhart and G. M. Rebeiz, "UA monolithic 250 GHz Schottky-diode receiver," IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2504-2511, Dec. 1994.
  3. C. E. Tong and R. Blundell, "An annular slot antenna on a dielectric half-space," IEEE Trans. Antennas Propagat., vol. 42, pp. 967-974, July 1994.
  4. S. R. Raman and G. M. Rebeiz, "Single- and dual-polarized millimeter-wave slot-ring antennas," IEEE Trans. Antennas Propagat., vol. 44, pp. 1438-1444, Nov. 1996.
  5. F. Colomb, K. Hur, W. Stacey, and M. Grigas, "Annular slot antennas on extended hemispherical dielectric lenses," in IEEE AP-S Antennas Propagat. Int. Symp., Baltimore, MD, July 1996, pp. 2192-2195.
  6. J.-M. Laheurte, L. P. B. Katehi, and G. M. Rebeiz, "CPW-fed slot antennas on multilayer dielectric substrates," IEEE Trans. Antenna Propagat., vol. 44, pp. 1102-1111, Aug. 1996.
  7. L. Giauffret, J.-M. Laheurte, and A. Papiernik, "Study of various shapes of the coupling slot in CPW-fed microstrip antennas," IEEE Trans. Antennas Propagat., vol. 45, pp. 642-647, Apr. 1997.
  8. J. R. Mosig, "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech., vol. 36, pp. 314-323, Feb. 1988.
  9. G. V. Eleftheriades, H. LePezennec, and J. R. Mosig, "A fast and rigorous CAD procedure for complex shielded planar circuits," in IEEE MTT-S Int. Symp. Dig., San Francisco, CA, June 1996, pp. 1467-1470.
  10. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1738-1749, Oct. 1993.
  11. P. Otero, G. V. Eleftheriades, and J. R. Mosig, "Loop type antennas on substrate lenses for IC millimeter-wave and submillimeter-wave mixers," LEMA-DE-EPFL, Lausanne, Final Rep., ESA/ESTEC Project 160224, Mar. 1997.
  12. N. I. Dib, "Theoretical characterization of coplanar waveguide transmission lines and discontinuities," Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, 1992.
  13. P. Otero, G. V. Eleftheriades, and J. R. Mosig. "Modeling the coplanar transmission line excitation of planar antennas in the method of moments," Microwave Opt. Technol. Lett., vol. 16, no. 4, pp. 219-225, Nov. 1997.
  14. C. T. Tai, Dyodic Green Functions in Electromagnetic Theory, 2nd ed.New York: IEEE Press, 1994.
  15. J. R. Mosig, "Integral equation technique," in Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, T. Itoh, Ed.New York: Wiley, 1989, ch. 3, pp. 133-213.
  16. J. R. Mosig, "Numerical analysis of microstrip patch antennas," in Handbook of Microstrip Antennas, J. R. James and P. S. Hall, Eds.London, U.K.: Peter Peregrinus, 1989, ch. 8, pp. 393-453.
  17. D. F. Filipovic, G. P. Gauthier, S. Raman, and G. M. Rebeiz, "Off-axis properties of silicon and quartz dielectric lens antennas," IEEE Trans. Antennas Propagat., vol. 45, pp. 760-766, May 1997.
  18. P. F. Goldsmith, "Quasioptical techniques at millimeter and submillimeter wavelengths," in Infrared and Millimeter Waves, K. J. Button, Ed.New York: Academic, 1982, vol. 6, ch. 5, pp. 277-343.
  19. P. F. Goldsmith, "Quasi-optical techniques," Proc. IEEE, vol. 80, pp. 1729-1747, Nov. 1992.
  20. G. V. Eleftheriades, J. F Zürcher, and J. R. Mosig, "Patterns and efficiencies of slot-fed mm-wave glass-ceramic substrate lens antennas," in Proc. ESA/ESTEC Workshop Millimeter-Wave Tech. Appl., Noordwijk, The Netherlands, Nov. 1995, pp. 22.1-22.13.
  21. S. E. Schwarz, "Efficiency of quasioptical couplers," Int. J. Infrared Millimeter Waves, vol. 5, no. 12, pp. 1517-1525, Dec. 1984.
  22. G. M. Rebeiz, "Millimeter-wave and terahertz integrated circuit antennas," Proc. IEEE, vol. 80, pp. 1748-1770, Nov. 1992.