1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 10, October 1998

Table of Contents for this issue

Complete paper in PDF format

Model-Based Prediction of Amplitude Scintillation Variance Due to Clear-Air Tropospheric Turbulence on Earth-Satellite Microwave Links

Frank S. Marzano and Giovanni d'Auria

Page 1506.

Abstract:

A statistical method to predict tropospheric amplitude scintillation parameters along earth-space microwave links from meteorological data is proposed. The evaluation of the mean value and the variance of the refractive-index structure constant and of the scintillation power (i.e., the variance of the log-amplitude fluctuations of the received electromagnetic field) is carried out from conventional radio-sounding measurements. A large radio-sounding data set, collected in Northern Italy over ten years is utilized to simulate clear-air amplitude scintillation variance at microwaves and millimeter-waves on slant paths. Scintillation statistics of interest for link-budget design are also derived from the radio-sounding data set for short and long-term applications. Scintillation prediction formulas, based on measurements of surface temperature and relative humidity, are also derived and regression coefficient tables are given on an hourly and a monthly basis. Comparisons of short-term and long-term prediction results with Olympus down-link measurements at 19.8 GHz are shown and discussed. A model investigation about the statistical correlation between scintillation power and brightness temperature is performed, deriving an extension of the estimation methods to include integrated water vapor measurements from ground-based microwave radiometers.

References

  1. O. P. Banjo and E. Vilar, "Measurements and modeling of amplitude scintillations on low-elevation Earth-space paths and impact on communication systems," IEEE Trans. Commun., vol. COM-34, pp. 774-780, Aug. 1986.
  2. Y. Karasawa, K. Yasukawa, and M. Yamada, "Tropospheric scintillation in the 14/11-GHz bands on earth-space paths with low elevation angles," IEEE Trans. Antennas Propagat., vol. 36, pp. 563-569, Apr. 1988.
  3. P. Basili, G. d'Auria, P. Ciotti, P. Ferrazzoli, and D. Solimini, "Case study of intense scintillations along the OTS space-earth link," IEEE Trans. Antennas Propagat., vol. 38, pp. 107-113, Jan. 1990.
  4. E. T. Salonen, J. K. Tervonen, and W. J. Vogel, "Scintillation effects on total fade distributions for earth-satellite links," IEEE Trans. Antennas Propagat., vol. 44, pp. 1-5, Jan. 1996.
  5. E. Matricciani, M. Mauri, and C. Riva, "Relationship between scintillation and rain attenuation at 19.77 GHz," Radio Sci., vol. 31, no. 2, pp. 273-279, 1996.
  6. G. Peeters, F. S. Marzano, G. d'Auria, C. Riva, and D. Vanhoenacker-Janvier, "Evaluation of statistical prediction models for clear-air scintillation using Olympus satellite measurements," Int. J. Sat. Commun., vol. 15, pp. 73-88, 1997.
  7. M. Filip and E. Vilar, "Optimum utilization of the channel capacity of a satellite link in the presence of amplitude scintillations and rain attenuation," IEEE Trans. Commun., vol. COM-28, pp. 1958-1965, Nov. 1990.
  8. G. De Angelis, A. Paraboni, C. Riva, F. Zaccarini, G. Dellagiacoma, L. Ordano, R. Polonio, M. Mauri, and A. Pawlina, "Attenuation and scintillation statistics with Olympus and Italsat satellites in Italy," Alta Frequenza, vol. 6, no. 6, pp. 66-69, 1994.
  9. U. Merlo, E. Fionda, and J. Wang, "Ground level refractivity and scintillation in space-earth links," Appl. Opt., vol. 27, pp. 2247-2252, 1987.
  10. Y. Karasawa, M. Yamada, and J. Allnutt, "A new prediction method for tropospheric scintillation on earth-space paths," IEEE Trans. Antennas Propagat., vol. 36, pp. 1608-1614, Nov. 1988.
  11. "Effects of tropospheric refraction on radio-wave propagation," in Rep. CCIR Propagat. Nonionized Media, Int. Telecommun. Union (ITU), Rep. 718-3, Annex to vol. V, Geneva (CH), 1990, pp. 172-176.
  12. G. Ortgies, "Prediction of slant-path amplitude scintillation from meteorological parameters," in Proc. Int. Symp. Radio Propagat., Beijing, China, 1993, pp. 218-221.
  13. E. Vilar and J. Haddon, "Measurement and modeling of scintillation intensity to estimate turbulence parameters in an earth-space path," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 340-346, Apr. 1984.
  14. F. S. Marzano and G. d'Auria, "Estimation of intermittent scintillation on microwave links from meteorological data," Alta Frequenza, vol. 6, no. 6, pp. 94-97, 1994.
  15. G. Schiavon, D. Solimini, and E. R. Westwater, "Performance analysis of a multifrequency radiometer for predicting atmospheric propagation parameters," Radio Sci., vol. 10, pp. 631-650, 1993.
  16. E. R. Westwater, J. B. Snider, and M. J. Falls, "Ground-based radiometric observation of atmospheric emission and attenuation at 20.6, 31.65 and 90.0 GHz: A comparison of measurements and theory," IEEE Trans. Antennas Propagat., vol. 38, pp. 1569-1580, 1990.
  17. P. Ciotti, P. Basili, G. d'Auria, F. S. Marzano, and N. Pierdicca, "Microwave radiometry of the atmosphere: An experiment from a sea-based tower during the ERS-1 calibration," Int. J. Remote Sensing, vol. 5, pp. 133-148, 1995.
  18. D. Vanhoenacker and A. Vander Vorst, "Experimental evidence of a correlation between scintillation and radiometry at centimeter and millimeter wavelengths," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 40-47, Jan. 1985.
  19. V. I. Tatarskii, Wave Propagation in a Turbulent Medium.New York: McGraw-Hill, 1961.
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media.New York: Academic, 1978.
  21. V. I. Tatarskii and V. U. Zavorotni, "Wave propagation in random media with fluctuating turbulent parameters," J. Opt. Soc. Amer., vol. 2, pt. A, pp. 2069-2076, 1985.
  22. G. d'Auria, F. S. Marzano, and U. Merlo, "Model of the refractive-index structure constant in intermittent clear-air turbulence," Appl. Opt., vol. 32, pp. 2674-2680, 1993.
  23. T. E. Van Zandt, J. L. Green, K. S. Gage, and W. L. Clark, "Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the sunset radar with a new theoretical model," Radio Sci., vol. 13, pp. 819-829, 1978.
  24. G. d'Auria, F. S. Marzano, and U. Merlo, "Effects of intermittence on the refractive-index structure constant," in Proc. ICO Meet. Atmosph., Vol., and Surface Scattering and Propagat., Firenze, Italy, 1991, pp. 87-91.
  25. T. J. Mousley and E. Vilar, "Experimental and theoretical statistics of microwave amplitude scintillations on satellite down-links," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 1099-1106, June 1982.
  26. F. Rucker and F. Dintelmann, "Effects of antenna size on OTS signal scintillations and their seasonal dependence," Electron. Lett., vol. 19, pp. 1032-1034, 1983.
  27. E. Kessler and B. Neas, "On correlation, with applications to the radar and raingage measurements of rainfall," Atmospher. Res., vol. 34, pp. 217-229, 1994.
  28. O. P. Banjo and E. Vilar, "The dependence of slant path amplitude scintillations on various meteorological parameters," in Proc. 5th Int. Conf. Antennas Propagat. (ICAP'87), York, U.K., Apr. 1987, pp. 277-280.
  29. H. Liebe, "An atmospheric millimeter-wave propagation model," Int. J. Infrared Millimeter Wave, vol. 10, pp. 367-378, 1989.