IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 10, OCTOBER 1998 1519

A Fictitious Domain Method for
Conformal Modeling of the Perfect
Electric Conductors in the FDTD Method

Francis Collino, Sylvain Gass, and Patrick Joly

Abstract—We present a fictitious domain method to avoid the three-dimensional (3-D) case [6]. This method of contour path
staircase approximation in the study of perfect electric conductors FDTD (CPFDTD) is certainly the most popular one for the
(PEC) in the finite-difference time-domain (FDTD) method. The treatment of complex PEC and has been studied by many
idea is to extend the electromagnetic field inside the PEC and to . . .
introduce a new unknown, the surface electric current density research groups, e.g., [7]-[9]. Its .maln advantage is that it
to ensure the vanishing of the tangential components of the keeps the structure of Yee’s algorithm and can thus use the
electric field on the boundary of the PEC. This requires the use classical techniques developed for FDTD, such as absorbing
of two independent meshes: a regular three-dimensional (3-D) boundary conditions or post processing. However, the stability

cubic lattice for the electromagnetic field and a triangular cyitarion depends on the geometry of the metallic scatterers
surface-patching for the surface electric current density. The o
and can be difficult to control.

intersection of these two meshes gives a simple coupling law . o .

between the electric field and the surface electric current density. I this paper, we present a fictitious domain method, for

An interesting property of this method is that it provides the analysis of 3-D electromagnetic scattering by a PEC. Fictitious

su_rface electric cur_rent density_at each ti_me step. Furthermore, domain methods have been introduced to solve stationary

wbsmngﬁég?drelgljlfss ]J(')"resz\'?;a ‘:)"gg issgfec'a'rerggﬁfe'?r the PEC. 5roblems [10]-[12], and have been proposed recently for the
J P ' Maxwell scattering problem in the 2-D case [13], [14]. The

Index Terms—FDTD methods, fictitious domain, Maxwell's extension to the 3-D case that is presented here was originally
equations, time-domain methods. developed in [15].

. INTRODUCTION Il. FicTITiIous DOMAIN METHOD

HE finite-difference time-domain (FDTD) method is a . -
: . - A, Variational Principles
well-known powerful numerical technique for solving ‘
the Maxwell's time-dependent curl equations [1]. The main Let @ = Q' be a bounded domain ifR* with boundary
drawback of this method is the staircase meshing. The strdc= 92, unit outward normak and ¢ = {2 the exterior of
tures are described with a uniform rectangular lattice so white PEC. The main idea of the fictitious domain method is to
the staircase approximation for curved interfaces is useéktend the electromagnetic field, H) to the inside of the
numerical scattering can appear and disturb the compuf8C(2 and to solve Maxwell’s equations inside and outside the
solution [2]. PEC. Multiplying Ampere’s law by any electric field defined
Several solutions to this problem have been proposed.iAIR® (vacuum and the interior of the PEC) and integrating
quasi-nonuniform grid FDTD algorithm was proposed that e curl term by parts, we obtain for the interior problem

well suited for the study of planar microwave circuits [3]. JF

In order to try to match curved interfaces, some methods the 0 /m o9t “pdz — o H-Vx¢

use of irregular nonorthogonal structured grids is proposed ‘

elsewhere [4]. In other solutions the uniform rectangular - /F(H xn)" - ((¢xn)xn)dy=0. @)

lattice is retained and Yee algorithm is locally modified to . . i

take into account curved interfaces. According to this idegimiiarly, for the exterior problem we have
perfect electric conductor (PEC) structures are modeled by - / OF de — H-V % ¢du
contour-path approach in two-dimensional (2-D) case [5] and q- Ot Qe

—i—/(HXn)e-(((/)Xn)Xn)d’y:O. 2
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wherej, = (H x n)¢|r — (H x n)¢|r is the surface electric

H,
current density. f Ey
We then multiply Faraday’'s law by any magnetic figld
defined inIR* (vacuum and the interior of the PEC), and we / Y
obtain the following: z
H
" OH . E, ¥
Ho Rgﬁ'w-‘r Rgz/)-(VxE):O. 4) i,
Ea:

We add a third equation to take into account the vanishing of
the tangent|al components of the electric field on the bound . 1. Position of the degrees of freedom for the electric and magnetic field
out a cubic cell of the 3-D space lattice.
of the PEC. For any surface electric current densgitjefined

on the boundary of the PEC, we have _
Jrs

(Exn)xmn) &dy=0. (5) Jra
J s

Gathering (3)—(5), we obtain the mathematical formulation
of the fictitious domain method: find the electric field in l
I

the functional spaced(curl, IR?), the magnetic fieldHd in
H(div, R*) and the surface electric current densjty in
H~1/2(div, ') such that with(.,.) the inner product in Fig. 2. Position of the degrees of freedom for the surface electric current

(LQ(]R?’))?’ density about a triangular surface patch of the interface vacuum PEC.
V¢ € H(curl, IR3), <50§7 (/)) —(H,V x ¢) The electric fieldE is then approximated by the lowest order
ot Nédelec elements foH (curl) and the magnetic fieldd is
+ /((d) X)X n) - jsdy =0 ©6) approximated by the lowest ordeéNelec elements fdd (div)
r ’ [17].

. Second, the boundary of the PEC is divided into triangular

Vi € H(d'V’IR ), <“0 ot "’ 1/}) + (1, Vx E)=0 (7) surface patches and the surface electric current depsity
_D) g approximated by the lowest order Raviart—Thomas element for
Vée H (div, I'), /((E xn)xn)-£dy=0 (8) H(div, I) [18]. Note that we have used for the surface electric

r current densityj, the same finite elements than those of the
subject to initial conditions electric field integral equation (EFIE) method.
Let At be the time increment. We compute the electric field
Et=0)=FE, and H(t=0)= H,. (9) F attime step, and both the magnetic field and the surface

electric current density, at time step:+ 1/2. Thus, we have
The functional space (curl, R?) and H(div, R®) are the for a pointz € IR® and a pointz, € '
spaces of square integrable functions definedRif whose

curl and divergence, respectively, are also square integrable Neage

functions. An important property of these spaces is that the E(nAt, ) Z Elvy(x (10)

tangential, respectively, normal, components of a function of

H(curl,IR?), respectivelyH (div, R?®), are continuous across Afm

interfaces. The spacH —*/2(div, T") is the natural functional H((n+ At z) = Z H W2y (2)  (11)
. L. 2 ? q q

space of the surface electric current densities. They are vector =1

fields tangent to the boundafy with some appropriate regu- Nedge

larity (see [16] for a complete discussion of these functional js(( At a:s Z JN+(1/2) ) (12)

spaces).

In [15], we proved that this problem has an unique solution.
Furthermore, if(E, H, j,) is the solution of the fictitious i .,

p Wq, and x, appropriate basis functionsy.q4. and
domain problem, then the restriction of the electromagnetﬁface the number of edges and faces in the uniform 3-D
field (E, H) to the exterior2¢ is the solution of the original

- mesh andn.q,. the number of edges in the surface mesh.
problem of the scattering by a PEC. The degrees of freedom of the electric and magnetic fields
are, respectively, the tangential components on the edges and
the normal components on the faces of the cubes of the 3-D

1) Finite Element SpacesWe introduce two independentmesh (see Fig. 1) and the degrees of freedom of the surface
meshes. First, the cubic domain including the vacuum aetkctric current density are the fluxes across the edges of the
the interior of the PEC is divided into identical small cubegriangles of the conformal triangulation (see Fig. 2).

B. Derivation of the Fictitious Domain Scheme
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2) Numerical SchemelLet In practice, we prefer the following equivalent algorithm.
The computation of the magnetic fietd*+(1/2) is unchanged.
& = (Bp h<pNoge In the same manner we compute the electric fig]d" with
Hr+(1/2) — (Hng(l/Q))lgquracc (13) it en
and 7+ /D (y’l’*(”?))l<r<wgp- MyT — AR /2 =g, (21)

Using central-difference approximation, we obtain the followrhis step is identical to Ampere’s law in Yee’s scheme, but
ing numerical scheme: we apply it ignoring the PEC. At this stage the tangential
components of the electric fielft* on the boundary of the

n+l _ on
e% — AHHA/D 4 BT gr+(1/2) =g (14) PEC are not equal to zero. Then we solve the linear system
HrH/2) = (1/2) N Ty nt(1/2) _ 50 pentl
h At + ATg =0 (15) (BB )j9 - E‘Bgyee (22)
BE" =0  (16) _ _ ) o
to obtain the surface electric current density . Finally,
with we compute the electric field”*! at time stepn + 1 with

[Mc]p, p) =¢0 (vp, vp) the electric mass matrix gnt = gntl HBTJSM(U?)_ (23)

[Mi](q, 4y = 1o (wq, wy') the magnetic mass matrix £o
[Alp, ) = (V X 0, wy) the stiffness matrix So the surface electric current densifif**/? radiates an

electric field which forces the tangential components of the
electric field€™*! on the boundary of the scatterer to be equal

. ) . to zero in a weak sense.
Let i be the space increment in the uniform mesh. Becausgi energy techniques, we proved [15] that for any trian-

we choose identical cubes for the 3-D mesh, we apply Masgar surface mesh, this numerical scheme is stable as long as

[Blp,r) = /((vp X n) X n) - x.dvy the coupling matrix.
r

lumping to diagonalize the mass matrices the time stepA¢ and the space incremehtof the uniform
M, ~eoh®I, and My ~ juoh®l,. (17) cubic 3-D lattice satisfy the usual condition
) ] ) ) 1
We use the same technique to compute the stiffness matrix At < o3 where ¢o = NoTTH (24)
A. Then the numerical scheme is nothing but like the Yee’s 0 0rto
scheme [1] where we add the electric field This property is true for both open problems (or scattering
At problems) and closed problems (or resonators). This very
g/ = E—BTJf+(l/2) (18) simple stability criterion outlines the main difference between
0

our scheme and other time-domain methods which use con-
formal meshes [4]. For such methods, the stability criterion
has to be found for each mesh [19], a procedure that is often
computationally expensive.
3) The Electric Coupling Matrix:The matrix B couples
Ew|7flk :Eme+E;,n+(1/2)|i7j7k the electric field ant_j thfe surfac;g current density. It is a
rectangular real matrix with coefficients

radiated by the surface electric curref’™ /% density. In
other words, following the Yee’s notation, we have for the
component of the electric field

. At <H., 1) g n+(1/2) )
eoh \\ FlEdH(1/2),k Tl i—(1/2), k b — d (25)
At +1/2) nt(1/2) pr = | ((vp X m) Xn) - xr dy.

_ ALy e _H . (19 '
50h< Y|i g, ket (1/2) Y mk—(l/?))

The support of the basis elemeny is the union off our
Multiplying by the coupling matrixB in (14) and writing adjacent cubes and the support of the basis elemenis
(16) for time steps: andn 4+ 1, we find that the surface electricthe union of two adjacent triangles (see Fig. 3). In general,

current density7" /% satisfies the linear system the computation of the coefficients, ,. requires to compute
the intersection of cubes and triangles. We proved that the
(BBT)grt(/2) = pAH+(/2), (20) intersection of a cube and a triangle is a convex polygon with

less than nine edges and we proposed an efficient algorithm to
Knowing the magnetic field{"~(1/2) at time stepr — (1/2) compute this intersection (see [15] for the complete description
and the electric fieldc™ at time stepn, we compute first of this numerical aspect). Moreover, the coefficiént, is
the magnetic field®"+(*/2) with (15). Then we solve the equal to zero if the supports of the two basis functiaps
linear system (20) to obtain the surface electric current densitid x, are disjoint. For example, in Fig. 3 the electric basis
T at time stepn + (1/2). Finally, we find the electric functionwv, is coupled with the electric current basis function
field £7*1 at time stepn + 1 using (14). x, because the intersection of their supports is not empty
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Fig. 3. Intersection of cubes and triangles for the computation of the electric

coupling matrix 5. le+04

(dashed polygon). On the contragy, andy, are not coupled. {\ |
So the coupling matrix3 is a very sparse matrix. ) ]
The matrix BB7 is then a real positive symmetric sparse / |

matrix, however, we have not yet established that it is positive leso L
definite. Lethsp denote the shortest length of the edge of the
triangular patches of the interfaces between the vacuum and

Ez(t)
g
+
2

'the.PEC. We found that .nhQD. < h, t'hen the matrixBB . e e

is singular. We can explain this physically. At each step time, time step

we compute the surface electric current density, but we take o )

. . . , . . F&;. 4. Electric fieldEz(¢) at pointz, y = 54 mm, z = 55 mm.
into account the wave propagation via Yee's algorithm instea

of with the delayed potentials. So whénp <« £, the wave

cannot propagate well. A. Spherical Cavity

Conversely, we proved that whén> hsp, for the 2-D TE _ i i _ )
case the matrixB B is not singular [15]. In practice, for the 1he firstexample is a spherical resonator with radiss 15
3.D case numerical results show that the maf@B? is a MM In this case, the fictitious domain is now the exterior

positive definite matrix as soon &s> hap. This result agrees ©f the obstacle. This example is an excellent test to confirm

with previous results for the homogeneous elliptic Dirichig®xPerimentally the stability of the numerical scheme that we

problem [20]. have obtained theoretically by energy estimates, [14], [15]. The
The square matriBB7T has dimensiomzdge, Wherenedge 3-D grld resolution ish = 1 mm and the 3-D test grld has 50

is the number of degrees of freedom for the surface electiic50 x 51 cells. The time increment it = 1.9 x 10712

current density. For industrial casesgg. is about 10000. S, and the run has eight 192 time steps. The boundary of the

This number is much smaller than the number of degreessherical cavity is meshed with one 144 triangles and one 716

freedom for the electric and magnetic fields, which can reaedges whose lengths' are longer than 1.6 mm and shorter

1000 000. than 3.2 mm. A Gaussian source is excited on-directed
Finally, we recall that the coupling matrix is independerglectric dipole [22] located in the cavity at point= 2 mm,

of the time step, and depends only on the geometry of the= 2 mm, z = 2 mm. In other words, we have

scattering problem.

n+1
Ez|i07j07 ko+(1/2)

_p n At ( n+(1/2)
[ll. NUMERICAL RESULTS = 2o o, ke 1/ T R AT L 19) e ko H(1/2)

A FDTD code with Eerenger perfectly matched layer _H |n—|—(1/2) )
(PML), [21] is used for simulations. Subroutines to treat Ylia=(1/2), jo, ko+(1/2)
PEC with the fictitious domain method are added to this _ E(H |@+(1/2)
code. Before the main FDTD time stepping loop, the coupling coh \7 7 V0, Jo+(1/2), ko+(1/2)
matrix B and the square matri8® BT are computed. Then the _ |@+(1/2) ) n 1 a2 (n—no)? (26)
Cholesky factorization of matri¥3 BT is computed. During T lig, jo—(1/2), ko+(1/2) 1000

the time stepping loop, at each time step the linear system (22)

is solved and the radiated electric field (23) is added to thdéth ¢ = 0.014 and ny = 26. In practice, this source is
electric field. Finally, after a discrete Fourier transformatiomactive up to time stepr = 2no = 52. Fig. 4 shows the:
the far-field pattern is obtained. component of the electric field recorded at a paihinside
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Fig. 5. Electric field| Ez(f)| at pointz, y = 54 mm, z = 55 mm.
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the cavity, respectively, at the beginning and at the end of nz = 52448

the simulation. The electromagnetic energy is trapped insiflg. 6. sparsity pattern of the matri8B” used to compute the surface
the spherical cavity and the electric field oscillates throughoegléctric current density; 2.80% of the coefficients are not identically zero.

the simulation. Note that there is no numerical instability; the
electric field does not diverge.

Fig. 5 shows the discrete Fourier transform of theompo-
nent of the electric field at point. The curve presents picks
at frequencies 8.93 GHz, 12.53 GHz, and so on. These values
fit with the analytical resonant frequencies of the spherical
cavity of radius 15 mm.

B. Scattering by Two Conducting Spheres

The second example is a system of twgn = 7 spheres 200
whose centers are separated by two wavelengths. This example 150
was treated by the contour path FDTD method in [5] and is 0ol
thus a good point for comparison. With this example, our goal
is also to show that the fictitious domain method is a good
technique to compute radar cross section (RCS) of single and
multiple bodies.

The 3-D cell resolution is\o/20 and the test grid is 80
x 80 x 80 cells, so there are 3129 84@f freedom for

-10.0 t

bistatic radar cross section {dBsm)

-15.0 +

the electromagnetic fieldZ, H). The two boundaries of the o — :F:;Dm
spheres are discretized with 912 triangles and 1368 edges of | !
length betweerky/10 and \o/5. We point out that the number 0800 1350 000 450 00 450 eo0 1350 1800

phi (in degrees)

of degrees of freedom for the surface electric current density
(1368) is much smaller than the number of degrees of freeddin. 7. E-plane bistatic RCS of twboa = 7 spheres separated Ao
for the electromagnetic field (3129 840). air gap.
Fig. 6 shows the sparsity pattern of the matBB” used
for the computation of t.he surfgc;e electric current density The Radar Cross Section of an Ogive
Note that only 2.80% of its coefficients are not zero, and that o o
BB is a skyline matrix, with two independent blocks that The next example shows the efficiency of the fictitious
correspond to the two spheres. domain method for modeling scattering of waves on sharp
Fig. 7 shows theE-plane bistatic RCS of two spheres. Thdnetallic bodies. We compare the fictitious domain method
direction of the propagation of the incident plane wave ig 48Vvith the usual FDTD method using staircasing in terms of
off the axis defined by the two spheres’ centers. The andlgmerical accuracy and central processing unit (CPU) running
¢ = 0 is the forward scatter direction. Like [5], the fictitioustime. The PEC is an ogive with nose angle= 40° and
domain method agrees very well with the method of referengéiameter D = 164 mm (see Fig. 8). The backward RCS
A more precise comparison shows that the fictitious doma@ this ogive is compared with calculated data from [23].
method seems to give a slightly more accurate result for thée 3-D resolution ish = 10 mm, so the diameteD) of
forward scatter direction while it gives slightly less precisthe ogive is equal to 16.4 cells. The lengths of the 504
results for some other directions. edges of the triangular patches are included between 11 and
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A
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L 500+
é Fig. 9. RCS of a PEC ogive in the plane ), for the frequencyfy = 0.96
-60.0 GHz, \g = 2.03D.
ooy TABLE |
SUMMARY OF THE CHARACTERISTICS TO COMPUTE THE RCS oF AN OGIVE
-80.0 - R . : : .
0.0 0.2 0.3 0.4 0.5 0.6 07 08
DAambda
Fig. 8. The backward scattering by a PEC ogive With= 40° D = 164 Fictitious FDTD FDTD

mm. lllumination with a Gaussian pulse.

Domain
81 mm. The illumination is a Gaussian pulse such that the
excited frequencies of the incident plane wave are inferior to
1.5 GHz. We obtain good agreement between numerical results h 10 mm 10 mm 5 mm
computed by the fictitious domain method and calculated data
(see Fig. 8).

Then we compare the RCS computed with the fictitious cells 120 x 47 x46 | 120 x 47 x46 | 120 x 47 x92
domain method and the FDTD method. An EFIE code with
a very thin surface mesh for the ogive (6264 edges whose
lengths are included between 0.9 and 25 mm) gives the 2t 19107s | 191075 | 095107 s
reference. The characteristics of the fictitious domain method
are not changed, so the 3-D grid is 12047 x 46 cells with

a resolutionh = 10 mm, 500 time steps with a time resolution Na 500 500 1000
At =1.9x 10719 s, and a conformal mesh with 336 triangles
and 504 edges. CPU time | 11 min 7 min 78 min

For the first FDTD study, we maintained the same space and
time resolution with a 120« 47 x 46 cell 3-D grid and 500
time steps. For the second FDTD study, the space resolution is
h =5 mm with 240x 93 x 92 cells, and the time resolutionresolution = 10 mm are more accurate than those with the
is At = 0.95 x 1071% s with 1000 time steps. usual FDTD method with 5-mm resolution. Table | shows the

Fig. 9 shows the RCS in the plane orthogonal to th@PU times for the three tests. The FDTD method with the
incident magnetic field for frequency = 0.96 GHz. The lower resolutions = 10 mm is the fastest with 7 min and the
calculated data are obtained by a normal FDTD near-to-faPTD method with the higher resolutioh = 5 mm is the
field transformation [19], for the two FDTD runs, and byslowest at 78 min. CPU time for the fictitious domain method
a near-to-far field transformation from the surface curreig intermediary at 11 min. The overall cost with respect to
density discrete Fourier transform. We find good agreemdr®TD with same. is as follows:
between the fictitious domain method and the reference. As» the assembly of matrixB (6 s);
expected, numerical results are better for FDTD run with « the computation ofBB7 (18 s);
resolution = 5> mm = Ao/66 than for resolutionh = « the factorization of the matrixBBT (0.1 s) with an
10 mm = X¢/33, but even for the greater resolution, FDTD  efficient FORTRAN library for sparse matrices;
does not give good results in forward and backward directions. at each time step, the computation of the surface current
The results obtained with the fictitious domain method with  density with (20).
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Fig. 10. Geometry of the axisymmetric horn antenna. The diameter of thig. 12. Radiation pattern of the horn antenna in fifeplane, frequency
circular waveguide is 25.7 mm. F = 7.5 GHz. Comparison of the fictitious domain method and EFIE.

0.0

of the tangential components of the electric field on the
boundaries of the PEC.
— Fictitous Domeln 1 Then we use a regular 3-D cubic lattice for the electro-
e magnetic field and triangular surface patching for the surface
electric current density. We choose these two meshes so that
the shortest edge of the triangular patches of the surface mesh
is longer than the space increménin order to obtain a small
i \ positive definite sparse system whose solution is the surface
200} ] electric current density at each time step.
The remarkable property of the numerical scheme of the
fictitious domain method is a simple stability criterion, which
O I e e is independent of the triangular patching of the boundaries of
Fig. 11. Radiation pattern of the horn antenna in fiiglane, frequency ihe PEC' Numerical res“'FS show the efficiency Pf this .methOd'
F = 7.5 GHz. Comparison of the fictitious domain method and EFIE.  Particularly for sharp bodies and curved metallic bodies.
The numerical scheme of the fictitious domain method looks
like Yee's scheme, but with a special treatment for the PEC.
D. An Axisymmetric Horn Antenna This allows us to use the usual techniques developed for
The radiation of a simple axisymmetric horn antenna PTD like absorbing boundary conditions. For example it is
the last example. Fig. 10 presents the geometry of the hdipssible to model PEC with the fictitious domain method and
antenna, which is a body of revolution. The circular waveguidgher materials like dielectric or lossy materials with a FDTD
has a diameter equal to 25.7 mm. Its cutoff frequency,(TEMethod.
mode) is 6.84 GHz and the next higher cutoff frequency §TM Finally, future works will try to adapt the fictitious domain

-10.0 |

amplitude {dB)

-15.0

mode) is 8.94 GHz. method to model dielectric materials, and thin wires.
The impulse excitation is such that the §{Mmode does not
propagate. A bandpass Gaussian pulse with Fourier spectrum ACKNOWLEDGMENT
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