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A Fictitious Domain Method for
Conformal Modeling of the Perfect

Electric Conductors in the FDTD Method
Francis Collino, Sylvain Garc´es, and Patrick Joly

Abstract—We present a fictitious domain method to avoid the
staircase approximation in the study of perfect electric conductors
(PEC) in the finite-difference time-domain (FDTD) method. The
idea is to extend the electromagnetic field inside the PEC and to
introduce a new unknown, the surface electric current density
to ensure the vanishing of the tangential components of the
electric field on the boundary of the PEC. This requires the use
of two independent meshes: a regular three-dimensional (3-D)
cubic lattice for the electromagnetic field and a triangular
surface-patching for the surface electric current density. The
intersection of these two meshes gives a simple coupling law
between the electric field and the surface electric current density.
An interesting property of this method is that it provides the
surface electric current density at each time step. Furthermore,
this method looks like FDTD with a special model for the PEC.
Numerical results for several objects are presented.

Index Terms—FDTD methods, fictitious domain, Maxwell’s
equations, time-domain methods.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method is a
well-known powerful numerical technique for solving

the Maxwell’s time-dependent curl equations [1]. The main
drawback of this method is the staircase meshing. The struc-
tures are described with a uniform rectangular lattice so when
the staircase approximation for curved interfaces is used,
numerical scattering can appear and disturb the computed
solution [2].

Several solutions to this problem have been proposed. A
quasi-nonuniform grid FDTD algorithm was proposed that is
well suited for the study of planar microwave circuits [3].
In order to try to match curved interfaces, some methods the
use of irregular nonorthogonal structured grids is proposed
elsewhere [4]. In other solutions the uniform rectangular
lattice is retained and Yee algorithm is locally modified to
take into account curved interfaces. According to this idea,
perfect electric conductor (PEC) structures are modeled by
contour-path approach in two-dimensional (2-D) case [5] and
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three-dimensional (3-D) case [6]. This method of contour path
FDTD (CPFDTD) is certainly the most popular one for the
treatment of complex PEC and has been studied by many
research groups, e.g., [7]–[9]. Its main advantage is that it
keeps the structure of Yee’s algorithm and can thus use the
classical techniques developed for FDTD, such as absorbing
boundary conditions or post processing. However, the stability
criterion depends on the geometry of the metallic scatterers
and can be difficult to control.

In this paper, we present a fictitious domain method, for
analysis of 3-D electromagnetic scattering by a PEC. Fictitious
domain methods have been introduced to solve stationary
problems [10]–[12], and have been proposed recently for the
Maxwell scattering problem in the 2-D case [13], [14]. The
extension to the 3-D case that is presented here was originally
developed in [15].

II. FICTITIOUS DOMAIN METHOD

A. Variational Principles

Let be a bounded domain in with boundary
, unit outward normal and the exterior of

the PEC. The main idea of the fictitious domain method is to
extend the electromagnetic field to the inside of the
PEC and to solve Maxwell’s equations inside and outside the
PEC. Multiplying Ampere’s law by any electric fielddefined
in (vacuum and the interior of the PEC) and integrating
the curl term by parts, we obtain for the interior problem

(1)

Similarly, for the exterior problem we have

(2)

We add these two equations in order to obtain the fictitious
domain formulation of Ampere’s law

(3)
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where is the surface electric
current density.

We then multiply Faraday’s law by any magnetic field
defined in (vacuum and the interior of the PEC), and we
obtain the following:

(4)

We add a third equation to take into account the vanishing of
the tangential components of the electric field on the boundary
of the PEC. For any surface electric current densitydefined
on the boundary of the PEC, we have

(5)

Gathering (3)–(5), we obtain the mathematical formulation
of the fictitious domain method: find the electric field in
the functional space curl , the magnetic field in

div and the surface electric current density in
div such that with the inner product in

curl

(6)

div (7)

div (8)

subject to initial conditions

and (9)

The functional spaces curl and div are the
spaces of square integrable functions defined in whose
curl and divergence, respectively, are also square integrable
functions. An important property of these spaces is that the
tangential, respectively, normal, components of a function of

curl , respectively div , are continuous across
interfaces. The space div is the natural functional
space of the surface electric current densities. They are vector
fields tangent to the boundary with some appropriate regu-
larity (see [16] for a complete discussion of these functional
spaces).

In [15], we proved that this problem has an unique solution.
Furthermore, if is the solution of the fictitious
domain problem, then the restriction of the electromagnetic
field to the exterior is the solution of the original
problem of the scattering by a PEC.

B. Derivation of the Fictitious Domain Scheme

1) Finite Element Spaces:We introduce two independent
meshes. First, the cubic domain including the vacuum and
the interior of the PEC is divided into identical small cubes.

Fig. 1. Position of the degrees of freedom for the electric and magnetic field
about a cubic cell of the 3-D space lattice.

Fig. 2. Position of the degrees of freedom for the surface electric current
density about a triangular surface patch of the interface vacuum PEC.

The electric field is then approximated by the lowest order
Nédelec elements for curl and the magnetic field is
approximated by the lowest order Nédelec elements for div
[17].

Second, the boundary of the PEC is divided into triangular
surface patches and the surface electric current densityis
approximated by the lowest order Raviart–Thomas element for

div [18]. Note that we have used for the surface electric
current density the same finite elements than those of the
electric field integral equation (EFIE) method.

Let be the time increment. We compute the electric field
at time step , and both the magnetic field and the surface

electric current density at time step . Thus, we have
for a point and a point

(10)

(11)

(12)

with , , and appropriate basis functions, and
the number of edges and faces in the uniform 3-D

mesh and the number of edges in the surface mesh.
The degrees of freedom of the electric and magnetic fields
are, respectively, the tangential components on the edges and
the normal components on the faces of the cubes of the 3-D
mesh (see Fig. 1) and the degrees of freedom of the surface
electric current density are the fluxes across the edges of the
triangles of the conformal triangulation (see Fig. 2).
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2) Numerical Scheme:Let

and

(13)

Using central-difference approximation, we obtain the follow-
ing numerical scheme:

(14)

(15)

(16)

with

the electric mass matrix

the magnetic mass matrix

the stiffness matrix

the coupling matrix.

Let be the space increment in the uniform mesh. Because
we choose identical cubes for the 3-D mesh, we apply mass
lumping to diagonalize the mass matrices

and (17)

We use the same technique to compute the stiffness matrix
. Then the numerical scheme is nothing but like the Yee’s

scheme [1] where we add the electric field

(18)

radiated by the surface electric current density. In
other words, following the Yee’s notation, we have for the
component of the electric field

(19)

Multiplying by the coupling matrix in (14) and writing
(16) for time steps and , we find that the surface electric
current density satisfies the linear system

(20)

Knowing the magnetic field at time step
and the electric field at time step , we compute first
the magnetic field with (15). Then we solve the
linear system (20) to obtain the surface electric current density

at time step . Finally, we find the electric
field at time step using (14).

In practice, we prefer the following equivalent algorithm.
The computation of the magnetic field is unchanged.
In the same manner we compute the electric field with

(21)

This step is identical to Ampere’s law in Yee’s scheme, but
we apply it ignoring the PEC. At this stage the tangential
components of the electric field on the boundary of the
PEC are not equal to zero. Then we solve the linear system

(22)

to obtain the surface electric current density . Finally,
we compute the electric field at time step with

(23)

So the surface electric current density radiates an
electric field which forces the tangential components of the
electric field on the boundary of the scatterer to be equal
to zero in a weak sense.

With energy techniques, we proved [15] that for any trian-
gular surface mesh, this numerical scheme is stable as long as
the time step and the space increment of the uniform
cubic 3-D lattice satisfy the usual condition

where (24)

This property is true for both open problems (or scattering
problems) and closed problems (or resonators). This very
simple stability criterion outlines the main difference between
our scheme and other time-domain methods which use con-
formal meshes [4]. For such methods, the stability criterion
has to be found for each mesh [19], a procedure that is often
computationally expensive.

3) The Electric Coupling Matrix:The matrix couples
the electric field and the surface current density. It is a
rectangular real matrix with coefficients

(25)

The support of the basis element is the union off our
adjacent cubes and the support of the basis elementis
the union of two adjacent triangles (see Fig. 3). In general,
the computation of the coefficients requires to compute
the intersection of cubes and triangles. We proved that the
intersection of a cube and a triangle is a convex polygon with
less than nine edges and we proposed an efficient algorithm to
compute this intersection (see [15] for the complete description
of this numerical aspect). Moreover, the coefficient is
equal to zero if the supports of the two basis functions
and are disjoint. For example, in Fig. 3 the electric basis
function is coupled with the electric current basis function

because the intersection of their supports is not empty
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Fig. 3. Intersection of cubes and triangles for the computation of the electric
coupling matrixB.

(dashed polygon). On the contrary, and are not coupled.
So the coupling matrix is a very sparse matrix.

The matrix is then a real positive symmetric sparse
matrix, however, we have not yet established that it is positive
definite. Let denote the shortest length of the edge of the
triangular patches of the interfaces between the vacuum and
the PEC. We found that if , then the matrix
is singular. We can explain this physically. At each step time,
we compute the surface electric current density, but we take
into account the wave propagation via Yee’s algorithm instead
of with the delayed potentials. So when , the wave
cannot propagate well.

Conversely, we proved that when , for the 2-D TE
case the matrix is not singular [15]. In practice, for the
3-D case numerical results show that the matrix is a
positive definite matrix as soon as . This result agrees
with previous results for the homogeneous elliptic Dirichlet
problem [20].

The square matrix has dimension , where
is the number of degrees of freedom for the surface electric
current density. For industrial cases is about 10 000.
This number is much smaller than the number of degrees of
freedom for the electric and magnetic fields, which can reach
1 000 000.

Finally, we recall that the coupling matrix is independent
of the time step, and depends only on the geometry of the
scattering problem.

III. N UMERICAL RESULTS

A FDTD code with B́erenger perfectly matched layer
(PML), [21] is used for simulations. Subroutines to treat
PEC with the fictitious domain method are added to this
code. Before the main FDTD time stepping loop, the coupling
matrix and the square matrix are computed. Then the
Cholesky factorization of matrix is computed. During
the time stepping loop, at each time step the linear system (22)
is solved and the radiated electric field (23) is added to the
electric field. Finally, after a discrete Fourier transformation,
the far-field pattern is obtained.

Fig. 4. Electric fieldEz(t) at pointx; y = 54 mm, z = 55 mm.

A. Spherical Cavity

The first example is a spherical resonator with radius
mm. In this case, the fictitious domain is now the exterior
of the obstacle. This example is an excellent test to confirm
experimentally the stability of the numerical scheme that we
have obtained theoretically by energy estimates, [14], [15]. The
3-D grid resolution is mm and the 3-D test grid has 50

50 51 cells. The time increment is
s, and the run has eight 192 time steps. The boundary of the
spherical cavity is meshed with one 144 triangles and one 716
edges whose lengths are longer than 1.6 mm and shorter
than 3.2 mm. A Gaussian source is excited on a-directed
electric dipole [22] located in the cavity at point mm,

mm, mm. In other words, we have

(26)

with and . In practice, this source is
active up to time step . Fig. 4 shows the
component of the electric field recorded at a pointinside
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Fig. 5. Electric fieldjEz(f)j at pointx; y = 54 mm, z = 55 mm.

the cavity, respectively, at the beginning and at the end of
the simulation. The electromagnetic energy is trapped inside
the spherical cavity and the electric field oscillates throughout
the simulation. Note that there is no numerical instability; the
electric field does not diverge.

Fig. 5 shows the discrete Fourier transform of thecompo-
nent of the electric field at point . The curve presents picks
at frequencies 8.93 GHz, 12.53 GHz, and so on. These values
fit with the analytical resonant frequencies of the spherical
cavity of radius 15 mm.

B. Scattering by Two Conducting Spheres

The second example is a system of two spheres
whose centers are separated by two wavelengths. This example
was treated by the contour path FDTD method in [5] and is
thus a good point for comparison. With this example, our goal
is also to show that the fictitious domain method is a good
technique to compute radar cross section (RCS) of single and
multiple bodies.

The 3-D cell resolution is and the test grid is 80
80 80 cells, so there are 3 129 840of freedom for

the electromagnetic field . The two boundaries of the
spheres are discretized with 912 triangles and 1368 edges of
length between and . We point out that the number
of degrees of freedom for the surface electric current density
(1368) is much smaller than the number of degrees of freedom
for the electromagnetic field (3 129 840).

Fig. 6 shows the sparsity pattern of the matrix used
for the computation of the surface electric current density.
Note that only 2.80% of its coefficients are not zero, and that

is a skyline matrix, with two independent blocks that
correspond to the two spheres.

Fig. 7 shows the -plane bistatic RCS of two spheres. The
direction of the propagation of the incident plane wave is 45
off the axis defined by the two spheres’ centers. The angle

is the forward scatter direction. Like [5], the fictitious
domain method agrees very well with the method of reference.
A more precise comparison shows that the fictitious domain
method seems to give a slightly more accurate result for the
forward scatter direction while it gives slightly less precise
results for some other directions.

Fig. 6. Sparsity pattern of the matrixBBT used to compute the surface
electric current density; 2.80% of the coefficients are not identically zero.

Fig. 7. E-plane bistatic RCS of twok0a = � spheres separated by2�0
air gap.

C. The Radar Cross Section of an Ogive

The next example shows the efficiency of the fictitious
domain method for modeling scattering of waves on sharp
metallic bodies. We compare the fictitious domain method
with the usual FDTD method using staircasing in terms of
numerical accuracy and central processing unit (CPU) running
time. The PEC is an ogive with nose angle and
diameter mm (see Fig. 8). The backward RCS
of this ogive is compared with calculated data from [23].
The 3-D resolution is mm, so the diameter of
the ogive is equal to 16.4 cells. The lengths of the 504
edges of the triangular patches are included between 11 and
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Fig. 8. The backward scattering by a PEC ogive with� = 40
� D = 164

mm. Illumination with a Gaussian pulse.

81 mm. The illumination is a Gaussian pulse such that the
excited frequencies of the incident plane wave are inferior to
1.5 GHz. We obtain good agreement between numerical results
computed by the fictitious domain method and calculated data
(see Fig. 8).

Then we compare the RCS computed with the fictitious
domain method and the FDTD method. An EFIE code with
a very thin surface mesh for the ogive (6264 edges whose
lengths are included between 0.9 and 25 mm) gives the
reference. The characteristics of the fictitious domain method
are not changed, so the 3-D grid is 12047 46 cells with
a resolution mm, 500 time steps with a time resolution

s, and a conformal mesh with 336 triangles
and 504 edges.

For the first FDTD study, we maintained the same space and
time resolution with a 120 47 46 cell 3-D grid and 500
time steps. For the second FDTD study, the space resolution is

mm with 240 93 92 cells, and the time resolution
is s with 1000 time steps.

Fig. 9 shows the RCS in the plane orthogonal to the
incident magnetic field for frequency GHz. The
calculated data are obtained by a normal FDTD near-to-far
field transformation [19], for the two FDTD runs, and by
a near-to-far field transformation from the surface current
density discrete Fourier transform. We find good agreement
between the fictitious domain method and the reference. As
expected, numerical results are better for FDTD run with
resolution mm than for resolution

mm , but even for the greater resolution, FDTD
does not give good results in forward and backward directions.
The results obtained with the fictitious domain method with

Fig. 9. RCS of a PEC ogive in the plane (k;E), for the frequencyf0 = 0:96

GHz, �0 = 2:03D.

TABLE I
SUMMARY OF THE CHARACTERISTICS TOCOMPUTE THE RCS OF AN OGIVE

resolution mm are more accurate than those with the
usual FDTD method with 5-mm resolution. Table I shows the
CPU times for the three tests. The FDTD method with the
lower resolution mm is the fastest with 7 min and the
FDTD method with the higher resolution mm is the
slowest at 78 min. CPU time for the fictitious domain method
is intermediary at 11 min. The overall cost with respect to
FDTD with same is as follows:

• the assembly of matrix (6 s);
• the computation of (18 s);
• the factorization of the matrix (0.1 s) with an

efficient FORTRAN library for sparse matrices;
• at each time step, the computation of the surface current

density with (20).
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Fig. 10. Geometry of the axisymmetric horn antenna. The diameter of the
circular waveguide is 25.7 mm.

Fig. 11. Radiation pattern of the horn antenna in theE-plane, frequency
F = 7:5 GHz. Comparison of the fictitious domain method and EFIE.

D. An Axisymmetric Horn Antenna

The radiation of a simple axisymmetric horn antenna is
the last example. Fig. 10 presents the geometry of the horn
antenna, which is a body of revolution. The circular waveguide
has a diameter equal to 25.7 mm. Its cutoff frequency (TE
mode) is 6.84 GHz and the next higher cutoff frequency (TM
mode) is 8.94 GHz.

The impulse excitation is such that the TMmode does not
propagate. A bandpass Gaussian pulse with Fourier spectrum
symmetrical about GHz and a bandwidth about

GHz excites a -directed dipole centered in the circular
waveguide and from the closed end. The 3-D grid
resolution is mm. The mesh for the boundary
of the horn antenna has 2358 triangles and 3492 edges whose
lengths are longer than and shorter than .

Figs. 11 and 12 show the radiation pattern in the E-plane
and in the H-plane at 7.5 GHz. Good agreements are
obtained.

IV. CONCLUSION

We have proposed a new fictitious domain method for the
study of scattering by PEC. We introduced the surface electric
current density defined on the interfaces between vacuum and
PEC. A simple coupling law between the surface electric
current density and the electric field ensures the vanishing

Fig. 12. Radiation pattern of the horn antenna in theH-plane, frequency
F = 7:5 GHz. Comparison of the fictitious domain method and EFIE.

of the tangential components of the electric field on the
boundaries of the PEC.

Then we use a regular 3-D cubic lattice for the electro-
magnetic field and triangular surface patching for the surface
electric current density. We choose these two meshes so that
the shortest edge of the triangular patches of the surface mesh
is longer than the space incrementin order to obtain a small
positive definite sparse system whose solution is the surface
electric current density at each time step.

The remarkable property of the numerical scheme of the
fictitious domain method is a simple stability criterion, which
is independent of the triangular patching of the boundaries of
the PEC. Numerical results show the efficiency of this method,
particularly for sharp bodies and curved metallic bodies.

The numerical scheme of the fictitious domain method looks
like Yee’s scheme, but with a special treatment for the PEC.
This allows us to use the usual techniques developed for
FDTD like absorbing boundary conditions. For example it is
possible to model PEC with the fictitious domain method and
other materials like dielectric or lossy materials with a FDTD
method.

Finally, future works will try to adapt the fictitious domain
method to model dielectric materials, and thin wires.
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