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Incremental Length Diffraction Coefficients for
the Shadow Boundary of a Convex Cylinder

Thorkild B. HansenMember, IEEE and Robert A. ShoreSenior Member, IEEE

Abstract—Incremental length diffraction coefficients (ILDC'’s) Although for some time ILDC’s have been available for the
are obtained for the shadow boundaries of perfectly electrically shadow boundaries of 2-D PEC scatterers with sharp edges
conducting (PEC) convex cylinders of general cross section. A (such as the wedge [2]-[5]), it is only recently that they have

two-step procedure is used. First, the nonuniform (NU) current . . .
in the vicinity of the shadow boundary is approximated using been obtained for convex smoothly curved cylinders. Yaghjian

Fock functions. The product of the approximated current and €t al. [6] obtain these ILDC'’s by approximating the fields
the free-space Green'’s function is then integrated on a differential radiated by the NU shadow-boundary currents of a general
strip of the cylinder surface transverse to the shadow boundary convex cylinder by the fields radiated by the NU shadow-
to obtain the ILDC's. This integration is performed in closed ,q,nqary currents of circular cylinders and then substituting
form by employing quadratic polynomial approximations for the h ; d fields i | . 51-(7]. Th
amplitude and unwrapped phase of the integrand. Examples are the approxmate ields into general expressions [5]-{7]. _ese
given of both the current approximations and the integration approximate ILDC'’s are then extended to account for a varying
procedure. Finally, as an example, the scattered far field of a radius of curvature in the shadow region.

PEC sphere is obtained by adding the integral of the NU ILDC'’s The purpose of this paper is to show how ILDC’s can
of a circular cylinder along the shadow boundary of the sphere to be obtained for the NU currents near the shadow boundaries

the physical optics (PO) far field of the sphere. This correction to . .
the PO field is shown to significantly improve upon the accuracy ©f PEC 2-D convex cylinders of general cross section and

of the PO far-field approximation to the total scattered field of Smoothly varying radius of curvature by approximating and
the sphere. integrating the NU currents. We derive asymptotic expressions

for the ILDC’s that are rapidly calculable and usable in
general-purpose computer codes. This method of obtaining
convex-cylinder shadow-boundary ILDC's is an alternative to
. INTRODUCTION the field substitution of Yaghijiaet al. [6] described above.

N the physical theory of diffraction (PTD) [1], the scattered he field substitution method, because it works directly with

field is divided into a physical optics (PO) field and dields, is perhaps simpler than the method of this paper. For
nonuniform (NU) field. The PO field for perfectly electricallyapplications in which heightened accuracy is important, how-
conducting (PEC) objects is obtained from an integration €¥er, the NU current approximation and integration method
the PO current over the object. One reason for the limitétgscribed here may be preferable because it yields more
accuracy of the PO field is that the PO current fails to closefigcurate ILDC’s than does the field substitution method [8].
approximate the exact current in the vicinity of shadow bound- In Section I, we give the Fock approximations of the
aries and on the shadow side. A significant improvement in théJ currents on a convex cylinder for TE and TM oblique
accuracy of the computed fields can, therefore, be obtainediBgidence. In Section Ill, we show how the ILDC’s corre-
finding good approximations for the fields radiated by the Nsponding to the Fock NU current approximations can be
currents near the shadow boundary. Approximations for the@etained efficiently by using an accurate and rapidly calculable
NU fields can be obtained by first integrating the product of tiPproximation to the radiation integral defining the ILDC. In
free-space Green’s function and the approximated NU currépfction IV, we show how to determine the canonical 2-D
excited on a strip of differential width transverse to the shadowylinders from the actual three-dimensional (3-D) scatterers.
boundary of a canonical two-dimensional (2-D) scatterer thAf an example of obtaining and using shadow-boundary
closely conforms locally to the shape of the actual scatterer!lfPC’s, we show results obtained for the field scattered by
the vicinity of the shadow boundary. The differential field§ PEC sphere illuminated by a plane wave.
obtained by this integration are known as the incremental

Index Terms—Physical theory of diffraction.

length diffraction coefficients (ILDC’s). Once the ILDC's are [l. FOock CURRENTS ON ACONVEX CYLINDER

determined, the NU fields are obtained by integrating them|n this section, we give expressions for the Fock currents

along the shadow boundary of the actual scatterer. [9] on a convex perfectly conducting cylinder illuminated by

an obliquely incident plane wave (see Fig. 1). Some of these

Manuscript received April 6, 1998. results are available in the literature, for example [10], [11,
T. B. Hansen is with Schlumberger-Doll Research, Ridgefield, CT 0687ap. 83-86], [12]. We note, however, that the Fock currents in

USA. o _ the illuminated region are given incorrectly in [10] and [12]
R. A. Shore is with the Air Force Research Laboratory/SNHA, Hanscom . . .

AFB, MA 01731 USA. and are not given in [11]; there are other errors as weII.. For
Publisher Item Identifier S 0018-926X(98)07494-8. this reason we derived all of the Fock currents for oblique
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wherep, (r) is the radius of curvature in the plane normal to
the cylinder axis. The Fock current approximation for the TE
total current is given by (3) witl7(z) replaced byG(z).

On the shadow side

KTE(r) = Yo fa - ETE i(ry,) Ciksg(r)g(xg) <M)l/6£g'
py(r)
(6)

In (6), Yo = 1/Z, is the free-space admittanca,, is the
normal to the cylinder at the shadow boundary peipt s,(r)

is the distance along the geodesic on the cylinder frgsnto

r, andfg is the tangent vector to the geodesic in the direction
away from the shadow boundary. The quantifyis defined by

3 1/3 d
w=(5) [ i @

2 re, Po(Sg)
Fig. 1. Cross section of a convex cylinder with smoothly varying radius gf\,here the integration is performed. along the geOdeS.IC that
curvature. starts atr,, and ends at the point in the shadow region.

For large distances from the shadow boundary the asymptotic
rI| rm of the Fock functiory(z) [15, p. 64] can be used in (6)
glding the first creeping wave on the cylinder

Shadow Boundary

incidence from the expressions for normal incidence, usi
recently established relationships [13] between the curre
excited by obliquely and normally incident plane waves. The ‘ ‘ c
details of these derivations can be found in [14]. In the K "(r) ~ Yoy 'ETE’Z(Psb)GZkS”(r)m
following expressions for the Fock current approximations, 1/6 ' '

the cylinder axis is parallel te, and the unit normal vector . <Pg(rsb)> i (8)
for the cylinder surface is denotéd The incident plane wave Py(r) 7

i i ok —iwt i i
propagates in the directiok’. An ¢™** time dependence is ,here g, is the negative of the first zero of the derivative of
assumed witho > 0. the Airy function.

5im /6
Brage /

A. The Fock Current for TE Oblique Incidence B. The Fock Current for TM Oblique Incidence

In this case, the incident electric and magnetic plane-wave,
fields are given by

ETEi(r) = — Zod oiklr 1)

In this case, the incident electric and magnetic plane-wave
fields are given by
ETM,i(r) — _ éz eik7 -r (9)

and
HTE,i(r) _ 9% eikf-r ) and . )

- HTM,i(r) =Y (/)z Cik7~r' (10)
where Z, is the impedance of free-spacki = kk‘ and
ki = —% sin ¢ cos ¢* — ¥ sin @ sin ¢* — % cos 9] are the
propagation direction of the incident plane wa#é,and ¢’
are the spherical unit vectors corresponding to the dil’eCtiO!KTM,NU(r) — 5K TMNU ()
(6", ¢"), andr = xx + y¥ + 2z denotes a general point.

In the illuminated region, the Fock approximation for the TM
NU current is

. 1/3
In the illuminated region the Fock current approximation — _{AX HTMJ(r)ﬁ [kpg(r)} h-k
for the TE NU current is 2
R [ kpy(r 1/3A Ny /3 -1
K™ NV (r) = i HTE”’(r)G<[—p92( )} i - k) 3) . q’fpé(r)} i k7,> (11)
Here, G(z) is the modified Fock function defined as or
A i o ATE s
3 G(x) =G(z) -2 4) KTMNU Gy 81;12/0971 5. E™i(r) F<[kpg2(r)} i kz)
whereG(z) = ¢ /3g(x), with g(x) being the Fock function
defined in [15, pp. 63—64]. The radius of curvature of the kpy(r)]™/? )
generalized helical geodesic that forms an afglaith the = ' 9 ) (12)

axis is denotecp,(r) with -
In (11) and (12) F'(«) is the modified Fock function defined as

- pn(T)
pg(r) ~ sin2 g () ﬁ(a}) = F(a:) — 2z (13)
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16 . . . . . shadow region in the vicinity o = 0°. This ripple behavior
is the result of interference between the dominant creeping
Exact waves launched ap = 4+90° both of which are present in
I e Fock |  the exact eigenfunction expansion of the current, whereas the
' approximate current in the rangé < ¢ < 180° contains only
2 v the dominant creeping wave launchedg¢at 90°.
: A
Eﬂ 08 a - ] Il. I NTEGRATING THE FOCK CURRENTS TOOBTAIN ILDC’s
<< We will now show how the ILDC’s corresponding to

the Fock currents, presented in Section Il, can be obtained
efficiently. The ILDC's for the shadow boundary of a convex
cylinder represent the fields radiated by the nonuniform Fock
currents on that cylinder. Specifically, the far field, radiated
by a strip of thicknesgz/, which is described by the curvg

04

° % % % 120 150 '® " on the cylinder, is given by
¢ (degrees) .
. dz'ike™ [ [ _.
: o ) ) NU 00 Ll —ikfFro(s)
Fig. 2. Amplitude ofI&'gE’NL (a, @, z) for circular cylinder,ka = 60, dE (r) Ar 6 / ¢
¢t = 180°, * = 90°. c

KNV, ¢t s) — 22 KNY(O, ¢, 5)]ds (16)
where F(z) = ¢*"/3f(z) and f(z) is the Fock function . N , . .
defined in [15, pp. 63-64]. The Fock current approzimatiowherer is the direction to the far-field observation point,

for the TM total current is given by (11) or (12) with(z) rc(s) is the parametric representation ©f and KNV is the
replaced byF(x) nonuniform Fock current. In the illuminated region, the curve

On the shadow side of the cylinder, the Fock current g ?S normal to the shadow bounqary. In thg sh.adoyv rggion,
given by is the gejode'sm whose angle with the axial directio®‘is
as shown in Fig. 1.
CH™M (2 ) £ py(ra) O In general, it is not possible to evaluate the integral (16)
< pg(T) ) in closed form. However, as we will now demonstrate, an
~1/3 accurate and rapidly calculable approximation to this integral
. <I€/%T(r)> (14) can be obtained.
where all quantities have been previously defined. For largde Quadratic Polynomial Approximations of the Amplitude
distances from the shadow boundary the asymptotic form afid Phase of the ILDC Radiation Integral

J(«) [15 ] can be used in (14) giving the first creeping wave gegin py considering one of the components of the electric

KIM(r) =if(wg)ethon Dot 222
Ny + @' sin 6

on the convex cylinder field dE in (16) and write this component as
—in/3 garwge® /0 Liksg(r) . . HTM,i(r ) 5
KM g c . sb § sb B —iP(s)
2 () A (—aq) Ny - ¢ sin 6? dE(r) = s, Als)e ds (7)
(I‘ ) 1/6 k (I‘) —-1/3 . .
. <p9 st ) < Py ) (15) Wwhere the amplitudei(s) and the phasé’(s) are functions
pa(r) 2 of the angles of incidence and observation. The amplitude

whereq; is the negative of the first zero of the Airy functionand phase functions are determined from the nonuniform
current and the far-field Green’s function occurring in (16).

C. Example For convenience, we allow the amplitudés) to be complex.

Moreover, the expressions in Section Il for the Fock currents

and the factore—**rc(s) determine the unwrapped phase of

the integrand so that the functidP(s) is continuous except
ssibly at the shadow boundary. Thus, the phase function

g&s) is not restricted to a finite interval of lengthr.

We can divide the integration in (17) into subintervals and

In Fig. 2, we have plotted the amplitude of the approxima
TE NU currentK ;™ "V (a, ¢, z) for a circular cylinder of
radiusa with ka = 60, ¢* = 180°, andé’ = 90° (normal inci-
dence) along with the amplitude of the exact current obtain
from the eigenfunction expansion for scattering from a circular
cylinder. The expressions from which these plots were ma
are given in [14] along with the corresponding Fock currents
for the parabolic cylinder. The amplitude is discontinuous at o —iD(s LA —iD(s
the shadow boundary &t = 90° because the TE PO current / Als)e™ " ds = Z/ Al)e™"Vds  (18)
is discontinuous there and, hence, when subtracted from the =t
continuous total current gives a discontinuous NU current. Thehere s; = s,, sny1 = s, and s; < sj41. The form
approximate current is seen to closely fit the exact curreoft the functionsA(s) and P(s) leads one to assume that
except for the ripple behavior of the exact current in the dedipese functions can be accurately approximated by quadratic
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polynomials ofs in each of the intervals; < s < s;4; when

these intervals are chosen appropriately. Hence, ‘
(B, )

Sj+1 ) Sj+1
/ A(s)e™PC) g ~ / (cos® + c15 + ¢2)

. e—i(6352+C4S+C5) ds (19)

wherecy, ¢, ca, ¢, ¢4, ande; are constants independentof
These constants will be determined such that the quadrdtie 3. Circular cylinder illuminated by a TE plane wave.
polynomials fitA and P at the endpoints; ands;; and at

the mideint8j+1/2 = (Sj + Sj+1)/2 16
A(s) = cos® + 15+ ca, for s=s;,5s = s;41/2,5= 811

(20) 12}
which gives

Asj+1) — Als))
(sj+1—55)%
sit1A(sin) = siAlsy) , Alsjry2)

Amplitude

co =2(sj+1+55)

+4 (22) 4t
(sj41 = 55)° (sj41 —55)? °
A(s; — Als;
o = Alsj) = Alsy) _ co(sj41 + ) (22)
Sj+1 7 5j
and % 45 90 135 180
1 Als) — 5. Als,
Co = Sj+l (8’1) 5 (S'I+1) + CoS;S541- (23) ¢ (degrees)
Si+1 = S
Fig. 4. Amplitude of the exact nonuniform TE current on circular cylinder
Similarly, for ka = 60.
P(S) :C332 + c45 + ¢35, for §=38j, §=8;+41/2,5= 5541 pattern is given by
(24)
Sp .
| | FRUIE(G) = [ A(s)enias (25)
and we find thates, ¢4, and ¢; are given by (21)—(23), e

respectively, withA replaced byP. These expressions for
the constantsy, ci, c2, cs3, ¢4, andcs are well behaved for
all functions A and P that are continuous in the interval ka
s; < s < s;41. In principl Id letP(s) b i Als) = -
] i+1- In principle, we could letP(s) be continuous
for all s except at the shadow boundary. However, in practicgl,q
calculations we permif’(s) to have discontinuities that are B NU, TE
multiples of 2 at the pointss,. P(s) = kacos(¢ — s) — Phasek; () @0
In the Appendix, we have shown how the integral on the NU. TE . . .
right side of (19) can be evaluated in closed form in ternfénere Phaset, (s)) is continuous (i.e.not modulo2r)

of the Fresnel function. Thus, the ILDC’s are expressed adBar from the discontinuity at the shadow boundary.

finite summation involving the Fresnel function and the value?ﬁThe amplitude and unwrapped phase of the NU current are

of the amplitude and the unwrapped phase of the integrand>tPWn in Figs. 4 and 5, respectively, fén = 60. Notice
(16) evallfated at the points ppedp g that both the unwrapped phase and the amplitude of the NU

current have discontinuities at the shadow boundary and that

) o ) o the unwrapped phase is almost linear on the shadow side.

B. Numerical Verification of the Quadratic Approximations Figs. 6 and 7 show the exact values and the quadratic
We will now use a numerical example to verify the quadratiapproximations ofA(s) and P(s) for ¢ = 0°. The number

approximation of the phase and amplitude in (19). We considafr segmentsn in (18) is six ands; = =«(j — 1)/6 so the

the far field radiated by the NU currents on the circulsshadow regiond < s < w/2, as well as the illuminated

cylinder shown in Fig. 3. The incident field is a plane TEegion n/2 < s < =, is divided into three subregions.

wave with HY = ¢** and only the NU currents in the Thus, the length of the subintervalsia. To better illustrate

angular region0 < ¢ < # will be taken into account. the accuracy of the quadratic phase approximation, we have

The magnetic far field for this NU current can be writtefintroduced discontinuities in the phase at the endpaintsve

as HNU:TE(r) = FNU.TE(g)eikr /\/Er, where the far-field see that the quadratic phase approximation is excellent for both

with s, = 0, s, = 7,

N KV TE(s)| cos(g — s) (26)
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Fig. 7. Exact values and quadratic approximation I®fs) for n = 6,
Fig. 5. Phase of the exact nonuniform TE current on circular cylinder fe¥ = 0°, andka = 60. The endpoints are; = (5 — 1)/6.
ka = 60.
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Fig. 8. Exact values and quadratic approximation Afs) for n = 6,
Fig. 6. Exact values and quadratic approximation Afs) for n = 6, ¢ = 0°, andka = 60. The endpoints are; = 0, sz = 60°, s3 = 80°,
¢ = 0°, andka = 60. The endpoints are; = =(j — 1)/6. 84 = 90°, s5 = 105°, s¢ = 135°, ands; = 180°.

these angles of observation, but that the quadratic amplitugging (18) and (19). For the above example of a TE plane

approximation deviates somewhat from the exact amplitudévave incident on a circular cylinder, the NU far-field pattern is
The quadratic amplitude approximation can be improved I$iown in Figs. 9 and 10. We notice that, except in the region

using unequal spacing with a greater density of points tak@fPund¢ = 20°, the results obtained with = 4 are very

in the region ofs that contributes most strongly to the far fieldgccurate. It is almost impossible to distinguish the exact result
at ¢. As an example, this is done in Fig. 8 for= 0 where from the result obtained with = 8 and we conclude that for

the endpoints are given by, = 0, s = 60°, s3 = 80°, ka =60itis sgfﬁcient to user = 6 egually §paced endpoints..

sy = 90°, s5 = 105°, s¢ = 135°, and s; = 180°. The The num_encal exgmples in this section show that with
quadratic approximation is clearly better in Fig. 8 than i€ integration technique presented in Section lll-A, one can
Fig. 6 with equal spacing. Future work could determine tféfcurately compute the radiated fields using segments as large
optimal set of endpoints; as a function of the far-field angle as5A. This is a significant improvement over standard current

of observation. By making these endpoints depend on the fg}gegrations that usually use segments of the orde¥,/6f
field angle, one could probably increase the accuracy of the

computed ILDC’s and, at the same time, reduce the number V. THE USE OF THEILDC's FOR A 3-D SCATTERER

of segments. In this section, we show how the ILDC’s for a convex
Having demonstrated the validity of the quadratic approxeylinder are applied to calculate the scattered far field of a 3-D

mations for the amplitudel(s) and phase’(s), we can now scatterer. In applications, the PO field will generally be known

calculate the far field that results from these approximatioasd what is desired is the scattered field due to the NU currents
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Shadow Region

Shadow Boundary

luminated Region

Far-Field Pattern

0.01 |

0 1(‘)0 2(‘)0 3(‘)0
¢ (degrees)

Incident Field

Fig. 9. Exact and approximate NU TE far-field pattern for = 60 and
n =4,n =6, andn = 8. The endpoints are; = 7(j — 1)/n.

Fig. 11. Three-dimensional scatterer illuminated by a plane wave.

the shadow boundary dt. Now generate a curv€’ through
P on the cylindrical surface in the same way th@atwas
generated on the surface of the 3-D scatterer. Assume that the
radius of curvature of the 3-D scatterer is large in the direction
parallel to the shadow boundary&tfor points on the geodesic
part of C, especially in the vicinity ofP. Then the geodesic
portion of C' in the vicinity of P will be closely approximated
by the geodesic portion of’ (a generalized helical curve
on the convex cylindrical surface making a constant angle
with its generators), and the ILDC’s of the cylindrical surface
at P will be a good approximation to the fields radiated by
the NU currents on a differential strip of the 3-D scatterer’s
surface containing’. The procedure for obtaining the ILDC’s
¢ (degrees) corresponding to the poidt on the shadow boundary of the 3-

D scatterer is repeated for all points on the shadow boundary,
Fig. 10. Exact and approximate NU TE far-field pattern for = 60 and 54 the |LDC’s then integrated along the shadow boundary to
n =4, n =6, andn = 8. The endpoints are; = =(j — 1)/n. Only the . . . . .
angular regiord < ¢ < 110° is shown. obtain an approximation to the far field radiated by the NU

currents on the 3-D scatterer.

It should be noted that a creeping wave geodesic on the

on the 3-D scatterer in the vicinity of its shadow boundary. Theurface of the actual scatterer will, in general, diverge from
total scattered field is then obtained by adding the NU scatterta@ corresponding helical creeping wave geodesic on the
field to the PO field. Consider a 3-D scatterer with a smoothpproximating convex cylinder surface as the distance from
varying radius of curvature illuminated by a plane wave (seake launching shadow boundary point increases. However, the
Fig. 11). The illuminated and shadowed portions of the surfaegponential decay of the creeping waves (8), (15) insures
are separated by the shadow boundary curve on the surfac¢éhat the major contribution to the diffracted far field comes
the scatterer. Consider a poifton the shadow boundary andfrom the current on the portion of the geodesic close to
generate a curv€' on the surface of the scatterer through the shadow boundary. Here, the generalized helical geodesic
motivated by the behavior of the currents on the surface. ¢an be expected to be a good approximation to the actual
the shadow regior(; is the geodesic emanating frafin the creeping wave geodesic, especially if, as assumed, the radius
direction of the illuminating plane wave—the curve followeaf curvature of the actual 3-D scatterer is large in the direction
by the currents—while in the illuminated region where thparallel to the shadow boundary for points on the geodesic
currents are determined locallg; is simply the intersection close to the launching shadow boundary point. An important
of the surface with the plane throudgh perpendicular to the consequence of this concentration of the creeping wave current
shadow boundary. A 2-D convex cylindrical (in general, ndh the vicinity of the shadow boundary is that the major ILDC
circular-cylindrical) surface can then be generated by passiogntribution to the far field is in the forward direction since
straight lines (generators) through each pointoparallel to the field in this region can be viewed as due to the shedding

Far-Field Pattern

0 25 50 75 100
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_____ PO -———- PO
——— PO4LDC --—-— PO+ILDC
— Exact —— Exact

Amplitude
Amplitude

NN /-\ A FA
~rTNsTN \/ \j/ \\//

0 45 90 135 180 30 140 150 160 170 180
8 (degrees) 0 (degrees)
Fig. 12. Amplitude of scattered H-plane far field of sphdre = 60 Fig. 13. Amplitude of scattered H-plane far field of sphdre = 60
illuminated by a plane wave)® < ¢ < 180°. illuminated by a plane wavet30° < ¢ < 180°.

of the creeping waves along rays tangential to the scatterecgfrespond t&? = 0° and 6 = 180°, respectively. The detail

points close to the shadow boundary. of Fig. 12 for 130° < # < 180° is shown in Fig. 13. It can
be seen that a significant improvement upon the accuracy of
A. Calculation of the Fields Scattered by a Sphere the PO scattered field is obtained by adding the integral of

As an application of the NU ILDC's for the shadowthe circular cylinder NU current ILDC to the PO field of
boundary of the PEC circular cylinder, we calculated the i€ sphere. A similar result was obtained for the E-plane
field of a PEC sphere illuminated by a plane wave by addﬁhgattered far-field pattern. Calculations for spheres smaller
the integral of the ILDC for a cylinder to the PO field ofthan ke = 60 have shown that the ILDC’s significantly
the sphere and compared the result to the exact scatteredefiffance the accuracy of the PO far field for spheres as small
field of the sphere as obtained from the Mie series solutioSka = 20.
The sphere of radius is assumed centered at the origin
of a Cartesian coordinate system and illuminated by a plane
wave propagating from above in the negativdirection. The ~ The nonuniform currents excited in the vicinity of the
shadow boundary of the sphere is thus a circle of radiis  Shadow boundary of a PEC object can contribute significantly
the = = 0 plane. A circular cylinder of radius enclosing the to the total scattered far field of the object. The method of
sphere, whose axis lies in the plane= 0, will be tangent to ILDC’s is an important technique for calculating this NU
the sphere along the circle of radiusnormal to the cylinder field, which, added to the PO field, gives a considerably
axis, with its center at the origin. Hence, a strip of the spherg®ore accurate approximation to the total far field than does
surface of constant equal width on either side of the merididte PO far field alone. The approach taken in this paper to
defined by¢ = constant coincides in the limit, as the widthobtain ILDC'’s for the shadow boundary of a PEC 2-D convex
of the strip shrinks to zero with an azimuthal differential strigylinder of general cross section is to integrate the product
of surface of the enclosing cylinder. As the cylinder is rotateef the free-space Green’s function and the NU currents over
around ther axis, the entire surface of the sphere is obtained. strip of surface of the 2-D cylinder of differential width,
Thus, the far field of the sphere can be obtained by adding tii@nsverse to the shadow boundary. Accurate and rapidly
integral of the NU-current ILDC of the cylinder to the PO farcalculable Fock approximations to the NU currents are ob-
field of the sphere, as the cylinder axis is rotated fibm 0to tained and used. The integration required to obtain the ILDC’s
¢ = 2x. (It should be noted that an error is introduced in thils itself performed rapidly by using quadratic polynomial
approximation procedure by the fact that the differential striggproximations of both the amplitude and unwrapped phase
of cylinder surface overlap in the vicinity of the poles of th@f the integrand of the radiation integral, thereby enabling the
sphere as the cylinder is rotated. This overlap is concentraigtegration to be performed in closed form involving Fresnel
in the “polar” regions of the sphere, however, and if the radidenctions. Examples are given of the approximations of both
of the sphere is large, the NU currents will decay rapidly awdiie NU currents and the integrand of the radiation integral.
from the shadow boundary so that the error attributable to tAs an application of this method of obtaining ILDC’s for
overlap of the differential strips can be expected to be smakkynvex PEC cylinders, the ILDC’s of a PEC circular cylinder

In Fig. 12, we show the scattered H-plane far field for are obtained and integrated over the shadow boundary of a
sphere of sizéia = 60 illuminated by a plane wave obtainedPEC sphere illuminated by a plane wave to obtain the NU
by the method of ILDC's, along with the exact field obtainedurrent far field. This field, added to the PO far field, is
from the Mie series. The back and forward scatter directioshown to considerably improve upon the accuracy of the

V. CONCLUSIONS
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PO approximation of the exact total scattered far field of Case Il (c3 < 0): The integral can in this case be obtained
the sphere. from

APPENDIX I(co, c1, c2, c3, ¢4, C5, a, b)

= [I(c§, e, b, —c3, —ca, —c5, a, b)]" (35)
A. Closed-Form Expressions for an Integral

Here we present closed-form expressions for the integralvyhere.* indicates complex conjugation. The integral on the
right side of (35) can be computed by the formulas given in

Case | above.

Case Il (0 < |es] < 1): In this case, it is advantageous to

b
= / (cos® + 15 + cg)ei(cas"Fesstes) gg (28)  obtain I from

1(007 C1, C2, C3, C4, C5, G, b)

o I{cy, 1, €2, 3, €4, 3, a, )
occurring in (19). We assume thag, ¢;, and¢, are complex o e

and thatcs, ¢4, cs5, a, andb are real.
Case I (c3 > 0): Integration by parts shows that

= I(COa C1, C2, Oa C4, C5, @, b)

I
+ 638_(6(% Cc1, C2, Oa C4, C5, @, b) (36)
803

I(COa C1, C2, C3, C4, C5, @, b)

) where
_ico Kb LG )G_i<c3bz+c4b+ca> Y
263 263 8_63(607 C1, C2, 07 C4, C5, @, b)
_ <a + &)ei(C3az+C4a+C3):| b ‘
2c3 = —i/ 32(c032 + 18+ o) e ileastes) gg (37)
_i_i c1— Coc4 |:e—i(0302+64b+65) _ e—i(03a2+c4a+05):| ¢
2¢3 c3 The integral can be easily evaluated in closed form by integrat-
¢ cic coc? ing by parts or, more simply, by using a symbolic-integration
0 164 0C4
vics 2¢OV a2 A (29)  computer program.
Case IV(c3 =0, cs #0): A straightforward calculation
where shows that
A=) emilea=ed/ el i z,) — Qz,)] @30) L(co,c1, 2,0, a5 65,0, )
;C?’ 5 _ {_ cob? +‘C1b to 2COb2+ o 2%?} o—ileabtes)
xam/ﬁ{ﬁg}’ xb:,/ﬁ{b+c_4} (31) e i id
T 2c3 T 2c3 B {_ coa —i—.cla +c 4 2coa + 1 4 @} p—ifesates)
and 1Cy4 ci 'ch’L
(38)
_ “ —i7'rt2/2
Qz) = /0 ¢ dt (32) Case V(c3 =0, ¢y, =0): A straightforward calculation
shows that
is a Fresnel function. Whef,| and|z;| are large, one can
substitute the large-argument approximation for the Fresné{co, ¢1, ¢2, 0,0, ¢, a, b)
function [16] = [$co(B® — a®) + e (b” — a®) + c2(b — a)]e 7. (39)
) 1—4 7 1 3¢ _ 7 : H H 4 i(63a2+64a+65)
Qz) ~sign(z) —— + | — — 55 — —5—= +O0@™) Equation (24) implies that the quantities
- . 2 . . H
2 LS A (e ande~(ca¥"+esbFes) oceurring in many of the expressions of
A P RS (33) this section, simply equal="(@) and =), respectively.
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