
1458 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 10, OCTOBER 1998

Incremental Length Diffraction Coefficients for
the Shadow Boundary of a Convex Cylinder
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Abstract—Incremental length diffraction coefficients (ILDC’s)
are obtained for the shadow boundaries of perfectly electrically
conducting (PEC) convex cylinders of general cross section. A
two-step procedure is used. First, the nonuniform (NU) current
in the vicinity of the shadow boundary is approximated using
Fock functions. The product of the approximated current and
the free-space Green’s function is then integrated on a differential
strip of the cylinder surface transverse to the shadow boundary
to obtain the ILDC’s. This integration is performed in closed
form by employing quadratic polynomial approximations for the
amplitude and unwrapped phase of the integrand. Examples are
given of both the current approximations and the integration
procedure. Finally, as an example, the scattered far field of a
PEC sphere is obtained by adding the integral of the NU ILDC’s
of a circular cylinder along the shadow boundary of the sphere to
the physical optics (PO) far field of the sphere. This correction to
the PO field is shown to significantly improve upon the accuracy
of the PO far-field approximation to the total scattered field of
the sphere.

Index Terms—Physical theory of diffraction.

I. INTRODUCTION

I N the physical theory of diffraction (PTD) [1], the scattered
field is divided into a physical optics (PO) field and a

nonuniform (NU) field. The PO field for perfectly electrically
conducting (PEC) objects is obtained from an integration of
the PO current over the object. One reason for the limited
accuracy of the PO field is that the PO current fails to closely
approximate the exact current in the vicinity of shadow bound-
aries and on the shadow side. A significant improvement in the
accuracy of the computed fields can, therefore, be obtained by
finding good approximations for the fields radiated by the NU
currents near the shadow boundary. Approximations for these
NU fields can be obtained by first integrating the product of the
free-space Green’s function and the approximated NU current
excited on a strip of differential width transverse to the shadow
boundary of a canonical two-dimensional (2-D) scatterer that
closely conforms locally to the shape of the actual scatterer in
the vicinity of the shadow boundary. The differential fields
obtained by this integration are known as the incremental
length diffraction coefficients (ILDC’s). Once the ILDC’s are
determined, the NU fields are obtained by integrating them
along the shadow boundary of the actual scatterer.
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Although for some time ILDC’s have been available for the
shadow boundaries of 2-D PEC scatterers with sharp edges
(such as the wedge [2]–[5]), it is only recently that they have
been obtained for convex smoothly curved cylinders. Yaghjian
et al. [6] obtain these ILDC’s by approximating the fields
radiated by the NU shadow-boundary currents of a general
convex cylinder by the fields radiated by the NU shadow-
boundary currents of circular cylinders and then substituting
the approximated fields into general expressions [5]–[7]. These
approximate ILDC’s are then extended to account for a varying
radius of curvature in the shadow region.

The purpose of this paper is to show how ILDC’s can
be obtained for the NU currents near the shadow boundaries
of PEC 2-D convex cylinders of general cross section and
smoothly varying radius of curvature by approximating and
integrating the NU currents. We derive asymptotic expressions
for the ILDC’s that are rapidly calculable and usable in
general-purpose computer codes. This method of obtaining
convex-cylinder shadow-boundary ILDC’s is an alternative to
the field substitution of Yaghjianet al. [6] described above.
The field substitution method, because it works directly with
fields, is perhaps simpler than the method of this paper. For
applications in which heightened accuracy is important, how-
ever, the NU current approximation and integration method
described here may be preferable because it yields more
accurate ILDC’s than does the field substitution method [8].

In Section II, we give the Fock approximations of the
NU currents on a convex cylinder for TE and TM oblique
incidence. In Section III, we show how the ILDC’s corre-
sponding to the Fock NU current approximations can be
obtained efficiently by using an accurate and rapidly calculable
approximation to the radiation integral defining the ILDC. In
Section IV, we show how to determine the canonical 2-D
cylinders from the actual three-dimensional (3-D) scatterers.
As an example of obtaining and using shadow-boundary
ILDC’s, we show results obtained for the field scattered by
a PEC sphere illuminated by a plane wave.

II. FOCK CURRENTS ON A CONVEX CYLINDER

In this section, we give expressions for the Fock currents
[9] on a convex perfectly conducting cylinder illuminated by
an obliquely incident plane wave (see Fig. 1). Some of these
results are available in the literature, for example [10], [11,
pp. 83-86], [12]. We note, however, that the Fock currents in
the illuminated region are given incorrectly in [10] and [12]
and are not given in [11]; there are other errors as well. For
this reason we derived all of the Fock currents for oblique
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Fig. 1. Cross section of a convex cylinder with smoothly varying radius of
curvature.

incidence from the expressions for normal incidence, using
recently established relationships [13] between the currents
excited by obliquely and normally incident plane waves. The
details of these derivations can be found in [14]. In the
following expressions for the Fock current approximations,
the cylinder axis is parallel to, and the unit normal vector
for the cylinder surface is denoted. The incident plane wave
propagates in the direction . An time dependence is
assumed with .

A. The Fock Current for TE Oblique Incidence

In this case, the incident electric and magnetic plane-wave
fields are given by

(1)

and

(2)

where is the impedance of free-space, and
are the

propagation direction of the incident plane wave,and
are the spherical unit vectors corresponding to the direction

, and denotes a general point.
In the illuminated region the Fock current approximation

for the TE NU current is

(3)

Here, is the modified Fock function defined as

(4)

where , with being the Fock function
defined in [15, pp. 63–64]. The radius of curvature of the
generalized helical geodesic that forms an anglewith the
axis is denoted with

(5)

where is the radius of curvature in the plane normal to
the cylinder axis. The Fock current approximation for the TE
total current is given by (3) with replaced by .

On the shadow side

(6)

In (6), is the free-space admittance, is the
normal to the cylinder at the shadow boundary point,
is the distance along the geodesic on the cylinder fromto
, and is the tangent vector to the geodesic in the direction

away from the shadow boundary. The quantityis defined by

(7)

where the integration is performed along the geodesic that
starts at and ends at the point in the shadow region.
For large distances from the shadow boundary the asymptotic
form of the Fock function [15, p. 64] can be used in (6)
yielding the first creeping wave on the cylinder

(8)

where is the negative of the first zero of the derivative of
the Airy function.

B. The Fock Current for TM Oblique Incidence

In this case, the incident electric and magnetic plane-wave
fields are given by

(9)

and

(10)

In the illuminated region, the Fock approximation for the TM
NU current is

(11)

or

(12)

In (11) and (12), is the modified Fock function defined as

(13)



1460 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 10, OCTOBER 1998

Fig. 2. Amplitude ofKTE;NU
� (a; �; z) for circular cylinder,ka = 60,

�i = 180�, �i = 90�.

where and is the Fock function
defined in [15, pp. 63–64]. The Fock current approximation
for the TM total current is given by (11) or (12) with
replaced by .

On the shadow side of the cylinder, the Fock current is
given by

(14)

where all quantities have been previously defined. For large
distances from the shadow boundary the asymptotic form of

[15 ] can be used in (14) giving the first creeping wave
on the convex cylinder

(15)

where is the negative of the first zero of the Airy function.

C. Example

In Fig. 2, we have plotted the amplitude of the approximate
TE NU current for a circular cylinder of
radius with , , and (normal inci-
dence) along with the amplitude of the exact current obtained
from the eigenfunction expansion for scattering from a circular
cylinder. The expressions from which these plots were made
are given in [14] along with the corresponding Fock currents
for the parabolic cylinder. The amplitude is discontinuous at
the shadow boundary at because the TE PO current
is discontinuous there and, hence, when subtracted from the
continuous total current gives a discontinuous NU current. The
approximate current is seen to closely fit the exact current
except for the ripple behavior of the exact current in the deep

shadow region in the vicinity of . This ripple behavior
is the result of interference between the dominant creeping
waves launched at both of which are present in
the exact eigenfunction expansion of the current, whereas the
approximate current in the range contains only
the dominant creeping wave launched at .

III. I NTEGRATING THE FOCK CURRENTS TOOBTAIN ILDC’s

We will now show how the ILDC’s corresponding to
the Fock currents, presented in Section II, can be obtained
efficiently. The ILDC’s for the shadow boundary of a convex
cylinder represent the fields radiated by the nonuniform Fock
currents on that cylinder. Specifically, the far field, radiated
by a strip of thickness , which is described by the curve
on the cylinder, is given by

(16)

where is the direction to the far-field observation point,
is the parametric representation of, and is the

nonuniform Fock current. In the illuminated region, the curve
is normal to the shadow boundary. In the shadow region,
is the geodesic whose angle with the axial direction is,

as shown in Fig. 1.
In general, it is not possible to evaluate the integral (16)

in closed form. However, as we will now demonstrate, an
accurate and rapidly calculable approximation to this integral
can be obtained.

A. Quadratic Polynomial Approximations of the Amplitude
and Phase of the ILDC Radiation Integral

Begin by considering one of the components of the electric
field in (16) and write this component as

(17)

where the amplitude and the phase are functions
of the angles of incidence and observation. The amplitude
and phase functions are determined from the nonuniform
current and the far-field Green’s function occurring in (16).
For convenience, we allow the amplitude to be complex.
Moreover, the expressions in Section II for the Fock currents
and the factor determine the unwrapped phase of
the integrand so that the function is continuous except
possibly at the shadow boundary. Thus, the phase function

is not restricted to a finite interval of length .
We can divide the integration in (17) into subintervals and

have

(18)

where , , and . The form
of the functions and leads one to assume that
these functions can be accurately approximated by quadratic
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polynomials of in each of the intervals when
these intervals are chosen appropriately. Hence,

(19)

where , , , , , and are constants independent of.
These constants will be determined such that the quadratic

polynomials fit and at the endpoints and and at
the midpoint

for

(20)

which gives

(21)

(22)

and

(23)

Similarly,

for

(24)

and we find that , , and are given by (21)–(23),
respectively, with replaced by . These expressions for
the constants , , , , , and are well behaved for
all functions and that are continuous in the interval

. In principle, we could let be continuous
for all except at the shadow boundary. However, in practical
calculations we permit to have discontinuities that are
multiples of at the points .

In the Appendix, we have shown how the integral on the
right side of (19) can be evaluated in closed form in terms
of the Fresnel function. Thus, the ILDC’s are expressed as a
finite summation involving the Fresnel function and the values
of the amplitude and the unwrapped phase of the integrand in
(16) evaluated at the points .

B. Numerical Verification of the Quadratic Approximations

We will now use a numerical example to verify the quadratic
approximation of the phase and amplitude in (19). We consider
the far field radiated by the NU currents on the circular
cylinder shown in Fig. 3. The incident field is a plane TE
wave with and only the NU currents in the
angular region will be taken into account.
The magnetic far field for this NU current can be written
as , where the far-field

Fig. 3. Circular cylinder illuminated by a TE plane wave.

Fig. 4. Amplitude of the exact nonuniform TE current on circular cylinder
for ka = 60.

pattern is given by

(25)

with , ,

(26)

and

Phase (27)

where Phase is continuous (i.e.,not modulo )
apart from the discontinuity at the shadow boundary.

The amplitude and unwrapped phase of the NU current are
shown in Figs. 4 and 5, respectively, for . Notice
that both the unwrapped phase and the amplitude of the NU
current have discontinuities at the shadow boundary and that
the unwrapped phase is almost linear on the shadow side.

Figs. 6 and 7 show the exact values and the quadratic
approximations of and for . The number
of segments in (18) is six and so the
shadow region , as well as the illuminated
region , is divided into three subregions.
Thus, the length of the subintervals is. To better illustrate
the accuracy of the quadratic phase approximation, we have
introduced discontinuities in the phase at the endpoints. We
see that the quadratic phase approximation is excellent for both
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Fig. 5. Phase of the exact nonuniform TE current on circular cylinder for
ka = 60.

Fig. 6. Exact values and quadratic approximation ofA(s) for n = 6,
� = 0�, andka = 60. The endpoints aresj = �(j � 1)=6.

these angles of observation, but that the quadratic amplitude
approximation deviates somewhat from the exact amplitude.

The quadratic amplitude approximation can be improved by
using unequal spacing with a greater density of points taken
in the region of that contributes most strongly to the far field
at . As an example, this is done in Fig. 8 for where
the endpoints are given by , , ,

, , , and . The
quadratic approximation is clearly better in Fig. 8 than in
Fig. 6 with equal spacing. Future work could determine the
optimal set of endpoints as a function of the far-field angle
of observation. By making these endpoints depend on the far-
field angle, one could probably increase the accuracy of the
computed ILDC’s and, at the same time, reduce the number
of segments.

Having demonstrated the validity of the quadratic approxi-
mations for the amplitude and phase , we can now
calculate the far field that results from these approximations

Fig. 7. Exact values and quadratic approximation ofP (s) for n = 6,
� = 0�, andka = 60. The endpoints aresj = �(j � 1)=6.

Fig. 8. Exact values and quadratic approximation ofA(s) for n = 6,
� = 0�, andka = 60. The endpoints ares1 = 0, s2 = 60�, s3 = 80�,
s4 = 90�, s5 = 105�, s6 = 135�, ands7 = 180�.

using (18) and (19). For the above example of a TE plane
wave incident on a circular cylinder, the NU far-field pattern is
shown in Figs. 9 and 10. We notice that, except in the region
around , the results obtained with are very
accurate. It is almost impossible to distinguish the exact result
from the result obtained with and we conclude that for

it is sufficient to use equally spaced endpoints.
The numerical examples in this section show that with

the integration technique presented in Section III-A, one can
accurately compute the radiated fields using segments as large
as . This is a significant improvement over standard current
integrations that usually use segments of the order of.

IV. THE USE OF THEILDC’s FOR A 3-D SCATTERER

In this section, we show how the ILDC’s for a convex
cylinder are applied to calculate the scattered far field of a 3-D
scatterer. In applications, the PO field will generally be known
and what is desired is the scattered field due to the NU currents
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Fig. 9. Exact and approximate NU TE far-field pattern forka = 60 and
n = 4, n = 6, andn = 8. The endpoints aresj = �(j � 1)=n.

Fig. 10. Exact and approximate NU TE far-field pattern forka = 60 and
n = 4, n = 6, andn = 8. The endpoints aresj = �(j � 1)=n. Only the
angular region0 < � < 110� is shown.

on the 3-D scatterer in the vicinity of its shadow boundary. The
total scattered field is then obtained by adding the NU scattered
field to the PO field. Consider a 3-D scatterer with a smoothly
varying radius of curvature illuminated by a plane wave (see
Fig. 11). The illuminated and shadowed portions of the surface
are separated by the shadow boundary curve on the surface of
the scatterer. Consider a pointon the shadow boundary and
generate a curve on the surface of the scatterer through
motivated by the behavior of the currents on the surface. In
the shadow region, is the geodesic emanating fromin the
direction of the illuminating plane wave—the curve followed
by the currents—while in the illuminated region where the
currents are determined locally, is simply the intersection
of the surface with the plane through perpendicular to the
shadow boundary. A 2-D convex cylindrical (in general, not
circular-cylindrical) surface can then be generated by passing
straight lines (generators) through each point onparallel to

Fig. 11. Three-dimensional scatterer illuminated by a plane wave.

the shadow boundary at. Now generate a curve through
on the cylindrical surface in the same way that was

generated on the surface of the 3-D scatterer. Assume that the
radius of curvature of the 3-D scatterer is large in the direction
parallel to the shadow boundary atfor points on the geodesic
part of , especially in the vicinity of . Then the geodesic
portion of in the vicinity of will be closely approximated
by the geodesic portion of (a generalized helical curve
on the convex cylindrical surface making a constant angle
with its generators), and the ILDC’s of the cylindrical surface
at will be a good approximation to the fields radiated by
the NU currents on a differential strip of the 3-D scatterer’s
surface containing . The procedure for obtaining the ILDC’s
corresponding to the point on the shadow boundary of the 3-
D scatterer is repeated for all points on the shadow boundary,
and the ILDC’s then integrated along the shadow boundary to
obtain an approximation to the far field radiated by the NU
currents on the 3-D scatterer.

It should be noted that a creeping wave geodesic on the
surface of the actual scatterer will, in general, diverge from
the corresponding helical creeping wave geodesic on the
approximating convex cylinder surface as the distance from
the launching shadow boundary point increases. However, the
exponential decay of the creeping waves (8), (15) insures
that the major contribution to the diffracted far field comes
from the current on the portion of the geodesic close to
the shadow boundary. Here, the generalized helical geodesic
can be expected to be a good approximation to the actual
creeping wave geodesic, especially if, as assumed, the radius
of curvature of the actual 3-D scatterer is large in the direction
parallel to the shadow boundary for points on the geodesic
close to the launching shadow boundary point. An important
consequence of this concentration of the creeping wave current
in the vicinity of the shadow boundary is that the major ILDC
contribution to the far field is in the forward direction since
the field in this region can be viewed as due to the shedding
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Fig. 12. Amplitude of scattered H-plane far field of sphereka = 60

illuminated by a plane wave;0� � � � 180
�.

of the creeping waves along rays tangential to the scatterer at
points close to the shadow boundary.

A. Calculation of the Fields Scattered by a Sphere

As an application of the NU ILDC’s for the shadow
boundary of the PEC circular cylinder, we calculated the far
field of a PEC sphere illuminated by a plane wave by adding
the integral of the ILDC for a cylinder to the PO field of
the sphere and compared the result to the exact scattered far
field of the sphere as obtained from the Mie series solution.
The sphere of radius is assumed centered at the origin
of a Cartesian coordinate system and illuminated by a plane
wave propagating from above in the negativedirection. The
shadow boundary of the sphere is thus a circle of radiusin
the plane. A circular cylinder of radius enclosing the
sphere, whose axis lies in the plane , will be tangent to
the sphere along the circle of radius, normal to the cylinder
axis, with its center at the origin. Hence, a strip of the sphere’s
surface of constant equal width on either side of the meridian
defined by constant coincides in the limit, as the width
of the strip shrinks to zero with an azimuthal differential strip
of surface of the enclosing cylinder. As the cylinder is rotated
around the axis, the entire surface of the sphere is obtained.
Thus, the far field of the sphere can be obtained by adding the
integral of the NU-current ILDC of the cylinder to the PO far
field of the sphere, as the cylinder axis is rotated from to

. (It should be noted that an error is introduced in this
approximation procedure by the fact that the differential strips
of cylinder surface overlap in the vicinity of the poles of the
sphere as the cylinder is rotated. This overlap is concentrated
in the “polar” regions of the sphere, however, and if the radius
of the sphere is large, the NU currents will decay rapidly away
from the shadow boundary so that the error attributable to the
overlap of the differential strips can be expected to be small.)

In Fig. 12, we show the scattered H-plane far field for a
sphere of size illuminated by a plane wave obtained
by the method of ILDC’s, along with the exact field obtained
from the Mie series. The back and forward scatter directions

Fig. 13. Amplitude of scattered H-plane far field of sphereka = 60

illuminated by a plane wave;130� � � � 180
�.

correspond to and , respectively. The detail
of Fig. 12 for is shown in Fig. 13. It can
be seen that a significant improvement upon the accuracy of
the PO scattered field is obtained by adding the integral of
the circular cylinder NU current ILDC to the PO field of
the sphere. A similar result was obtained for the E-plane
scattered far-field pattern. Calculations for spheres smaller
than have shown that the ILDC’s significantly
enhance the accuracy of the PO far field for spheres as small
as .

V. CONCLUSIONS

The nonuniform currents excited in the vicinity of the
shadow boundary of a PEC object can contribute significantly
to the total scattered far field of the object. The method of
ILDC’s is an important technique for calculating this NU
field, which, added to the PO field, gives a considerably
more accurate approximation to the total far field than does
the PO far field alone. The approach taken in this paper to
obtain ILDC’s for the shadow boundary of a PEC 2-D convex
cylinder of general cross section is to integrate the product
of the free-space Green’s function and the NU currents over
a strip of surface of the 2-D cylinder of differential width,
transverse to the shadow boundary. Accurate and rapidly
calculable Fock approximations to the NU currents are ob-
tained and used. The integration required to obtain the ILDC’s
is itself performed rapidly by using quadratic polynomial
approximations of both the amplitude and unwrapped phase
of the integrand of the radiation integral, thereby enabling the
integration to be performed in closed form involving Fresnel
functions. Examples are given of the approximations of both
the NU currents and the integrand of the radiation integral.
As an application of this method of obtaining ILDC’s for
convex PEC cylinders, the ILDC’s of a PEC circular cylinder
are obtained and integrated over the shadow boundary of a
PEC sphere illuminated by a plane wave to obtain the NU
current far field. This field, added to the PO far field, is
shown to considerably improve upon the accuracy of the
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PO approximation of the exact total scattered far field of
the sphere.

APPENDIX

A. Closed-Form Expressions for an Integral

Here we present closed-form expressions for the integral

(28)

occurring in (19). We assume that, , and are complex
and that , , , , and are real.

Case I : Integration by parts shows that

(29)

where

(30)

(31)

and

(32)

is a Fresnel function. When and are large, one can
substitute the large-argument approximation for the Fresnel
function [16]

(33)

into (30) to get

(34)

Numerical calculations show that it is advantageous to use (34)
when and . For or ,
the routine “fresnel” of numerical recipes [17, pp. 248–250]
can be used.

Case II : The integral can in this case be obtained
from

(35)

where indicates complex conjugation. The integral on the
right side of (35) can be computed by the formulas given in
Case I above.

Case III : In this case, it is advantageous to
obtain from

(36)

where

(37)

The integral can be easily evaluated in closed form by integrat-
ing by parts or, more simply, by using a symbolic-integration
computer program.

Case IV : A straightforward calculation
shows that

(38)

Case V : A straightforward calculation
shows that

(39)

Equation (24) implies that the quantities
and , occurring in many of the expressions of
this section, simply equal and , respectively.
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