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New Equations for Electromagnetic
Scattering by Small Perturbations
of a Perfectly Conducting Surface

Dennis Holliday, Lester L. DeRaad, Jr., and Gaetan J. St-Cyr

Abstract—New equations are derived for the electromagnetic interest, such as ocean waves, whi@fg| can be greater than
scattering produced by a small perturbation of a general perfectly 1 and«x|n| >> 1. For these latter conditions, it is conventional
conducting surface. These equations explicitly incorporate the to invoke the “composite approximation” in which small

magnetic field boundary condition on the general surface, which . . .
implies that the new Born term by itself leads to conventional 2MPplitude resonant waves, to which (1) and (2) apply, ride

backscatter formulas. The accuracy of the new equations is On long wavelength waves of large amplitude—and possibly
demonstrated by an example. large slope—that are assumed to i locally so that (1)

and (2) can be applied with being an equivalent incidence
angle measured relative to the normal of the long wavelength
surface [2].

. INTRODUCTION The composite approximation has not led to a successful

HE scattering of electromagnetic waves from rough suf2odel of low grazing angle ocean backscatter at high radar
faces is a basic phenomenon, which is important in fEgquencies, such a&-band (10 GHz). For example, (1) and
number of fields including, for example, radar ocean imagin(g) Predict, even after corrections are made for imperfectly
Rice [1] was the first to publish a useful theory of electromagonducting sea water, that
net?c s.cattering from rough surfaces and his_work has_ been a ovy S onn (4)
major influence on subsequent research. Using what is called
the small perturbation method, Rice derived formulas that & low grazing anglegf > 80°) with differences typically
to the average cross section per unit area for vertically aggeater than 20 dB. However, there are many ocean backscatter
horizontally polarized backscatter from a perfectly conductir@fta wheresy-y- and o are within a few decibels of each
statistical rough surface other [3]. In addition, a significant component of low grazing
4 P angle ocean backscatter is composed of sea spikes for which
ovy =8rr (1 +sin” 0)°[¢(26n) +(=2ku)] (1) 54, has been observed to be much larger thag [4]. These
and discrepancies suggest that the applicability of the composite
o =8mr*(1 — sin? 6)2[1h(26) +1p(—2ky)]  (2) @PProximation to ocean-like waves be questioned, which has
led us to a new set of equations for scattering from perfectly
wherex is the magnitude of the incident wavenumber vect@onducting surfaces.
—k, Which has—ky as its horizontal vector projectio®, is Specifically, for a given incident electromagnetic wave,
the incidence angle of the impinging electromagnetic wawee consider the changes in surface current produced by the
relative to the vertical, angy(k) is the wavenumber height addition of a small perturbationz(x) to a generalperfectly
spectrum of the rough surface, which is related to the surfaegnducting surface = 7r.(x). The surface)r(x) may have
height correlation function by regions wheres|n;| > 1 as well as large values d¥7,|.
The surfacen,(x) can also, if one wishes, be restricted
(n(x1)n(x2)) = /dkw(k) cos k - (x1 — x2) (3) to have only low wavenumber components so that resonant
backscatter from such a surface will be small. For such a
n(x) being the surface height at the horizontal positiorthe case, the perturbationr(x) can also be chosen to have
symbols () denote an average over the statistical ensemhégge wavenumber components so that it alone is responsible
that describes the rough surface. for backscatter. Our results can also be extended to random
Equations (1) and (2), which have a number of remarkalbd@rfaces or to random perturbations of nonstochastic surfaces.
implications, are derived under the conditions tffét)| < 1 We begin in Section Il with a review of the equations that
andr|n| < 1, which are too restrictive for many scatterers ofomprise the conventional surface current integral equation
Manuscript received September 25, 1995; revised June 30, 1998. This W()§<C|E) theory of Scattering from a perfectly CondUCting sur-
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Formulas for the scattered field and the Rice limit, which When the pointF is many wavelengths away from the
results in (1) and (2), will be shown in Section IV to bescattering region, (5) can be used to write the scattered field as
obtained from the formulas of Section Ill. In Section V, we

use the new equations to predict backscatter from the “expo- Bs(F) =B(F) - B”‘(F)

nential” wedge, a problem that has been solved accurately by a o _ & exp(inry) / dx1j(1
previous method [5]. A summary of conclusions is presented
in Section VI. -exp[ LkH x; — tk.n(1)] (14)

whererp = |xp + é.2,|
Il. REVIEW AND DEFINITIONS

_Ir
The magnetic inductioB(F)c~** produced by the scat- k= TR " (19)

tering of an incoming field;,,(F)ec~** at a pointrp = xp+
é.zr above a perfectly conducting surfage= n(x1) = n(1),
wherex is the horizontal vector component of the pofit Bin(F) = B exp[—iky - X, — ik.2p]. (16)
is given by the Stratton—Chu equation

and the incoming field in (5) has the form

I1l. NEW EQUATIONS

B(F) = Bin(F) _/ dx;[n(1) x B(1)] x VWG(F, 1) (5) In this section, we will derive equations that can be used to
s compute that part of the scattered fi@g that is linear in the
S denotes the surfaeg1), which is assumed to be a Lyapunovamplitude of the perturbationrs when an expansion of the
surface, V(1) indicates a gradient taken with respect to theasic scattering equation is made. The implicit assumption be-
position vectorry, hind this procedure is that these expansions do converge so that

. . the resulting linear equations are useful for sufficiently small

G(F, 1) = — — ——— explir|rr — ry]] (6) Values ofxnr and|[Vng|, an issue that will be investigated
dm [rp — 11 numerically.
n(l) = — Vp(x1) + ¢, (7) To begin we define
whereé. is the vertical unit vectorx; is the horizontal vector J(A4) =Jir(A4) +Jr(4) +Je(4) (17)
projection ofry, and wherejy, is the current induced or = 5, whenng = 0,
K=uw/c 8) jr is a linear functional of;r andjr is higher order inyg.

Substituting (17) in both sides of (9) and separating out terms

¢ is the speed of light. Stratton [6, sections 8.14 and 8.lélf,'ear in 75, We obtain
presents a straightforward derivation of (5) from Maxwell’'s (1) :jg")(l)—2nL(1)x/

jr(2 1,2 1,2
equations. The reader should note thatE andn-B are both dx2jr(2)x Rl 2)Qr(1, 2)

L

zero on the perfectly conducting surfadgis the electric field. (18)
When the pointF is taken to approach = n(x) in (5), the Where
surface current integral equation is obtained i(in) g
Jr (1)
i) =jim(1) — 20(1) x / dx2j(2) x VPG(1,2)  (9) = —Vng(1) x {ZBO exp[—ikg - X1 — ik.nr(1)]
S
where -2 [ i (2) X Ra(1, Qa1 )} + An(1) 19
L
j(1) =n(1) x B(1) (10) with
and iin) g / :
AR(1l) = — ik, —2ng(1) x dx. 2
Jin(1) =20(1) x Bin(1) ap AT T eI T de®
it is to be noted that both points 1 and 2 are on the surface { 2lnr(l) = 1r(2]QL(L, 2)
z= 77(x). Ar? imp(;rtan.t property of the solution of (9) is that TRy L 1 explirRr(1, 2)]
Jj(1) is on the surface: L dr Rp(1, 23
n(1)-j(1) =o. (12) [-K*Rr(1, 2)* — 3ikR(1, 2) + 3]
) =) ar()=ne@)) o0
In the derivation of (9) from (5) it is implicit that Ri(1, 2) Rr(1,2)

n(1) - Bin(1) = n(1)- / aj(2) x YOG 2)  (13) ir sgtisfies (9) on the surface= 7;,(x)
s j(Lm)(l) =2nz(1) X By exp[—iky - x1 —ik.nr(1)] (21)

which is a consequence of - B = 0 on S. nr(1) = - Vnr(1) +é. (22)
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Ri(1, 2) =x1 — %2 + é:[ne(1) — nr(2)] (23) whereé(k) is some linear combination of the two orthonormal
1 exp[icRr(1, 2)] .. polarization vectors of the scattered field
Qr(l,2) =— p[—L(g)] [ikRL(1, 2) —1]. (24)
47T RL(L 2) R ~ .
L i . . . . i GH(k) II{}H X €, (31)
A significant simplification of the above equations is possi- . L . -
ble. From (12) we obtain the condition évk)=épk)x k= —:j kg + — é.. (32)

nz(1)-jr(1) = Vnr(1) - jr(1) (25) Oncej. andjg are determined from their integral equations,
so that only the tangential component (with respect to tt{80) can be used to compute the components of the scattered
surfacen;,) of jr is determined by (18). Next we see that (13glectric field.
implies that the component of tHe} in the first term in (19)  For backscatter, wherke = &, (30) leads to (1) and (2) for

in the ny, direction is zero. These conditions result in 7, = 0 as will now be shown. Sinca; = é., we obtain
3% =3 1) - 2n.(1) x / il (2) jo(1) = 26, x Bo expl—irz - xi] (33)
x Re(1,2)Qr(1, 2) (26) which produces no backscatter and
where . ) . . ) )
j(o)(l) — () nr(1)-Vnr(l) 2,(1) Jr(1) = —ir.nr(1)j(1) + Vr(1) -jr(l)e. — 2¢.
e L (1) < [ dxaQu(1, DL2) X e.le(D) — me(2)]
x / dxonz(2) x Ru(l, 2) F i x (% — x2)Vir(2) - 50(2)} (34)
L
-Qr(1,2) w +Ag(1) (27) from(9) and (26)—(29), respectively. Substituting (33) and (34)
d InL(2)] into (30), we get for backscatter
an
S(T) oy nz(1) x [nr(1) x jr(1)] 28) . _ 1 explinre] | ' 2 on s g 2
Jr (1) L (1) (28) &) Bs(F) = ;- — "= é(r) - [Eor? + 2¢.¢. - Eor”]
so that ~/dx177R(1) exp(—i26p - X1) (35)
. .(T) Vnr(1) -jr(1)
JrR(D) =jz (V) +n,(1)—————=. (29
r Ing(1)[2 where the result

exp(ir|x|)

Equations (20) and (26)—(29) comprise the new equations for 1
/d o (ik|x| — 1) exp(—iky - x)
™

the perturbed currerjtz. When the surface = 7y, (y) is flat 3
andjz, is 2n x Bjycdent, the above equations reduce to the x|
conventional composite model. - 1 ke
Equations (26)—(29) were obtained by perturbing the surface 2 /K2 — kg
current integral equation. To produce these results it was useful o o ]
to write the integral equation with reference to coordinates th3@S been used and the incident electric field amplitude vector
do not change when the surface is perturbed. The procedifr@btained fromBy = —# x Eo.
for solving for g is first to obtainj;, from (9) onz = n,(z), WhennR is a random process with a wavenumber §pectrum
then determingg) from (27), and, finally, to solve (26) for defined by (3), the cross section per-unit-area is defined as

3, which is used in (29) to findx. 1 dmr

The derivation of (26) and (27) can be viewed as an Uzmlill}oomwdé(ﬁ) -Es]?) (37)
extension of Rice’s earlier work [1]. Where Rice used a

differential formulation of the scattering problem to considgfnere( ) denotes the stochastic average and AREA is the area
perturbations from a plane, we use an integral formulatiQf the surface illuminated by the incident wave. Using (31) and

because it is a more convenient description of the scatterifg) to define the polarization vector in (35), substituting the

(36)

problem for a general surface = 1. result in (37), and employing (3), we obtain (1) and (2).QED
Note, in contrast to the derivation in Holliday [7], this
IV. PERTURBED SCATTERED FIELD AND RICE LIMIT demonstration requires no overt iteration to show that the Rice

From (14) and the relationshiis = —k x Bg, we obtain resonant backscatter formulas are obtained. By incorporating
an expression for the perturbed scattered electric field inthe implications of the perfectly conducting boundary condi-

polarization directioné(k) tion, i.e., (13), we have derived a new integral equation for
ik firer,] the perturbed currenjtz that manifests in its inhomogeneous
e(k)-Eg(F) = A ST / dxyé(k) term the difference between the amplitudesVof and HH
dr - rE s backscatter. This difference, which is very large at low grazing
A=tknr(Dic(1) +jr(1)} angles, is thus seen to be an important consequence of the

-exp[—tky - x1 — tk.nr.(1)]  (30) boundary conditions.
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V. THE EXPONENTIAL WEDGE

Previously [5], we calculated the backscatter from a se-
ries of filtered exponential wedges by the method of for-
ward—backward. We will here repeat these calculations using
the new set of equations (9) fpr [see (21)—(24)], and (26) for %
jg). These calculations will be for azimuthally homogeneousé

surfaces so that the cross track (hejentegral is performed ::
in these equations. The unfiltered surface is given by [5]
A Y
1) = 5 (1+eos ) exp(slul/d), Wl SL 50
=0 lyl > L,
which has a Fourier transform af(k). We now define two y (em)
filters Fig. 1. npfor A =1, 2, 4, 6, 8, 10, 12 cm.
1, k| < 150
1 |k| — 150 TABLE |
Fr(k) = 3 <1 +cos T 150 )v 150 < [k| < 300 V-POL BACKSCATTER RESULTS
O7 |]€| > 300 A Forward-Backward 3] 2)
(39) (cm) Amplitude Phase (deg) dB deg dB deg
and 0.1 9.10 x 107! —-91.3 -0.5 —0.2 —0.5 —-0.2
1, |k] < 1200 1 2,62 ~120.0 -05 01 | —05 12
1 Lkl = 1200 3.35 -1294 0.5 0.0 -0.5 13
Fk)y={ = <1 +cos T L) 1200 < |k| < 2400
2 1200 3.84 -133.9 -05 | -01 —-0.5 12
0, |k| > 2400. 6 2.97 -1280 —-05 | —05 -05 0.7
(40) 8 1.33 -106.7 ~0.5 -1.1 -0.5 0.1
. . i 10 2.28 x 107! 0.5 ~0.8 ~1.3 ~0.8 -0.5
Thg filter /'(k) was used in [5] to define the surface. We now—; T e o7 o | o7 3
define the long-wave surfacg,(y) as the low wavenumber
part of n(y), namely,
1 e TABLE II
77L(y) — % /_OO ﬁ(k)FL(k)c7ky dk (41) H-PoL BACKSCATTER RESULTS
A Forward-Backward 1) (2)
and the perturbatiomg(y), which is the high wavenumber (@) | Amplitude  Phase(deg) | dB  deg | dB  deg
part of 77(71) as 0.1 3.74 x 1073 —94.2 —-0.9 1.0 —0.9 0.8
1 1.91 x 1072 -166.3 -0.9 5.9 -0.6 4.0
I ,
nr(y) = 2_/ (k) F (k) — Frl(]f)]elky dk. (42) 2 3.67x 1072 159.4 -0.8 5.3 -0.6 3.3
7S =00 4 8.52 x 10-2 1206 08 | 37 | -o7 08
The sum of these surfaces is exactly the surface employed iné L44x 107 964 —-08 [ 26 ~06 | -11
[5], where L = 1 m ands = tan 22°. For the parameters & 1.95 x 107 795 —08 16 ~05 | -25
chosenyr(y) is essentially independent af, except for very 19 215 x 1071 67.0 ~0.8 08 05 | -33
small A. Fig. 1 showsgr(y) for A =1,2,4,6,8,10, and 12 12 1.87 x 107! 56.1 -1.0 11 —05 | -30

cm; it has the form of a localized wave packet with a peak
amplitude of about 1 mm. Fad = 0.1 cm, g has a similar

shape with a peak amplitude of about 1/2 mm. Sing€y)
is small compared withy,(y), it is reasonable to treat it as 2) solve (9) byone forward pass and solve (26) yne

a perturbation. backward pass.
We have solved (9) and (26) by two different methods As in [5] all calculations are performed &-band (3-cm
and have compared the computed backscatter from (30) wivavelength) at an incidence angle of’8Fable | summarizes
that calculated by the forward—backward method for the futhe backscatter results for incideht pol and Table Il sum-
surfacer, which has been shown to be accurate [5]. The twaarizes the results for incide#f pol. Each table presents an
methods are: accurate value of the magnitude and phase of the backscatter
1) solve (9) forj; on n; by forward—backward to an computed using forward—backward and a comparison between
accuracy of 102 and solve (26) forjg) by for- these results and the results computed by methods 1) and 2).
ward—backward to an accuracy of 10 The comparison is made between the amplitude squared values
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(in decibels) and the phases (in degrees). For example, Tablew equations manifests the difference between the amplitudes
shows for V-pol incident with A = 10 cm that method of V'V and HH backscatter in contrast to the usual Born
1) produces a backscatter (amplitid@plue 0.8 dB below term, which is independent of polarization. This new Born
that obtained from the full forward—backward method andtarm by itself is responsible for the resonant backscatter
backscatter phase .3maller. results, (1) and (2), usually obtained by the small perturbation
One can see that both methods 1) and 2) result in aoethod [1] or by an iteration of the surface current integral
curate values, especially i pol. The results of method equations [7].
1) show that the new perturbation equations can be highlyA solution of the new equations was shown to produce
accurate and the results of method 2) shows that a lesxurate results for a test surface, the exponential wedge for
accurate method of solving the new equations, a single forwamtiich there is no unambiguous way to apply the “composite
pass forj; and a single backward pass fgpf), produces approximation” as it is conventionally understood. The
acceptable values. backscatter from an exponential wedge with an amplitude
The comparison between the forward—backward results fofr several electromagnetic wavelengths was shown to be
the full surfacen and the results from (9) and (26) showsgroduced by spectral components that result primarily from
that nr is almost completely responsible for the backscattgte change in slope at the apex of the wedge. Since
becausg;, does not appear in (30) as a source of backscattérese spectral components are localized at the apex of the
Sinceny, is localized at the apex of the exponential wedge, agedge, the region responsible for the backscatter will be
shown in Fig. 1, the backscatter from the exponential wedgénilarly localized.
will, when it is resolved in range, be seen to be produced near
the apex. Consequently, a simple view of backscatter from
the exponential wedge is that the change in slope at the ap
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