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New Equations for Electromagnetic
Scattering by Small Perturbations
of a Perfectly Conducting Surface

Dennis Holliday, Lester L. DeRaad, Jr., and Gaetan J. St-Cyr

Abstract—New equations are derived for the electromagnetic
scattering produced by a small perturbation of a general perfectly
conducting surface. These equations explicitly incorporate the
magnetic field boundary condition on the general surface, which
implies that the new Born term by itself leads to conventional
backscatter formulas. The accuracy of the new equations is
demonstrated by an example.

Index Terms—Electromagnetic scattering, rough surfaces.

I. INTRODUCTION

T HE scattering of electromagnetic waves from rough sur-
faces is a basic phenomenon, which is important in a

number of fields including, for example, radar ocean imaging.
Rice [1] was the first to publish a useful theory of electromag-
netic scattering from rough surfaces and his work has been a
major influence on subsequent research. Using what is called
the small perturbation method, Rice derived formulas that led
to the average cross section per unit area for vertically and
horizontally polarized backscatter from a perfectly conducting
statistical rough surface

(1)

and

(2)

where is the magnitude of the incident wavenumber vector
, which has as its horizontal vector projection, is

the incidence angle of the impinging electromagnetic wave
relative to the vertical, and is the wavenumber height
spectrum of the rough surface, which is related to the surface-
height correlation function by

(3)

being the surface height at the horizontal position; the
symbols denote an average over the statistical ensemble
that describes the rough surface.

Equations (1) and (2), which have a number of remarkable
implications, are derived under the conditions that
and , which are too restrictive for many scatterers of
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interest, such as ocean waves, where can be greater than
1 and . For these latter conditions, it is conventional
to invoke the “composite approximation” in which small
amplitude resonant waves, to which (1) and (2) apply, ride
on long wavelength waves of large amplitude—and possibly
large slope—that are assumed to beflat locally so that (1)
and (2) can be applied with being an equivalent incidence
angle measured relative to the normal of the long wavelength
surface [2].

The composite approximation has not led to a successful
model of low grazing angle ocean backscatter at high radar
frequencies, such as -band (10 GHz). For example, (1) and
(2) predict, even after corrections are made for imperfectly
conducting sea water, that

(4)

at low grazing angles with differences typically
greater than 20 dB. However, there are many ocean backscatter
data where and are within a few decibels of each
other [3]. In addition, a significant component of low grazing
angle ocean backscatter is composed of sea spikes for which

has been observed to be much larger than [4]. These
discrepancies suggest that the applicability of the composite
approximation to ocean-like waves be questioned, which has
led us to a new set of equations for scattering from perfectly
conducting surfaces.

Specifically, for a given incident electromagnetic wave,
we consider the changes in surface current produced by the
addition of a small perturbation to a generalperfectly
conducting surface . The surface may have
regions where as well as large values of .
The surface can also, if one wishes, be restricted
to have only low wavenumber components so that resonant
backscatter from such a surface will be small. For such a
case, the perturbation can also be chosen to have
large wavenumber components so that it alone is responsible
for backscatter. Our results can also be extended to random
surfaces or to random perturbations of nonstochastic surfaces.

We begin in Section II with a review of the equations that
comprise the conventional surface current integral equation
(SCIE) theory of scattering from a perfectly conducting sur-
face. This theory will then be reformulated in Section III to
derive a new integral equation for a linear current that
results when is added to . This equation will be
seen to differ significantly from the composite approximation.
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Formulas for the scattered field and the Rice limit, which
results in (1) and (2), will be shown in Section IV to be
obtained from the formulas of Section III. In Section V, we
use the new equations to predict backscatter from the “expo-
nential” wedge, a problem that has been solved accurately by a
previous method [5]. A summary of conclusions is presented
in Section VI.

II. REVIEW AND DEFINITIONS

The magnetic induction produced by the scat-
tering of an incoming field at a point

above a perfectly conducting surface ,
where is the horizontal vector component of the point,
is given by the Stratton–Chu equation

(5)

denotes the surface , which is assumed to be a Lyapunov
surface, indicates a gradient taken with respect to the
position vector ,

(6)

(7)

where is the vertical unit vector, is the horizontal vector
projection of , and

(8)

is the speed of light. Stratton [6, sections 8.14 and 8.15],
presents a straightforward derivation of (5) from Maxwell’s
equations. The reader should note that and are both
zero on the perfectly conducting surface;is the electric field.

When the point is taken to approach in (5), the
surface current integral equation is obtained

(9)

where

(10)

and

(11)

it is to be noted that both points 1 and 2 are on the surface
. An important property of the solution of (9) is that

is on the surface:

(12)

In the derivation of (9) from (5) it is implicit that

(13)

which is a consequence of on .

When the point is many wavelengths away from the
scattering region, (5) can be used to write the scattered field as

(14)

where

(15)

and the incoming field in (5) has the form

(16)

III. N EW EQUATIONS

In this section, we will derive equations that can be used to
compute that part of the scattered field that is linear in the
amplitude of the perturbation when an expansion of the
basic scattering equation is made. The implicit assumption be-
hind this procedure is that these expansions do converge so that
the resulting linear equations are useful for sufficiently small
values of and , an issue that will be investigated
numerically.

To begin we define

(17)

where is the current induced on when ,
is a linear functional of and is higher order in .

Substituting (17) in both sides of (9) and separating out terms
linear in , we obtain

(18)
where

(19)

with

(20)

satisfies (9) on the surface

(21)

(22)
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(23)

(24)

A significant simplification of the above equations is possi-
ble. From (12) we obtain the condition

(25)

so that only the tangential component (with respect to the
surface ) of is determined by (18). Next we see that (13)
implies that the component of the in the first term in (19)
in the direction is zero. These conditions result in

(26)

where

(27)

and

(28)

so that

(29)

Equations (20) and (26)–(29) comprise the new equations for
the perturbed current . When the surface is flat
and is , the above equations reduce to the
conventional composite model.

Equations (26)–(29) were obtained by perturbing the surface
current integral equation. To produce these results it was useful
to write the integral equation with reference to coordinates that
do not change when the surface is perturbed. The procedure
for solving for is first to obtain from (9) on ,
then determine from (27), and, finally, to solve (26) for

, which is used in (29) to find .
The derivation of (26) and (27) can be viewed as an

extension of Rice’s earlier work [1]. Where Rice used a
differential formulation of the scattering problem to consider
perturbations from a plane, we use an integral formulation
because it is a more convenient description of the scattering
problem for a general surface .

IV. PERTURBED SCATTERED FIELD AND RICE LIMIT

From (14) and the relationship , we obtain
an expression for the perturbed scattered electric field in a
polarization direction

(30)

where is some linear combination of the two orthonormal
polarization vectors of the scattered field

(31)

(32)

Once and are determined from their integral equations,
(30) can be used to compute the components of the scattered
electric field.

For backscatter, where , (30) leads to (1) and (2) for
as will now be shown. Since , we obtain

(33)

which produces no backscatter and

(34)

from (9) and (26)–(29), respectively. Substituting (33) and (34)
into (30), we get for backscatter

(35)

where the result

(36)

has been used and the incident electric field amplitude vector
is obtained from .

When is a random process with a wavenumber spectrum
defined by (3), the cross section per-unit-area is defined as

(37)

where denotes the stochastic average and AREA is the area
of the surface illuminated by the incident wave. Using (31) and
(32) to define the polarization vector in (35), substituting the
result in (37), and employing (3), we obtain (1) and (2).QED

Note, in contrast to the derivation in Holliday [7], this
demonstration requires no overt iteration to show that the Rice
resonant backscatter formulas are obtained. By incorporating
the implications of the perfectly conducting boundary condi-
tion, i.e., (13), we have derived a new integral equation for
the perturbed current that manifests in its inhomogeneous
term the difference between the amplitudes of and
backscatter. This difference, which is very large at low grazing
angles, is thus seen to be an important consequence of the
boundary conditions.
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V. THE EXPONENTIAL WEDGE

Previously [5], we calculated the backscatter from a se-
ries of filtered exponential wedges by the method of for-
ward–backward. We will here repeat these calculations using
the new set of equations (9) for [see (21)–(24)], and (26) for

. These calculations will be for azimuthally homogeneous
surfaces so that the cross track (here) integral is performed
in these equations. The unfiltered surface is given by [5]

(38)

which has a Fourier transform of . We now define two
filters

(39)

and

.
(40)

The filter was used in [5] to define the surface. We now
define the long-wave surface as the low wavenumber
part of , namely,

(41)

and the perturbation , which is the high wavenumber
part of as

(42)

The sum of these surfaces is exactly the surface employed in
[5], where m and . For the parameters
chosen, is essentially independent of, except for very
small . Fig. 1 shows for and
cm; it has the form of a localized wave packet with a peak
amplitude of about 1 mm. For cm, has a similar
shape with a peak amplitude of about 1/2 mm. Since
is small compared with , it is reasonable to treat it as
a perturbation.

We have solved (9) and (26) by two different methods
and have compared the computed backscatter from (30) with
that calculated by the forward–backward method for the full
surface , which has been shown to be accurate [5]. The two
methods are:

1) solve (9) for on by forward–backward to an
accuracy of 10 and solve (26) for by for-
ward–backward to an accuracy of 10;

Fig. 1. �R for A = 1; 2; 4; 6; 8; 10; 12 cm.

TABLE I
V-POL BACKSCATTER RESULTS

TABLE II
H-POL BACKSCATTER RESULTS

2) solve (9) byone forward pass and solve (26) byone
backward pass.

As in [5] all calculations are performed at -band (3-cm
wavelength) at an incidence angle of 85. Table I summarizes
the backscatter results for incident pol and Table II sum-
marizes the results for incident pol. Each table presents an
accurate value of the magnitude and phase of the backscatter
computed using forward–backward and a comparison between
these results and the results computed by methods 1) and 2).
The comparison is made between the amplitude squared values
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(in decibels) and the phases (in degrees). For example, Table I
shows for -pol incident with cm that method
1) produces a backscatter (amplitude)value 0.8 dB below
that obtained from the full forward–backward method and a
backscatter phase 1.3smaller.

One can see that both methods 1) and 2) result in ac-
curate values, especially in pol. The results of method
1) show that the new perturbation equations can be highly
accurate and the results of method 2) shows that a less
accurate method of solving the new equations, a single forward
pass for and a single backward pass for , produces
acceptable values.

The comparison between the forward–backward results for
the full surface and the results from (9) and (26) shows
that is almost completely responsible for the backscatter
because does not appear in (30) as a source of backscatter.
Since is localized at the apex of the exponential wedge, as
shown in Fig. 1, the backscatter from the exponential wedge
will, when it is resolved in range, be seen to be produced near
the apex. Consequently, a simple view of backscatter from
the exponential wedge is that the change in slope at the apex
of the wedge produces an with spectral components that
cause significant backscatter.

One might ask if a “composite approximation” could be
used to calculate backscatter from the exponential wedge.
Since the extent of , according to Fig. 1, encompasses a
wide range of slopes from to , it is
apparent that does not “ride” on a flat surface so the heuris-
tic rationale behind the “composite approximation”—that the
surface underlying is flat—is not applicable.

The ratio for backscatter from the exponential
wedge at 85 incidence angle can be seen to vary considerably
with the amplitude of the wedge. At cm, Tables I and
II show that the ratio is 47.7 dB rising to a peak of 0.5
dB at cm before falling to a value of 15.4 dB at

cm.
As mentioned above, the localized wave packet is

essentially identical for cm (see Fig. 1) even though
the variation in backscatter cross section over the domain

cm to cm is 24 dB in pol and 21
dB in pol. These variations cannot, therefore, be due to
changes in the resonant component of . Instead, our
results demonstrate the unusual sensitivity ofto the long
wave current . The importance of can be seen from
the integral equation for (26) where a central quantity
is the product . To date, we have not identified the
essential features of that produce the large variations in
backscatter. Multiple scattering is clearly responsible, but the
effect is more complicated than simple interference between a
direct ray and a reflected ray.

VI. SUMMARY AND CONCLUSIONS

We have derived new equations (26)–(29) that describe
the electromagnetic scattering produced by a small pertur-
bation of a general perfectly conducting surface. Because
it incorporates the boundary condition on the
unperturbed surface, the inhomogeneous or Born term of the

new equations manifests the difference between the amplitudes
of and backscatter in contrast to the usual Born
term, which is independent of polarization. This new Born
term by itself is responsible for the resonant backscatter
results, (1) and (2), usually obtained by the small perturbation
method [1] or by an iteration of the surface current integral
equations [7].

A solution of the new equations was shown to produce
accurate results for a test surface, the exponential wedge for
which there is no unambiguous way to apply the “composite
approximation” as it is conventionally understood. The
backscatter from an exponential wedge with an amplitude
of several electromagnetic wavelengths was shown to be
produced by spectral components that result primarily from
the change in slope at the apex of the wedge. Since
these spectral components are localized at the apex of the
wedge, the region responsible for the backscatter will be
similarly localized.
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