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Complex Image Model for
Ground-Penetrating Radar Antennas

Christopher J. Leat, Nicholas V. Shuley, and Glen F. Stickley

Abstract—A method of combining the complex image method
with the constant QQQ assumption is derived, which enables the
calculation of complex image parameters once for the whole
frequency range in the general half-space case. The mixed po-
tential method of moments is then used to model horizontal wire
dipoles near a lossy half-space, using pulse-basis functions and
point matching. The method is demonstrated by the modeling of
two types of wire dipole. A conductive half-wave dipole shows
excellent agreement with NEC-3. The current distribution of a
3.4 m resistively loaded dipole across the frequency range 0–512
MHz is also calculated and transformed to the time domain. The
result agrees with published measurements. The time required on
a work station was reduced to 4/ s per frequency point.

Index Terms—Moment methods, radar antennas.

I. INTRODUCTION

T HIS work draws upon two observations. First, for many
rock and soil materials, the complex permittivity is ap-

proximately constant over the range of frequencies used in
ground penetrating radar (GPR). Second, the half-space model,
which assumes that the ground is homogeneous, is a useful
model for GPR antennas that captures to first order the
interaction of the antenna with the ground surface.

The observation that conduction and displacement currents
bear an approximately constant ratio to each other over GPR
frequency bands has been used for attenuation calculations of
GPR pulses [1] where it has become known as theconstant Q
assumption. Consideration of the same data, however, also
suggests the use of the stronger assumption thatcomplex
permittivity may be considered constant to good approximation
in the modeling of antennas and scatterers.

In support of the second observation, we note that although
the ground is, in general, not homogeneous, the half-space
model has been frequently used in the GPR context. Scat-
terer [2], [3] and antenna [4] studies have both adopted the
simplification of a homogeneous ground material. In addition,
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the half-space model has a long ancestry in the analysis of
broadcast antennas, which operate at low frequencies and, thus,
are necessarily close to the ground.

Some applications outside GPR also involve the combi-
nation of the half-space and constant complex permittivity.
Planar antennas on thick substrates [5] are a recent example.
The combination enables the efficient reuse of Green’s func-
tions across the frequency range and the reuse is particularly
convenient in the case of the complex image method [6].

As an application of the method, a practical GPR antenna
is modeled with the emphasis on minimal computational
requirements. A resistive dipole of up to six wavelengths
in length, in close proximity to the half-space, is shown
to agree with published results although it is not obvious
that complex images should function adequately alone at
this range.

The method of complex images was also adopted by Viteb-
skiy et al. to model the similar problem of scattering from
wires [2] and bodies-of-revolution [3], however, we suggest
the use of a constant complex permittivity assumption to
further improve the speed of calculation of the half-space
Green’s functions at each frequency, and demonstrate the
application of the method to the GPR antenna.

The numerical analysis of wire antennas near a dielectric
half-space has been approached in various ways. Michalski
[7] used a numerically integrated MPIE formulation to model
an oblique half-wave dipole antenna as a function of angle.
Lindell [8] used a continuous image source intensity for the
Green’s function and the induced electromotive force (EMF)
method to calculate the impedance of horizontal dipoles.
Bourke et al., [9] precalculated the Sommerfeld integrals at
a grid of and values and used interpolation to speed
the application of the method of moments to the modeling
of currents on thin wires; this approach was incorporated
into NEC which Turner [10] used to model half-wave dipole
input resistance as a function of height above a lossy half-
space. Popovicet al., [11] used entire domain polynomial basis
functions and an unspecified “compact algorithm” to evaluate
the Sommerfeld integrals.

II. M IXED-POTENTIAL GREEN’S FUNCTIONS

Both scalar and vector potential Green’s functions, in the
half-space containing the source, may be represented as the
sum of a free-space wave and the Hankel transform of an
appropriate spectral reflection coefficient. Consider Fig. 1. Us-
ing cylindrical coordinates and following the notation used in
Chew [12] the Green’s functions can be written independently
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Fig. 1. Cylindrical geometry used to describe source and field points.

of

(1)

where

The term is a plane wave reflection coefficient defined
below and the reflecting surface lies in the plane. The
harmonic time dependency is assumed.

For a horizontal wire antenna, as is the case in many
GPR systems, only two potentials are required. By comparing
Michalski [7, eq. (1)] with [7, eqs. (49) and (51)] it is apparent
that in the case of the scalar potential,

(2)

(3)

and for the vector potential,

(4)

(5)

where in the above

(6)

A. Complex Image Approximations

Chow et al., [6] have provided an approximate analytical
method of integrating (1) that is accurate for the near and
intermediate field. Before applying the method to the scalar
potential reflection coefficient, it is necessary to remove the
quasistatic image

(7)

where

(8)

As outlined in Chowet al. [6], the complex image method
would make the approximations

(9)

(10)

where, in general, the are dependent on
the media properties and time angular frequency andis a
parameter describing the contour of fitting (23).

Ultimately, the complex image method allows us to write

(11)

where now

(12)

(13)

(14)

B. Constant Q Green’s Functions

For many rock and soil materials, it has been found [1] that
the total effective conductivity varies with frequency in such
a way as to keep the quantity

(15)

approximately constant. Thus, if the complex relative permit-
tivity is written

(16)

and the real permittivity is considered constant, then the
complex permittivity can also be considered to be independent
of frequency. In the case of water for example, the real relative
permittivity is nearly constant at 80 from 0 to 3 GHz, at 20
C. The presence of water is a significant contributor to the

electromagnetic properties of many ground materials.
In the half-space case described by (3) and (5), it is possible

to change the variable of integration to the angle of incidence
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of the wave and eliminate the dependency on the frequency
provided that the complex permittivity is not a function of
frequency.

We can substitute

(17)

(18)

into (3) and (5) to obtain

(19)

(20)

remembering that Snell’s law gives as a function of ,
hence

(21)

On making the change of variable in the integral

(22)

The Green’s function is now dependent on the electrical
distances and the frequency dependence
is reduced to the proportionality inherent in the factor.
Considerable computation may be saved by exploiting the
frequency independence thus established when calculating the
complex images.

C. Constant Q and Complex Images

Following the method of Chowet al., the reflection coef-
ficient is fitted by exponentials over a parametrically defined
contour

(23)

Thus

(24)

(25)

(26)

It is now clear that considering the above equations for the
cosines in terms of the parameterand (19) and (20), that

(27)

(28)

The Prony method or equivalent is used to fit the exponen-
tials to the reflection coefficient so that

(29)

The poles and residues are, thus, also independent of
, dependence is only introduced with the parametersof

(14). This step can easily be deferred until the calculation of a
particular frequency is required. Thus, only a single application
of the Prony method is required provided that the complex
permittivity is constant with frequency and the medium is not
layered. In the case of layered media, standing wave terms
of the form exp appear in the reflection coefficients
as a result of the varying electrical thickness of the layers.
Consequently, it is not possible to factor out the frequency
dependent wave number. The reason for our laboring of the
point that the half-space model is adequate for GPR antennas
and scatterers is now apparent.

III. M OMENT METHOD MODEL

Most of the work in this section follows the notation and
methods first published by R. F. Harrington [13]. However,
the integral terms in [13, eq. 99] must be denoted separately,
because of the different complex images found for each of the
potentials introduced by the half space. Thus, let

(30)

(31)

where

(32)

(33)

(34)

(35)

and similar expressions apply in the case of , etc.
The impedance matrix terms can then be found by substi-

tuting for the potentials in [13, eq. 99], multiplying by
and dividing by .

Thus

(36)

For the resistively loaded dipole, the diagonal impedance
matrix elements are increased by the lumped impedance load
at that element [14].
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Fig. 2. Comparison with Turner: input resistance as a function of height for
a horizontal half-wave dipole at 300 MHz.

IV. RESULTS

The moment-method solution outlined in this paper was
programmed using a Matlab script file. A three-term complex
image fit is used for both the scalar and vector potentials,
because it was observed that although a larger number of
images produced more accurate Green’s function for small
, there was a greater tendency for the function to blow

up at larger values of . Delta gap voltage excitation was
used in preference to magnetic frill excitation because of
its simplicity.

A. Comparison with NEC-3

In Turner [10], the input resistance of a 0.5-m-long dipole
at 300 MHz is plotted as a function of distance from the half-
space with the properties: real and Sm .
NEC-3 was used for the calculation, assuming a radius for the
dipole of 1 mm.

The data plotted by Turner was digitized and compared
with the moment-method model of this work under identical
conditions in Fig. 2. NEC-3 uses whole-domain basis func-
tions and the Galerkin method rather than subsectional basis
functions and point matching as used here. There is some
disagreement at mm. It needs to be noted that both
models are in doubt in this region. The slope of the curve
here is of the order of /mm. The diameter of the wire is
2 mm. A nonsymmetrical distribution of current could easily
displace the apparent height of the current filament by 0.5
mm. This would cause an error in the calculation of.
Burke et al. [15] also referred to the inability of a thin-wire
model to correctly model behavior within a wire’s radius of
the interface.

The imaginary part of the input impedance was not shown in
[10], but the data produced by our model is shown in Fig. 3.
Ground conditions identical to those used in [11] were also
used with our model for the horizontal half-wave dipole and
the results agreed in both real and imaginary parts of the
input impedance.

Fig. 3. Input reactance as a function of height for a horizontal half-wave
dipole at 300 MHz.

B. Pulse-Excited Resistive Dipole

In Section II-C, it was shown that if the complex permit-
tivity of a two-layer medium is frequency independent, it
is possible to reduce the computational effort in calculating
responses at different frequencies by computing the image
poles and residues once and deferring the calculation
of the complex distance parameters.

This result was exploited for the resistively loaded dipole
by setting the complex permittivity at and
computing the current distribution of the 3.4-m dipole at 10
mm from the interface for a range of frequencies from 0 to 512
MHz. This was to enable comparison with Arcone [4], who
probed current at points along a resistive dipole of length 3.4
m above a half-space of real permittivity of 11 and unstated
loss. Unfortunately, the exact height of the dipole was not
given, thus, the use of 10 mm in this model is arbitrary. From
the resistor values given by Arcone, the resistivity parameter
used was estimated to be in

(37)

Our model used 61 pulse-basis functions and required 4 s
per frequency point, running on a DEC 3000 400 Alpha work
station. Arcone used a proprietary 5 ns GPR current source
in his measurement. An excitation voltage source of the same
form ( ) was used
in our model by transforming to the frequency domain and
multiplying by the response of the antenna at a point along
its length, this result was then inverse transformed to the time
domain. The results of the model are shown in Fig. 4.

Some spreading of the pulses occurs, consequently the
measured delay of the pulses depends on the corresponding
points on the pulses chosen. If the peak is chosen, the delay
of the 1.1-m point pulse is 5 ns. This indicates a pulse speed of
22 cm/ns or 0.73/ c. Alternatively, the use of the leading edge
of the pulse gives a delay of 4.6 ns and an associated speed
of 24 cm/ns. These speeds are slightly slower than Arcone’s
measured speed of 27.7 cm/ns (for which the point used on
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Fig. 4. Time-domain current pulses seen at equally spaced (0.55 m) points
along the resistive dipole.

the pulse is not specified) possibly due to the sensitivity of the
speed to distance from the interface, and the different apparent
height of Arcone’s dipole to that used here. The form of the
pulses agree well with Fig. 4, published by Arcone of the
current at the 0.5-m point.

It is interesting that although the dipole modeled is six-
wavelengths long at the upper frequency, the results have
adequate accuracy in spite of the inevitable failure of the
complex image method for large distances close to the half-
space. This probably results from the domination of near-
diagonal terms in the matrix made more dominant in the
half-space case where fields decay near the interface.
It appears that provided complex images are chosen that fail
gracefully in the long-range case, adequate accuracy can be
achieved for large structures. This indicates another advantage
of the constant -complex image method outlined here: that
a single well-behaved set of images can be selected and used
over the whole frequency range.

V. CONCLUSIONS

In this paper, an efficient complex image method of mo-
ments algorithm was developed to model the current distribu-
tion on resistively loaded wire antennas close to a half-space.
Using the constant assumption, the computation time on a
work station was reduced to 4 s per frequency point with a
61 basis-function model.

In so far as the complex image method applied to wires near
a half-space has been shown to give excellent agreement with
other results for antennas, the work also supports the results
of Vitebskiy [2] for wire scatterers and suggests the use of the
constant method outlined here in such cases as appropriate.
The method has been applied by the authors [16] to the model-
ing of a bowtie using triangular basis functions and the results
agreed with [5], the impedance spiraling toward a quasi-static
value of for the 60 bowtie on an half-space.

Further work needs to be done to consider the error in-
troduced by small absolute errors in the Green’s functions
at large distances and on ways to approximate the Green’s

functions at large distances if necessary. It may be possible
to set such elements of the impedance matrix to zero with
negligible loss of accuracy, resulting in a band matrix and
considerable computational savings. Such an approach would
implicitly recognize the transmission line behavior of wires
near dense half-spaces shown by King and Smith [17].
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39, no. 5, p. 317, 1985.

[8] I. V. Lindell, E. Alanen, and K. Mannersalo, “Exact image method for
impedance computation of antennas above the ground,”IEEE Trans.
Antennas Propagat.,vol. 33, p. 937, Sept. 1985.

[9] G. J. Burke and E. K. Miller, “Modeling antennas near to and penetrating
a lossy interface,”IEEE Trans. Antennas Propagat.,vol. 32, p. 1040,
Oct. 1984.

[10] G. Turner, “The influence of subsurface properties on ground pene-
trating radar pulses,” Ph.D. dissertation, Macquarie University, Sydney,
Ausdtralia, 1993.

[11] B. D. Popovic and D. Z. Djurdjevic, “Entire-domain analysis of thin-
wire antennas near or in lossy ground,”Proc. Inst. Elect. Eng. Mi-
crowaves, Antennas, Propagat., vol. 142, no. 3, p. 213, June 1995.

[12] W. C. Chew,Waves and Fields in Inhomogeneous Media.New York:
IEEE Press, 1995.

[13] R. F. Harrying,Field Computation by Moment Methods.New York:
Macmillan, 1968.

[14] R. Mittra, Ed.,Computer Techniques for Electromagnetics.Washing-
ton, DC: Hemisphere, 1987.

[15] G. J. Burke, W. A. Johnson, and E. K. Miller, “Modeling of simple
antennas near to and penetrating an interface,”Proc. IEEE,vol. 71, p.
174, Jan. 1983.

[16] C. J. Leat, N. V. Shuley, and G. F. Stickley, “Complex images+
constantQ = a fast GPR antenna model,” inProc. 7th Int. Conf. Ground
Penetrating Radar, Lawrence, KS, May 1998, pp. 75–80.

[17] R. W. P. King and G. S. Smith,Antennas in Matter. Cambridge, MA:
MIT Press, 1981.

Christopher J. Leat was born in Cairns, Australia,
in 1963. He received the B.S. degree (first-class
honors) in physics in 1994 from the University
of Queensland, Australia. He is currently work-
ing toward the Ph.D. degree in the Department of
Electrical and Computer Engineering, University of
Queensland

Prior to commencing study, he worked as an
Electronics Technician at the NASA DSCC at Tid-
binbilla, Australia. Since 1995 he worked as an
Associate of the Cooperative Research Centre for

Sensor Signal and Information Processing, where his responsibilities have
been to develop electromagnetic (EM) models for and understanding of
antenna behavior for GPR systems. His interests include the propagation
of EM waves from sources near half-spaces and the design principles of
broad-band radiating structures.



1488 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 10, OCTOBER 1998

Nicholas V. Shuley, for a photograph and biography, see p. 1280 of the
September 1993 issue of this TRANSACTIONS.

Glen F. Stickley received the B.Sc. (first-class
honors) and Ph.D. degrees in applied physics from
the University of Queensland, Australia, in 1987 and
1996, respectively.

He joined the Cooperative Research Centre for
Sensor Signal and Information Processing (CSSIP)
in 1993, where he works on stepped frequency
ground penetrating radar and radar interferometry
for highwall monitoring.


