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UTD Analysis of a Shaped Subreflector in
a Dual Offset-Reflector Antenna System

Kyutae Lim, Hwang Ryu, Sangseol Lee, and Jaehoon Choi

Abstract— The geometrical theory of diffraction (GTD) is
known as an efficient high-frequency method for the analysis of
electrically large objects such as a reflector antenna. However,
it is difficult to obtain geometrical parameters in order to apply
GTD to an arbitrary-shaped reflector, especially a subreflector.
In this paper, the geometrical parameters of an arbitrary shaped
subreflector for the uniform theory of diffraction (UTD) analysis
are derived based on differential geometry. The radiation pat-
terns of various subreflector types, including hyperboloidal and a
shaped subreflector, are evaluated by UTD. The computed result
for the hyperboloidal reflector agrees well with that obtained by
uniform asymptotic theory (UAT).

Index Terms—Geometrical theory of diffraction, reflector an-
tennas.

I. INTRODUCTION

I N analyzing a dual offset-reflector antenna, the accurate
calculation of a subreflector pattern is essential since it

strongly affects the far-field pattern of the antenna system. The
geometrical theory of diffraction (GTD) has many advantages
in analyzing a subreflector over the well-known physical optics
(PO) approach [1]. GTD not only gives more accurate results
over a wide angle, but also requires less computation time
than PO. On the other hand, there is difficulty in finding
geometrical parameters, including the second-order derivatives
on the reflector surface.

Keller’s original GTD has the serious problem of producing
inaccurate results at the shadow boundaries [2]. To overcome
this difficulty, two uniform versions of GTD, the uniform
theory of diffraction (UTD) [3], [4] and the uniform asymptotic
theory (UAT) [5], [6], have been developed. UAT has been
developed based on the Ansatz of Lewiset al. [7]. In UTD,
Keller’s diffraction coefficients have been modified by using
the Pauli–Clemmow’s method of steepest descent [8], [9].

The main difficulty that lies in the GTD analysis of an
arbitrary shaped subreflector is the evaluation of geometrical
parameters based on differential geometry. Leeet al. [10] pre-
sented the UAT solution for an arbitrary subreflector. Despite
the wide usage of UTD, the UTD solution for an arbitrary
subreflector has not yet been formulated.
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Fig. 1. The relationship among three coordinate systems for analyzing an
arbitrary subreflector.

In this paper, the geometrical parameters of an arbitrary-
shaped subreflector for UTD analysis are derieved using
differential geometry. Then, the UTD scattered field patterns
of subreflectors are obtained using these parameters. We
assume that the reflector surface can be represented by a
general coordinate system in order to retain generality. To
obtain the GO field, we use the formulation in [10]. To
show the validity of our solution, the scattered field pattern
of a hyperboloidal reflector is compared with that of UAT.
The field patterns of a Gregorian-type-shaped subreflector are
also presented.

II. GEOMETRICAL PARAMETERS

A. Geometry of the Reflector

To analyze a subreflector, we introduce three coordinate sys-
tems: , , and . The relation
between three coordinates are depicted in Fig. 1. To make the
problem more general, we assume that the subreflector surface
is represented by an arbitrary coordinate system .
The coordinate , which is used to define the edge of a
subreflector, is defined such that theaxis of this coordinate
passes through the center of the subreflector and the feed of
the antenna is located at the origin of the coordinate system.
The coordinate is tilted by to . The
coordinate is the coordinate for a main reflector
and the observation points are defined by this coordinate
system.
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Fig. 2. The geometry of a subreflector. (a) Parametric expression of the edge.
(b) Normal and tangential unit vectors on the edge and the radius of curvature
of the edge.

The reflector surface is defined in the coordinates
as

(1)

Outward surface unit normal vector is given in
coordinates by

(2)

where

and .

B. Differential Geometry of the Edge

To represent the closed contour of the edge illustrated in
Fig. 2(a) using the parametric form, we define an edge in the

coordinate system as follows:

(3)

where is the position on the edge for a
given value of parameter and can be obtained by adopting
the same procedure in [10].

The diffraction, source and observation points in
coordinates are given as

diffraction point

source point

observation point

The edge parameters are shown in Fig. 2(b) and can be
determined from [11]. The unit tangential vector at the edge is

(4)

where

for

and the prime represents the derivative with respect to.
The unit normal vector and radius of curvature on the edge

are given by

(5)

(6)

where

for

The vector components of the edge-fixed coordinate sys-
tem for the geometry under consideration are summarized in
Table I. Note that the unit vectors corre-
spond to the unit vectors and in [3],
respectively.

C. Other Geometrical Parameters

The angle between the incident ray and the edge is defined
by

(7)

By Keller’s law of diffraction, the angle between the diffracted
ray and the edge is the same as.

The vector tangential to the surface and normal to the edge
is given by

(8)

where
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TABLE I
THE COMPONENTS OF THEEDGE-FIXED COORDINATE SYSTEMS. (a) THE INCIDENT RAY. (b) THE DIFFRACTED RAY

(a)

(b)

The unit vector , which lies in the incident plane and
perpendicular to , is obtained as

(9)

where

for

Simiarly, , which lies in the diffraction plane and is
perpendicular to , is given by

(10)

where

for

The angle , the angle between and , is given by

(11)

Also, , the angle between and , is expressed as

(12)

The radii of curvature (tangential to the incident plane)
and ( perpendicular to the incident plane ) are obtained

as

for and for

(13)
where

III. SCATTERED FIELD FORMULATION

Most of the reflector antennas (except for multifocal an-
tennas) have single-reflection points and multiple-diffraction
points. The total scattered field at the obserbation point
is the simple vector addition of individual field components.
Therefore, the scattered field can be expressed as

(15)

where is the reflected field obtained by GO and is the
th diffracted field in the UTD expression. is number of

the diffraction points.
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Fig. 3. Comparison of radiation patterns of the symmeric hyperboloidal
reflector obtained by UAT and UTD.

In order to obtain the GO field, it is necessary to determine
the reflection point for a given observation point. For classical
dual reflector antennas, the reflection point can be found
easily from the fact that every reflected ray must pass through
one focal point. However, for shaped dual reflector antennas,
the subreflector does not have a focal point. Therefore, the
reflection point on the subreflector of these antennas should
be found by utilizing the stationary property of the path length
at the reflection point. The GO field can be determined by the
GO expressions given in [10].

To obtain the UTD diffracted fields, we should define the
edge profile numerically. The diffraction points
can be found by applying Keller’s law of diffraction to the
edge. For a given diffraction point, the UTD parameters
(for example, distance parameter, caustic distance, etc.) can
be determined by the geometrical parameters obtained in
Section II; then we can evaluate the diffracted field using the
UTD parameters. Since the UTD formulations are presented
in [12], we do not repeat them here.

IV. NUMERICAL ANALYSIS

A. Symmetric Hyperboloidal Subreflector

A hyperboloidal reflector is widely used as a subreflector for
a Cassegrain antenna. To show the validity of our analysis,
we compare the scattered field pattern of the symmetric
hyperboloidal reflector is given by [10, Eq. 5.2].

We assume that the field incident upon the surface of a
subreflector is given by

(16)

The observation points are far away from the center of the
coordinate system at a distance of 100.

The scattered field patterns of the subreflector obtained
by UTD and by UAT are compared in Fig. 3. There is
no significant difference between two results. Also, we can
observe that UTD diffracted fields eliminate the discontinuity
of the GO field.

B. Offset-Shaped Subreflector

The surface profile of a shaped dual offset-reflector antenna
is defined numerically and the sampling points are nonuni-

Fig. 4. Profile of the shaped subreflector represented by the global interpo-
lation.

Fig. 5. Radiation pattern of the shaped subreflector obtained by UTD.

formly distributed. Conventionally, a surface is represented
in closed form (quadratic formulation, for example) with a
perturbation function [13]. Recently, the global interpolation
method has been developed [14]. In this method, the analytic
surface function can be obtained by expanding the surface in
terms of the orthogonal functions. The surface characteristic
is determined from the set of coefficients of the series.

The subreflector considered here is that of the shaped offset
Gregorian-type antenna system, which has a circular aperture,
the left-right symmetry, and no tilted structure [15], [16].
The design data of the reflector is presented in [16] and the
reflector profile is depicted in Fig. 4. Since the system has
left-right symmetry, only half of the reflector is presented. In
this case, the surface defined coordinate system
is coincident with the coordinate system. We
transformed the discrete reflector profiles into the analytic
function by expanding in terms of the Jaccobi polynomial
sinusoidal functions [14].

It is difficult to determine the first and the second deriva-
tives on the shaped subreflector accurately and smoothly. We
overcome these difficulties by applying the local interpolation
technique [14]. Furthermore, the modified Powell’s method
is utilized in finding the reflection point on the subreflector
and the cost function used in this algorithm is defined by the
reciprocal of path length [17]. The radiation field pattern of
this reflector is shown in Fig. 5.
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V. CONCLUSION

The subreflector of a dual offset-reflector antenna system
has been analyzed by UTD. Geometrical parameters of an
arbitrary shaped subreflector were derived by using differential
geometry. By applying these parameters to the UTD field
formulation, the diffracted field from the subreflector was
evaluated. The GO fields were obtained by using the same
formulas as the UAT. In the numerical computation, two
types of subreflectors have been considered. The scattered
field pattern of the symmetric hyperboloidal reflector shows
a good agreement with UAT result. The field pattern of the
shaped subreflector represented by global interpolation was
presented. In the above two cases, one can observe that the
UTD diffracted fields eliminate the discontinuities of GO fields
at the shadow boundaries.
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