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The Analysis of General Axially
Symmetric Antennas with a Coaxial
Feed Line by the Method of Lines

Reinhold Pregla,Senior Member, IEEE

Abstract—The use of the method of lines in the analysis of
various circular antennas—circular patch antennas and various
forms of monopoles is proposed and substantiated. The anten-
nas considered are fed by coaxial lines. Impedance/admittance
transfer procedures are developed, which allow to calculate the
antenna input impedance by a successive transfer from the
aperture through the different sections. The described relations
are also useful for other applications.

Index Terms—Antennas, crossed discretization lines, dipoles,
impedance/admittance transfer concept, method of lines, mi-
crostrip antennas, planar antennas.

I. INTRODUCTION

T HE increasing importance of planar and different types
of monopole antennas in microwave engineering calls

for exact models for their simulation. Planar antennas are
constructed by a metallized (ground side) substrate with metal-
lic patches on the back side. The patches are fed either by
striplines on the side of the patches, or by coaxial lines from
the ground side. Generally, the patches may have rectangular,
circular, or any other forms. The forms of monopoles are
dependent on applications and are complex in some cases.

In this paper, the method of lines (MoL), a special finite-
difference method, is proposed for analysis of general forms
of circular antennas—especially circular patch antennas and
different forms of monopoles (Fig. 1) with coaxial feed line.
It has been shown in a large number of papers that the MoL is
highly suitable for analysis of electromagnetic field problems
[1]–[13] in single- or multilayered planar and cylindrical struc-
tures, using discretization of the relevant partial differential
equations in various coordinate systems. In the MoL, the
field is discretized only as long as necessary. In this case,
the discretization is as follows. In the coaxial feeding line
the field will be discretized in radial direction. Therefore, the
discretization lines on which the field is described analytically,
have longitudinal direction. In the substrate, in the radial line,
above the patch and the monopole and in the outer region, the
discretization is carried out in vertical direction (Fig. 2). In
radial direction the field is described analytically by cylinder
functions. In the transition region from the coaxial line to the
parallel-plate radial waveguide the field is decomposed into
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Fig. 1. Circular patch antenna and two types of monopole antennas.

Fig. 2. General structure of a circular planar antenna.

two parts. These parts can be treated as a continuation of the
fields in the coaxial line and parallel-plate radial waveguide,
respectively. Therefore, these parts are also discretized on the
continuation of the discretization lines of neighboring regions
which cross each other. In this way, the wave transition
from the vertical (coaxial line) to the radial direction can be
described very easily.

An impedance/admittance transfer procedure is given for all
of the regions which allows to calculate the input impedance
in the coaxial line by a successive numerically stable transfer
from the aperture through the different sections of the structure
considered. The number of sections is not limited. Therefore,
very complex structures can be analyzed. Then the field in the
whole structure can be calculated by introducing a source wave
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in the coaxial line. As usual in transmission line theory, the
field is calculated in reversel direction; that means in direction
from source to load (aperture). This is completely analogous
to [10]. To simulate an open structure at a suitable distance
above the patch, absorbing boundary conditions (ABC) are
introduced. Results are presented for the input impedance and
field distribution.

II. THEORY

The general structure to be considered is sketched in Fig. 2.
In this general structure all the antenna forms in Fig. 1 are
included. If the planes and are moved together so that
they coincide, the structure reduces to a normal patch antenna.
The patch may be either of finite thickness or infinitely thin. If

in Fig. 2 is increased to the order of a quarter wavelength,
the normal coaxial fed monopole [Fig. 1(b)] is obtained. In
case of the monopole shown in Fig. 1(c), the plane is
replaced by ABC’s. In the general case, ABC’s are introduced
in plane . Because the efficiency of ABC’s in dependent on
the angle of incidence [2] they must be chosen carefully. If
we assume that the radiation into region C and toward ABC’s
takes place from the upper metallic edge then the height
should be greater than. This is because we can achieve high
enough absorption for incidence angles up to 45. In region
A, the reflected radiation field at the ABC’s does not come
back to the antenna. Therefore, in this region the problem is
not so sensitive.

The partitioning of the structure in subregions must be done
in such a way that in each of the subregions the field can
be described completely after the discretization. Nevertheless
there is some degree of freedom. For example, the combination
of the regions B and D with crossed-line systems can be
used instead of two separate regions. But as it will be seen
later the field impedance (admittance), transfer from one
region to another is very simple and highly accurate. Hence,
it is better to use more subregions than less. In this way
there is also the possibility to divide the region A in, e.g.,
three subregions: two as continuations of subregions B and
C, respectively, with crossed line systems. The third is the
region between these two with discretization lines in vertical
direction. The vertical discretization lines must have a last
one at with ABC’s. In this paper, we would not make
use of this possibility. But it will again improve the accuracy.
A cylindrical coordinate system ( ) with axis along
the inner conductor of the coaxial line is the obvious one to
use in the analysis so that the boundaries of the structure are
described simply by parts of coordinate surfaces.

A. Basic Equations

In this subsection, the fundamental equations for the above
mentioned general structure are derived. The structure is
completely circularly symmetric. The TEM field of the coaxial
feed line is also independent of the azimuthal angle, so we
have . The only nonzero components are , ,
and . The permittivity is assumed to be a function of
or : or . The wave equation is directly
obtained from Maxwell’s equations.

Fig. 3. Concatenations of the coaxial waveguide sections. The permittivities
are functions ofr.

From the general vectorial wave equation

(1)

the reduced form of the scalar wave equation for the azimuthal
field component is obtained

(2)
where the following normalizations are introduced:

, , , , and being the wave impedance
and wave number of free-space, respectively.

The electric field components are given by

(3)

B. Discretization, Transformation, and General Solutions

The direction of discretization depends on the region of
the structure (Fig. 2). In the region of the coaxial line (F,
G) the discretization in radial coordinate direction has to be
performed, whereas in the planar regions (A, B, C, and E) the
discretization is in direction. In transition region D (coaxial
line—parallel plate radial waveguide) crossed discretization
line systems are used.

1) Coaxial Line Sections:In general, the coaxial line part
consists of concatenations of sections with different radii (see
Fig. 3). The solution for the fields in each of these sections
is obtained by discretizing the equations in radial direction.
The discretization lines are shown in Fig. 2 and in detail in
Fig. 3. The discretization line numeration follows the positive

direction. The permittivity can be a function of. Variations
in direction should be modeled by as many as necessary
sections. For an arbitraryth section the discretization yields

(4)

(5)

(6)

(7)
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(8)

The components in the vector are the values of
on all of the full discretization lines. The discretized

radii (permittivities) of these lines are collected in the diagonal
matrix . The discretized radii (permittivities) on the
dashed lines are collected in the diagonal matrix ).
The discretized values of are given also on these lines.
The difference operator matrix has to fulfill the Neumann
boundary conditions. All the discretized quantities should
be marked with a sub- or superscript for the section under
consideration, which we mostly omit for the sake of brevity.

Since the difference operator matrices are not diagonal, we
must perform a transformation to the principal axes yielding
the following:

(9)

The superscript denotes the transpose matrix, is diagonal
matrix of eigenvalues, and transformation matrix contains
the eigenvectors of the term in parenthesis. The discretized
and transformed wave equation and its general solution are
given by

(10)

For the radial electric field component we obtain

(11)

From the parts of electric and magnetic vector de-
scribing the propagation in direction (i.e., in forward
direction—subscript ), we define a characteristic wave
impedance/admittance matrix (normalized by to the free-space
wave impedance ) by

(12)

(13)

For the fundamental mode (th propagating mode) the
corresponding propagation constant is purely imaginary
and the related becomes real. Now the relation between the
fields at the boundaries A ( ) and B ( ) of a section
(e.g., in Fig. 3) can be written as generalized transmission
line equations

(14)

with

(15)

where is the length of this section normalized
with . The negative sign at is introduced similar as
in the network theory using scalarparameters for describ-
ing voltage–current port relations. Defining the impedance
matrices in the cross sections A and B by

(16)

the impedance transfer in a section yields for both directions

(17)

(18)

The impedances and are the impedances for
looking in direction. Instead of (18) we may also use the
inverted relation with the matrix parameters

(19)
The admittance transfer along a section is completely anal-

ogous to the impedance transfer. The impedance/admittance
transfer between the two sides of the common plane of two
adjacent sections can be performed by the general formula
derived in [10] or in specific form in [11] even in case of
offsets (Fig. 3) and diaphragms.

(20)

The lower boundary of a section is always marked with A
and the upper boundary with B. The transformation matrices
with a subscript are partitioned matrices [10]. They contain
only the rows associated with the discretization lines that are
common to both regions. For special cases see [10] and [11].

2) Radial Waveguide Sections:In the more general case,
the radial waveguide consists of concatenations of sections
with different heights. We will obtain the solution for the fields
in each of these sections by discretizing the equations in the
longitudinal coordinate . The discretization lines are shown
in Fig. 2 and in more detail in Fig. 4. The discretization line
numeration follows the positive direction. The permittivity
can be a function of . Variations in direction should be
modeled by as many sections as necessary. The discretization
for the th section yields

(21)

(22)

(23)

(24)

and are discretized on the same full lines. denotes
the diagonal matrix of the permittivities on these lines,
the diagonal matrix of the permittivities on the dashed lines.
The difference operator matrix has to fulfill the Neumann
boundary conditions. Moreover, all the discretized quantities
should be marked for the section, which we do not write to
avoid confusion. Again we perform a transformation with the
matrix to diagonalize the second order difference matrix
according to

(25)

The diagonal matrix contains all eigenvalues and cor-
responding eigenvectors of the total matrix in the parenthesis.

The discretized and diagonalized wave equation reduces to
a Bessel equation

(26)
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Fig. 4. Concatenations of the radial waveguide sections. The permittivities
are functions ofz.

Its general solution is expressed in terms of first-order Bessel
and Neumann functions and

(27)

whose arguments contain the diagonal matrix. Therefore,
—general notation of cylindrical functions, or

) is also a diagonal matrix and will be abbreviated in the
following by , namely, if or if ,
e.g., . Using Hankel functions instead of
Bessel and Neumann functions in (27), we can define the
characteristic impedance matrix (normalized according to the
free-space wave impedance ) for the wave propagation
in forward direction (subscript ) at a position

by

(28)

For the characteristic impedance matrix approaches
. For the fundamental mode and homogeneous

dielectric we obtain . The relation between the
electric and magnetic field components at the two section
boundaries A and B is, again, given as a generalized two port
relation by

(29)

where

(30)

(31)

being the generalized cross product of cylinder functions
(see formula 9.1.32 in Abramowitz and Stegun [14]). In our
case, is a diagonal matrix containing implicitly. In the
same way the further generalized cross products of cylinder
functions , , and also correspond to the notations in
formula 9.1.32 in [14] except that they are diagonal matrices.

In addition, the following relation for the general cylinder
function was used: , . Defining

(32)

the impedance transfer from the output B of sectionto its
input A or vice versa yields

(33)

(34)

The impedances and are the impedances for
looking in direction. Instead of (29), we may also use
the inversion with the generalizedparameters

(35)

The and parameters are again introduced similar to network
theory. With the corresponding admittance
transfer is analogous to the impedance transfer. The impedance
transfer at concatenations of radial sections with offsets (e.g.,
between sections and in Fig. 4) can again be performed
with the general formula derived in [10] and reported in (20).

3) Study of Sections A, C, and E:In region A the solution
must be an outgoing wave. The fields must be described by
Hankel functions of the second kind. The regions C and E
include the origin of the radial coordinate. From the two parts
of the general solution (27), only the first term is expressed
by a well-behaved function. The second term possesses a
singularity at the origin, but physically the fields should be
finite. The special solutions for the regions A, C, and E in
Fig. 2 are written as follows:

A:

C:

E:

(36)

where and are first- and zeroth-order Hankel
functions of the second kind, respectively. These solutions are
normalized so that the magnetic field components at
or are given by , , and , respectively. For
open structures in direction, as in regions A and C of Fig. 2,
the operator in (24) has to be replaced by the operator

. This, in turn, requires introduction of absorbing boundary
conditions (ABC).

We define the impedance matrices , ,
and which are obtained from (36) (the signs are
chosen according to the Poynting vector)

(37)

(38)
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(39)

4) Radiation Impedance at the Aperture B:The impedance
(see Fig. 2), which is defined as in (32) is obtained from

the matching process at . Matching the electric and
magnetic fields, we obtain

(40)

The subvector represents the electric field on the nonideal
surface of the metallic cylinder with between regions
B and C. For ideal metal must be a vector with zero
components. being the current density on the same places
as . For the vectors in transformed domain the equation
for the electric field reads as

(41)

where , , and are parts of associated with
the regions B, C, and metallization, respectively, obtained by
matrix partition technique proposed in [10].

The vector as function of , , and ,
therefore, can be written in the following form using the
corresponding partition parts of :

(42)

The equation for the magnetic field in the transform domain
has an analogous form as (41) and splits into

(43)

(44)

(45)

Replacing in (43)–(45) by and introducing
(42) into these equations we obtain

(46)

with, e.g.,

(47)

The other submatrices are obtained in an analogous manner.
We first consider the case of ideal material with .
The last equation in system (46) decouples from the first ones
in this case. Now with respect to (36) and (38) we get from
the second equation in (46)

(48)

which may be introduced into the first equation in (46)

(49)

The admittance is, therefore, given by

(50)

which has the same form as (17).

Fig. 5. General region with crossed discretization lines.

In the case of nonideal metal wall (especially for the
monopole analysis), we use the approximate boundary condi-
tions for the tangential fields on the metallic surface

, which results in

(51)

being a diagonal matrix with the elements . is
the wave impedance in the lossy material with the conductivity

and is given by . We have to use new
parameters instead of ) in (48)–(50).
Replacing in the first two equations of (46) by
obtained from the last one yields

(52)

Let us assume that the antenna is fed by the fundamental mode
of the radial waveguide then the field is known and with
that and the admittance we can calculate the fields
and by (48) and (49), respectively, and then the other
quantities by (46), especially the surface current density.

5) Regions with Crossed Lines:As shown in Fig. 2 the re-
gion D has interfaces with regions of radial (regions F and G)
and discretization (regions B and E). To describe the fields
in region D we use the linear combination

(53)

The two parts are discretized on different discretization line
systems crossing each other at 90. The second subscript
denotes the discretization direction. In Fig. 5, the general
region with crossed lines is sketched. In vertical direction this
region is bounded by the planes A and B atand and in
radial direction by surfaces C and D at and , respectively.
The four surfaces of the region D are like four generalized
ports. Our goal is to obtain a general relation between the
fields at these four ports. We have to determine the field parts
belonging to the vertical discretization lines at the ports C and
D and the field parts belonging to the horizontal discretization
lines at the ports A and B.

6) Field Part Related to Discretization in Direction: We
assume in the first step that is a constant. For the part
with discretization in direction we can adapt the solution
obtained in Section II-B.1 [see (14)].

(54)
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The matrix of -parameter matrices is abbreviated by .
All quantities have to be marked with a sub- or superscript D
for region D, which is omitted here. For thedependence of
magnetic field we may write ( in plane : )

(55)

where . The diagonal matrix in the
denominator really needs to be inverted. This equation must
now be discretized for values of discretization lines in
direction. At such a position (see Fig. 5), we may write

(56)

with diagonal matrices given by the expressions

(57)

(58)

The vector then gives the values
in the points marked by circles in Fig. 5. For the matching
procedure we need the values of the field at the boundaries

and . Because of the Neumann conditions
we must extrapolate from points near the boundary to the
boundary. This can easily be done by the transformation matrix

(see Appendix). We obtain at the position on the left
(R C, ) or right (R D, ) boundary (marked
by at the surfaces C and D)

(59)

is a row vector constructed from weighted first (last)
rows of the matrix (see Appendix). If we want to change the
order of and we must also change these quantities
in a suitable matrix form. should then be formed as a
diagonal matrix and —as a row vector . By doing
this, the result can be written for all valuessimultaneously

(60)

where the full matrices and are given by

(61)

(62)

In transformed domain, we therefore have

(63)

The relations between the magnetic field parts discretized
in direction at the four ports A, B, C, and D can now be
expressed in the following matrix form:

(64)

where

(65)

From the part we do not obtain an component on both
sides of region D because of the Dirichlet boundary conditions
for this component.

7) Field Part Related to Discretization in Direction: To
derive a relation for the field parts related to discretization in

direction at ports A and B from those at ports C and D in
Fig. 5 we adapt the solutions in Section II-B.2. The (29) reads
for the surfaces C and D and the field parts under investigation

(66)

where the submatrices of are obtained from (35) by
exchanging the subscripts A and B by C and D, respectively.
All quantities have to be marked with a sub- or superscript
D for region D, which is omitted here. To derive a suitable
formula for fields at arbitrary radii, we can adapt the general
solution in (27), which we write in the following form:

(67)

For the surfaces C and D we obtain

(68)

The inversion yields

(69)

in view of ([14, formula 9.1.32])

(70)

The superscripts (C and D) at here and in the following de-
note the radii which have to be introduced into the arguments
of the cylinder functions. The order of the superscripts is the
same as the order of the radii in the functions.

Introducing (69) into (67), we therefore obtain for position
similarly to (56)

(71)

with

(72)

The vector then gives the values
in the points marked by empty squaresin Fig. 5. The

values at the transition points (marked by full squares) in
planes A (R A) and B (R B) are again obtained by an
analogous process. The following equation holds:

(73)

where and are full matrices. They are constructed
analogous in (61) and (62)

(74)
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Fig. 6. Transition section with crossed lines.

In the argument of the cylinder functions theth component
of has to be introduced. The general solution is

(75)

where

(76)

Again, the field extrapolation to planes A and B is performed
by the diagonal matrices and .

8) Special Case I—Region D with Short Circuited Ports
B and C: In this subsection, we assume that the ports B
and C are short circuited. The region D now transforms the
waves from coaxial line directly to the radial parallel plate
transmission line. In Fig. 6, this transition region is shown
with some details. In this special case, we have a short circuit
on the upper side (plane or port B) of this region. Therefore,
we obtain as input admittance for this field part

(77)

with given by to (13). The magnetic field part at port D
from field part at port A is given by

(78)

where

(79)

The surface (or port) C on the left side is a short circuit.
The expression for the admittance becomes

(80)

The radii to be introduced in (80) are and . We obtain
the field relation with

(81)

Fig. 7. Region D with multilayered dielectric.

inserting in the general equation. Thus, we obtain
for the magnetic field part at port A

(82)

9) Special Case II—Region D with Layered Dielectric:In
Fig. 7, the situation with two dielectric layers is given. The
region D now has to be subdivided into two subregions
and . In comparison to the general case, only the situation in

direction has been changed. Therefore, we will give only the
formulas for this direction. The magnetic field resulting from
part must be determined at an arbitrary by the field

. Taking into account the ABC’s in plane B or—which
is identical in this case—assuming an infinite height of region

the following results are valid

(83)

The magnetic field depends in the following way of

(84)

In region we adapt the general solution (14)

(85)

Introducing into the second equation of
system (85) we obtain

(86)

(87)

The first equation in (85) yields

(88)

Now, instead of (60) we can write

(89)
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where

(90)

(91)

(92)

In (90) and (91) runs for the position in region D and
in (92) for the position in D . The analogous equations to
(64) are

(93)

with

(94)

(95)

It should be noted that the antenna in Figs. 1(c) and 7 can also
be analyzed using only the concept described in Section II-B.1,
that means with discretization lines only indirection. The
sections above the ground plane must have a much greater
radius than the coaxial line and ABC’s must be introduced at
the outer wall.

C. Port Relations of Section D

In this chapter, the results in previous sections will be
collected to for a general relation between the fields at the four
ports A, B, C, and D of Section D in Fig. 5. Then, e.g., the
input impedance/admittance of one port can be calculated from
the known load impedance/admittance of the other ports by
means of this general relation. We have derived four systems
of equations: (54), (64), (66), and (75). We have only one
tangential part for the E field at each port. Therefore, we may
abbreviate in the following way:

(96)

The field parts have to be added

R A, B, C, or D (97)

This can also be done in the transform domain. Introducing
(54) in (64) and (66) in (75) and adding according to (97), we
obtain in compact form as

(98)

where

(99)

and

(100)

Equation (98) is a general port relation. Knowing the sources
and the loads all the fields at ports can be calculated. Let us
assume that port A is the port connected with the waveguide

from the source (coaxial feed line). Then the impedance
matrices , , defined by

(101)

are the load impedance matrices. They are defined inside the
region D and are obtained from the impedance matrices of the
connecting waveguides by a transformation according to (20)
from the admittances of the neighboring regions B, E, and D.

, e.g., is calculated from in (39) using transformation
formula (20). The input impedance matrix has to be
determined from (98). Then the load impedance matrix of the
coaxial fed line has to be calculated by (20).

The solution may be obtained by the following algorithm.
Equation (98) has to be inverted. We combine also the port
impedance matrices in the following way:

(102)
Then the combined impedance matrix can be calculated
in the known and usual way. In a second step, the impedance
matrix can obtained in an analogous manner.

For the special cases I and II we will give explicit formulas.
In the special case I, the total fields at ports A and D in
transform domain are given by

(103)

and may now be replaced by and ,
respectively, with the help of the admittances in (77) and (80),
respectively

(104)

With the load admittance in plane D (input admittance of the
radial waveguide Section II-B) defined by

(105)

we get from (104) the total input admittance in plane A by

(106)

If in the transition plane from coaxial line to region D there is
a step in diameters (e.g., if an diaphragm is introduced in that
plane), a further transformation according to (20) is necessary
to obtain the load admittance of the coaxial line.

For the special case II, we obtain from (66), (75), (88), and
(93) in a similar procedure as in the general case by adding
the magnetic field parts at the ports the following three-port
relation:

(107)
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Fig. 8. Current distribution on one stub of a�=2 dipole antenna. For dimen-
sions see Fig. 9. The results for comparison are taken from Collin–Zucker
[15].

where the following abbreviations are used:

(108)

We introduce the impedance according to
where

(109)

with the reduced matrix according to the region E yielding
. and have to be computed with ABC’s on the

upper side of region . Then we obtain the two port relation

(110)

We obtain from the last equation the input admittance

(111)

with the load admittance according to (105).

III. N UMERICAL RESULTS

Illustrative numerical results for some example structures
are presented. In the first example, results for dipole antenna
is presented. Fig. 8 shows the current distribution. The current
distribution for a dipole is given in [16] obtained with a
slightly different algorithm. In the results by the MoL the
finite radius of the antenna is taken into account. Therefore,
the values at the end are not zero as it is also the case in the
measured results of Mack taken from Collin–Zucker [15]. The
results of R. W. King also taken from Collin–Zucker [15] are
obtained by an integral equation method. The radius of the
dipole stubs are assumed to be approximately zero. In Fig. 9
the diagram for the input impedance of the dipole obtained
from the field in the gap between the stubs and the input
current is drawn. Curves a, b, and c for three different gaps
of increasing values are shown. The impedance in the series

Fig. 9. Input impedance loci of a dipole antenna parametrized withk0H
(k0 = free-space wave number): lossless,- - - with loss,� results
from King.

Fig. 10. Input impedance of a coaxial line-fed monopole antenna at two
different positions. (a) Sketch of the antenna with dimensions. (b) Input
impedance in the complex plane.

resonance in all three cases is about 71. Taking into account
losses for the dipole of copper with m/mm the
dashed curve was achieved. The loss resistance has the value of
0.023 in the series type equivalent circuit for the
dipole and the value of 39, 9.6, and 6.2 Min the parallel type
equivalent circuit for the dipole. In the next example,
results for a coaxial line fed monopole antenna are plotted in
Fig. 10. The antenna input impedance for two different places
is plotted in the complex plane. Place (1) is in the outer gap
side of the monopole and the ground, place (2) is on the end
of the coaxial feed line. The diagram shows the well-known
spiral behavior. The first real input impedance has a value of
about 36.6 .

In Fig. 11, results for the input impedances on a Smith
chart of a monopole partially buried in a grounded dielectric
substrate. These results are obtained with 115 discretization
lines in horizontal direction (65 in region C) and 45 in
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Fig. 11. Input impedance on a Smith chart of the monopole partly buried in
a dielectric substrate with the dimensions given in [17]:� � MoL, �
– – –� numerical results of [17],� � � experimental results of [19].

Fig. 12. Input impedance of a planar circular antenna atr = Ra on a Smith
chart. Parameterk0Rp (k0 = free-space wave number):� – – – � results
from [20].

the coaxial line. For a convergence investigation concerning
the crossed discretization lines (see [3]). Numerical results
obtained with the modal expansion method [17] are given for
comparison. Also measured values reported by Alexopoulos
[19] are introduced. All results are in very good agreement.
In Fig. 12, the input impedance of a centered microstrip disk
antenna is plotted in a Smith chart with a center impedance
of 50 . The parameter is . For comparison, the result
from [20] obtained by the moment-method solution are given.
Up to there is a quite good agreement. Apart
from discretization no approximations are introduced in the
MoL. Fig. 13(b) is a plot in polar coordinates of the input
reflection coefficient for the circular patch antenna sketched
in Fig. 13(a). The antenna is fed by a coaxial line. Further
elements can be introduced in the feed line, e.g., to match the
input impedance.

IV. OTHER STRUCTURES

The analysis procedure can be modified in a suitable way to
enable investigations of circular patch antennas with feed line
positioned outside the center and rectangular patch antennas.
In this case, a discretization also indirection is necessary.

The algorithm can also be used for studying various transi-
tions between coaxial and parallel plate lines. The described
algorithm can also be used to investigate the effect of finite

Fig. 13. Reflection coefficientS11 of a coaxial line-fed circular patch
antenna at the marked position. (a) Sketch of the antenna with dimensions.
(b) Reflection coefficient in the complex plane.

Fig. 14. Other forms of axially symmetric antennas.

ground metallization with radius . The region A then has to
be interpreted as a radial line which transforms the impedance
from the aperture at . The procedure for calculation of the
impedance at is completely analogous to that at
described in Section II-B.4. The Fig. 14 shows other forms of
axially symmetric antennas.

V. CONCLUSIONS

A general method is proposed for the efficient analysis of
general axially symmetric antennas. The algorithm is anal-
ogous to the well-known transmission line theory but using
as many as necessary modes in each of the sections in the
structure. The modes are obtained by the method of lines. To
maintain the impedance/admittance transfer from the load to
the input adequate transfer relations for the different sections
are developed and written in similar forms. A special section
is that where waveguide sections of different direction are
concatenated. Here, crossed lines are introduced (this should
not be “mixed up” with two-dimensional discretization). The
determination of the field should be done in reverse direction.
Starting at the source and using the impedances/admittances
calculated before the fields can be successively calculated from
section to section analogous as in a multilayered waveguide
cross section described in [10]. The far field of the antenna can
be obtained from the tangential fields on the surrounding area
of the device by the usual near-field/far-field transformation
and from that the radiation pattern can be extracted. This
transformation is well developed. To improve the accuracy
a further partition especially of the region A as described
in Section II can be introduced. In principle, all necessary
formulas are given for this case. For radial discretization
ABC’s have to be introduced on the outer side.
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Fig. 15. Field behavior in case of Neumann boundary condition.

APPENDIX

FIELD EXTRAPOLATIONS FOR

NEUMANN BOUNDARY CONDITIONS

For the analysis algorithms developed in the previous sec-
tions, we need the fields at the boundaries in case of Neumann
boundary conditions. We consider an arbitrary function .
Let be a coordinate perpendicular to the boundary. The
first discretization line in the vicinity of the boundary is at
distance from it (see Fig. 15). We must extrapolate from
the neighboring discretization lines. The field behavior is of
approximately parabolic form. Introducing

(112)

we obtain from the values and on the lines at
and on the boundary

(113)

For the discretized field we have . For the values
on the boundaries we therefore obtain
where depends on the boundary side (RA: side where
discretization starts, R B: side where discretization ends).
Explicitly, we have

(114)

on start site of discretization and end, respectively.and
( and ) are the first (last) and the second (last but
one) row vector of .

In general, we must assume that the curve contains a linear
term. We need now a further discretization line () and a
further row of . The new row vectors are given by

(115)
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