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The Analysis of General Axially
Symmetric Antennas with a Coaxial
Feed Line by the Method of Lines

Reinhold PreglaSenior Member, IEEE

Abstract—The use of the method of lines in the analysis of | [
various circular antennas—circular patch antennas and various
forms of monopoles is proposed and substantiated. The anten-
nas considered are fed by coaxial lines. Impedance/admittance
transfer procedures are developed, which allow to calculate the
antenna input impedance by a successive transfer from the l ] I‘ I
1

aperture through the different sections. The described relations
are also useful for other applications.

Index Terms—Antennas, crossed discretization lines, dipoles, - ].' L

impedance/admittance transfer concept, method of lines, mi-

. Fig. 1. Circular patch antenna and two types of monopole antennas.
crostrip antennas, planar antennas.

I. INTRODUCTION

HE increasing importance of planar and different typesP'-

of monopole antennas in microwave engineering callsp
for exact models for their simulation. Planar antennas ar
constructed by a metallized (ground side) substrate with meta i,
lic patches on the back side. The patches are fed either L
striplines on the side of the patches, or by coaxial lines fron™*
the ground side. Generally, the patches may have rectangul:
circular, or any other forms. The forms of monopoles are' Hi=n
dependent on applications and are complex in some cases. j» : Sl

In this paper, the method of lines (MoL), a special finite- . 1

difference method, is proposed for analysis of general form
of circular antennas—especially circular patch antennas ar - 3 H. E | E
different forms of monopoles (Fig. 1) with coaxial feed line. - e
It has been shown in a large number of papers that the MoL i S,
highly suitable for analysis of electromagnetic field problems = 3
[1]-[13] in single- or multilayered planar and cylindrical struc-
tures, using discretization of the relevant partial differenti&f9- 2 General structure of a circular planar antenna.
equations in various coordinate systems. In the MoL, the

field is discretized only as long as necessary. In this Casfo parts. These parts can be treated as a continuation of the
the discretization is as follows. In the coaxial feeding linge|ds in the coaxial line and parallel-plate radial waveguide,
the field will be discretized in radial direction. Therefore, theagpectively. Therefore, these parts are also discretized on the
discretization lines on which the field is described analyticallgontinuation of the discretization lines of neighboring regions
have longitudinal direction. In the substrate, in the radial ling,hich cross each other. In this way, the wave transition
above the patch and the monopole and in the outer region, {igy the vertical (coaxial line) to the radial direction can be
discretization is carried out in vertical direction (Fig. 2). Iyescribed very easily.

radial direction the field is described analytically by cylinder ap impedance/admittance transfer procedure is given for all
functions. In the transition region from the coaxial line to thg¢ ihe regions which allows to calculate the input impedance
parallel-plate radial waveguide the field is decomposed infQ the coaxial line by a successive numerically stable transfer

from the aperture through the different sections of the structure
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in the coaxial line. As usual in transmission line theory, the _ *
field is calculated in reversel direction; that means in direction ~

from source to load (aperture). This is completely analogous
to [10]. To simulate an open structure at a suitable distance
above the patch, absorbing boundary conditions (ABC) are | k-1
introduced. Results are presented for the input impedance anc
field distribution. ; R k-1

2 ik

h,

Il. THEORY

The general structure to be considered is sketched in Fig. 2. | k|
In this general structure all the antenna forms in Fig. 1 are _ A
included. If the planes® and P» are moved together so that = 1= E SRS — 1 '|— '"E

they coincide, the structure reduces to a normal patch antenna k+1
The patch may be either of finite thickness or infinitely thin. If

H; in Fig. 2 is increased to the order of a quarter wavelength, ) ] ) ) o
the normal coaxial fed monopqle [Fig. 1(b)] is obtaingd. Ig:g. %nct(iloonnsce:)tfir.\anons of the coaxial waveguide sections. The permittivities
case of the monopole shown in Fig. 1(c), the plafgeis

replaced by ABC'’s. In the general case, ABC’s are introduced . )

in plane P,. Because the efficiency of ABC’s in dependent on From the general vectorial wave equation

the angle of incidence [2] they must be chosen carefully. If

we assume that the radiation into region C and toward ABC’s VX <
takes place from the upper metallic edge then the helfht
should be greater tham. This is because we can achieve hig
enough absorption for incidence angles up t6.45 region

A, the reflected radiation field at the ABC's does not come 5 , | 4 . o ( _, oH, _
(TH,) ) +er 5% g, 5% +e.H,=0
4 4

1 " .
—va)—kgH:O (1)
the reduced form of the scalar wave equation for the azimuthal
field componentH, is obtained

back to the antenna. Therefore, in this region the problem is, al\erar

not so sensitive. "
The partitioning of the structure in subregions must be don . o . - (2)

in such a way that in each of the subregions the field Cg@ere_the fO"‘ZW'”g normallzatlons_ are mtrodu_ceHﬁ, —

be described completely after the discretization. Neverthelé®s™#* " = kor, Z = koz, 10, andky being the wave impedance

there is some degree of freedom. For example, the combinat d wave ngmt_)er of free-space, respgctlvely.

of the regions B and D with crossed-line systems can be he electric field components are given by

used instead of two separate regions. But as it will be seen . aI—L ) 1 0 ,_~

later the field impedance (admittance), transfer from one jerkn = —— jerk = ?%O’ e)- (3)

region to another is very simple and highly accurate. Hence,

it is better to use more subregions than less. In this w&y Discretization, Transformation, and General Solutions

there is also the possibility to divide the region A in, e.g., The direction of discretization depends on the region of
three subregions: two as continuations of subregions B afi structure (Fig. 2). In the region of the coaxial line (F,
C, respectively, with crossed line systems. The third is tht§) the discretization in radial coordinate direction has to be
region between these two with discretization lines in verticglerformed, whereas in the planar regions (A, B, C, and E) the
direction. The vertical discretization lines must have a lagiscretization is in: direction. In transition region D (coaxial
one atr; > 7o with ABC’s. In this paper, we would not make ine—parallel plate radial waveguide) crossed discretization
use of this possibility. But it will again improve the accuracyline systems are used.

A cylindrical coordinate systemr(¢p, z) with z axis along 1) Coaxial Line Sectionsin general, the coaxial line part
the inner conductor of the coaxial line is the obvious one ¥bnsists of concatenations of sections with different radii (see
use in the analysis so that the boundaries of the structure gfg. 3). The solution for the fields in each of these sections

described simply by parts of coordinate surfaces. is obtained by discretizing the equations in radial direction
The discretization lines are shown in Fig. 2 and in detail in
A. Basic Equations Fig. 3. The discretization line numeration follows the positive

In this subsection, the fundamental equations for the abgv&lirection. The permittivity can be a function ef Variations
mentioned general structure are derived. The structure ifs# direction should be modeled by as many as necessary
completely circularly symmetric. The TEM field of the coaxiaPections. For an arbitrarfth section the discretization yields
feed line is also independent of the azimuthal angleso we g%& _>ﬁ@ ()
haved/d¢ = 0. The only nonzero components atk,, E,., E E (5)
and E.. The permittivitye,. is assumed to be a function eof " T
or z: e, = .(r) Or £, = £,.(z). The wave equation is directly T Th Te (6)
obtained from Maxwell's equations. € —€p, € @)
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; — kD, =D,. (8) the impedance transfer in a section yields for both directions
A — —

_ . Za =71 —22(Z1 + Zp) %2 (17)
‘The components in the vectdl, (E,) are the values of T =71 — Za(Z1 + (—Za)) 7 (18)

H, (E.) on all of the full discretization lines. The discretized

radii (permittivities) of these lines are collected in the diagon@ihe impedances-Z, and —Zp are the impedances for

matrix ;, (€;,). The discretized radii (permittivities) on thelooking in —z direction. Instead of (18) we may also use the

dashed lines are collected in the diagonal mattix (e.). inverted relation with the matrix parameters

The discretized values aoF, are given also on these lines. _ _ _ _

The difference operator matri®, has to fulfill the Neumann 1 = Yo:(tanh(I.d))™" g, = —Yo.(sinh(I".d))™".

boundary conditions. All the discretized quantities should ) o (19)

be marked with a sub- or superscript for the section underThe admltta_nce transfer along a section is completely_anal—

consideration, which we mostly omit for the sake of brevity09ous to the impedance transfer. The impedance/admittance
Since the difference operator matrices are not diagonal, #i@nsfer between the two sides of the common plane of two

must perform a transformation to the principal axes yieldin@diacent sections can be performed by the general formula
the following: erived in [10] or in specific form in [11] even in case of

R offsets (Fig. 3) and diaphragms.
H.=7T,H. T;l(elbﬁf,eglrglﬁ,,rlb —e)T, = Fz. (9) _ _
v v Zigy = leld(Tk—l,dYA,k—lT;:_lLd)_lTk,d- (20)
The superscript denotes the transpose matrBe is diagonal L ,

P bt b 2 9 The lower boundary of a section is always marked with A

matrix of eigenvalues, and transformation matfix contains . .
g " %rad the upper boundary with B. The transformation matrices

the eigenvectors of the term in parenthesis. The discretiz h bscriptd itioned matri 101. Th tai
and transformed wave equation and its general solution JrEn @ subscripi are partiioned matrices [10]. They contain

only the rows associated with the discretization lines that are

iven b . )
g y common to both regions. For special cases see [10] and [11].
d’H,, - _ = = 2) Radial Waveguide Sectionsn the more general case,
dz2 —I’H,=0 Hy=c¢" “A+c “B. (10) the radial waveguide consists of concatenations of sections

with different heights. We will obtain the solution for the fields
in each of these sections by discretizing the equations in the
= _ .1 _I= I= longitudinal coordinate:. The discretization lines are shown
By =—jo I " "A-c"B). ™ Fig. 2 and in more detail in Fig. 4. The discretization line
From the parts of electric and magnetic vector ddlumeration follows the positive direction. The permittivity
scribing the propagation in-z direction (i.e., in forward can be a function ot. Va_natlons inr direction shquld b_e _
direction—subscript f), we define a characteristic wavemodeled by as many sections as necessary. The discretization
impedance/admittance matrix (normalized by to the free-spd@# the kth section yields
wave impedanceyy) by

For the radial electric field component we obtain

H,—H, (21)
ZOz = — jeﬁlI‘Z ?OZ = Zazl. (13) Ep €, € (23)
O i =
For the fundamental modeith propagating mode) the 55 — Pe Dz=D-. (24)

corresponding propagation constdnt; is purely imaginary
and the related,; becomes real. Now the relation between th
fields at the boundaries A (= z;) and B ¢ = 2») of a section
(e.g.,k in Fig. 3) can be written as generalized transmissi
line equations

» and £, are discretized on the same full lines. denotes
the diagonal matrix of the permittivities on these lines,
the diagonal matrix of the permittivities on the dashed lines.
Qﬂﬂe difference operator matril, has to fulfill the Neumann

boundary conditions. Moreover, all the discretized quantities
{E,A} _ Fl 21 { ﬁwﬂ (14) should be marked for the sectidn which we do not write to
Ep| -H avoid confusion. Again we perform a transformation with the

) matrix 7", to diagonalize the second order difference matrix

with according to

7y 7

z) = Zo.(tanh(I.d)) "t Zp = Zo.(sinh(I".d))~" (15) H,=T.H, k=T -aD'c'D.)T.. (25)

whered = ko(z2 — 21) is the length of this section normalizedThe diagonal matri%? contains all eigenvalues arif, cor-

with ko. The negative sign aH_p is introduced similar as responding eigenvectors of the total matrix in the parenthesis.
in the network theory using scalarparameters for describ- The discretized and diagonalized wave equation reduces to
ing voltage—current port relations. Defining the impedance Bessel equation

matricesz,&B in the cross sections A and B by P

o _
_ _ — (7' = (FH,) ) +k2H, =0. 26
E.A,n =25 rHean (16) ar <7 ar ¢ SV)> T 29
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A H‘k In addition, the following relation for the general cylinder

r functionC was usedC{(z) = —C1(z), x = k,7. Defining

"""l.; I E.Anp=2Zap(—Hya B) (32)

the impedance transfer from the output B of sectioto its
ktl k-1 input A or vice versa yields

1 Za =Zaa — Zan(ZeB + ZB) 'ZBA (33)

h. ~Zp =Zpp — Zpa(Zan + (—Z4)) 'Zan. (34)

I ). . =

r The impedances-Z, and —Zy are the impedances for
looking in —r direction. Instead of (29), we may also use
the inversion with the generalized parameters

— H,.E,
_ I”kil -
E Yaa = IRy Po Tothn

. . . . . N Yap=1J z (kX7 apo) e
Fig. 4. Concatenations of the radial waveguide sections. The permittivities S
are functions ofz.

Ups = — Jk, 'py qoen
_ L2 o 1o
Its general solution is expressed in terms of first-order Bessel Ypa =i _ (k:TBpo) " En- (35)

and Neumann functiond; and ¥ They andz parameters are again introduced similar to network

H, = J,(k.7)A + Y, (k,7)B (27) theory. WithY 5 5 = Z,;IB the corresponding admittance

transfer is analogous to the impedance transfer. The impedance
whose arguments contain the diagonal makjx Therefore, transfer at concatenations of radial sections with offsets (e.g.,
Ci(k,7) (C—general notation of cylindrical functions] or petween sections andk—1 in Fig. 4) can again be performed
Y) is also a diagonal matrix and will be abbreviated in thgith the general formula derived in [10] and reported in (20).
following by Cy, namely,Ci5 if 7 = 74 or Cip if 7 = 7, 3) Study of Sections A, C, and Hn region A the solution
e.g., Jig = Ji(k, 7). Using Hankel functions instead ofmust be an outgoing wave. The fields must be described by
Bessel and Neumann functions in (27), we can define thginkel functions of the second kind. The regions C and E
characteristic impedance matrix (normalized according to thftlude the origin of the radial coordinateFrom the two parts
free-space wave impedaneg) for the wave propagation of the general solution (27), only the first term is expressed
in forward direction (subscripf) at a positionr (Hé?i = by a well-behaved function. The second term possesses a
HS) (k7)) by singularity at the origin, but physically the fields should be

finite. The special solutions for the regions A, C, and E in
E;=Zo-Hy) Zo= jz,jlk,,H((f) (HP)"!. (28) Fig. 2 are written as follows:

For r — oo the characteristic impedance matrix approaches A: H, = H? (k.aT)H > " (k,aT0)As = Y AE.
7 _ =1 —
Z_,,0 = k.. For_tﬁe fundamental mode gnd homogeneous E. = _jE}Z,ikrAHéQ)(krAF)H;EQ)il(kTAFO)AA
dielectric we obtainZ,, = 1/,/¢,. The relation between the — N VA —
electric and magnetic field components at the two section 1199 :Jl(k"cl7)‘]l (krcTo) ?:YCEZ
boundaries A and B is, again, given as a generalized two port E. = — j&,ckrcdolkrcm) ] (krcTo)Ac
relation by E: H, =Ji(k.wx7)J] (k-p7i)Ar = YRE,
[EA} B FAA zAB} { (—E@A)} 29) E. = — j& skondo(km7) T (kopTi) AR (36)
E.p #na Zon ] |=(-Hyp) where H? and H? are first- and zeroth-order Hankel
where functions of the second kind, respectively. These solutions are
B 1 B 2 normalized so that the magnetic field components at 7o
Zaa = — J&, kepr qo ZAB = p (JTap1€n) or r = r; are given byA ., Ag, and Ag, respectively. For
B e _ 2 open structures in direction, as in regions A and C of Fig. 2,
zrB =J¢, kwpy 1o ZBA = (J7rP1ER) (30) the operatorD. in (24) has to be replaced by the operator
po=JaYin—JinY1s @=T'aT. (31) D:. This, in turn, requires introduction of absorbing boundary

conditions (ABC).
p; being the generalized cross product of cylinder functipns ~ We define the impedance matricBs =Y ', Zc =Y ',
(see formula 9.1.32 in Abramowitz and Stegun [14]). In owind Z, = Y ;' which are obtained from (36) (the signs are
case,p, is a diagonal matrix containing, implicitly. In the chosen according to the Poynting vector)
same way the further generalized cross products of cylinder — _ 1 ) @1 3
functionsp,, ¢,, andrq also correspond to the notations in Za(T0) = jG xkraHy” (kraTo)H, ™~ (kraTo)  (37)
formula 9.1.32 in [14] except that they are diagonal matrices.  Zc (7o) = — j&;,ckrcJo(krco)J7  (kvcTo) (38)
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Zw(7) = — jepkendo(krm) I (kepTs). B9 . ) B
4) Radiation Impedance at the Aperture Bhe impedance z! [((g}]
Zxy (see Fig. 2), which is defined as in (32) is obtained from | PRI /
the matching process at = 7,. Matching the electric and T — = H
magnetic fields, we obtain S —— i
| 8 Hep ! 4D
E.x= |E.x Hoa= | Ju |- (40) 1 T2
EZC HtpC z ! 1:— -*AD-E
Al ) I—T-IFT—I—:—I ) ——
The subvectoE.; represents the electric field on the nonideal | e i ) o 0 E:
surface of the metallic cylinder with = r, between regions | I | He.E,

|

(

/
oy
i
)

B and C. For ideal metakE.,; must be a vector with zero m
componentsJy; being the current density on the same placédg. 5. General region with crossed discretization lines.
asE_ ;. For the vectors in transformed domain the equation

for the electric field reads as In the case of nonideal metal wall (especially for the
Tun TsE.5 monopole analysis), we use the approximate boundary condi-
TAE.A = |Taym |E.n = | Eau (41) tions for the tangential fields on the metallic surfageH; =
Tic TcE.c &. x Ey, which results in
) Tlo
whereT' s, T'ac, andT sy are parts ofl’y associated with Jom = P E.ni =Y uE.u. (51)

o e "™ 470, bing o agonalmasc it ne clemons
The vector E., as function of B.g, E.y, and E.c, the wave mpedance in the Iqssy material with the conductivity
therefore, can be written in the following form using thé’ and is Q'Yle“.bynm = _\/J/W?O/“' We have to use new
corresponding partition parts & *: parameterg,, |.nstead 0 oy (U, V =B, €) in (48)~(50).
ReplacingE.,; in the first two equations of (46) b¥.\
E.n =T RTRE.p + T {TcE.c + TiyE.n.  (42) obtained from the last one yields

The equation for the magnetic field in the transform domain giv = Juv — Jum(Y v + Ban) " iy (52)

has an analogous form as (41) and splits into Let us assume that the antenna is fed by the fundamental mode

TsH, g =TapH, s (43) of the radial waveguide then the fiells is known and with
T o =T H... (44) thatgnd the admittancEg we can <_:a|cu|ate the fieldB.¢
CHlpC =2 ACTH A and H_p by (48) and (49), respectively, and then the other
Im =TamHea- (45)  quantities by (46), especially the surface current deriity
5) Regions with Crossed Line#As shown in Fig. 2 the re-
gion D has interfaces with regions of radial (regions F and G)
and » discretization (regions B and E). To describe the fields

ReplacingH,, in (43)—(45) by -Y 4E. and introducing
(42) into these equations we obtain

—EsaB Uos Unc Upu | [E=B in region D we use the linear combination
—Hyc | = Yo Yo Yom | | Eic (46) HY = HP 4+ HP (53)
—Ju Yup Yve Yum | [EoMm v ! w

The two parts are discretized on different discretization line
systems crossing each other at°90’he second subscript
Ton ITEITACYATXETB- (47) den_otes_the discreti.zatio.n direction. In Fig. 5, t.he _genergl
region with crossed lines is sketched. In vertical direction this
The other submatrices are obtained in an analogous manfggion is bounded by the planes A and Bzatandzg and in
We first consider the case of ideal material wihy = 0. radial direction by surfaces C and Drat andrr,, respectively.
The last equation in system (46) decouples from the first onege four surfaces of the region D are like four generalized
in this case. Now with respect to (36) and (38) we get frofjorts. Our goal is to obtain a general relation between the

with, e.g.,

the second equation in (46) fields at these four ports. We have to determine the field parts
T o Ve Lm \-lz T belonging to the vertical discretization lines at the ports C and
Ec=-Yc+ 'osE- 48 . ; : s e
¢ =~Yet¥ee) Yoskas “8 5 and the field parts belonging to the horizontal discretization
which may be introduced into the first equation in (46) lines at the ports A and B.

6) Field Part Related to Discretization in Direction: We

= — (71 — Y 21 —1z T
Hep = (Uss — ¥sc(Yot¥co)” Yop)Em- (49 45qime in the first step that is a constant. For the part

The admittanc&’ s is, therefore, given by with discretization inr direction we can adapt the solution
- o obtained in Section II-B.1 [see (14)].
Ye =¥ —¥sc(Yc +¥cc) ¥cs (50) H,.s . [Boa

which has the same form as (17). [_ﬁw,]J ~YaB [EW,B} (54)
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The matrix of y-parameter matrices is abbreviated fys. From the parﬁW we do not obtain a’, component on both
All quantities have to be marked with a sub- or superscript §ldes of region D because of the Dirichlet boundary conditions
for region D, which is omitted here. For thedependence of for this component.
magnetic field we may writez(= 0 in plane A: z4 = 0) 7) Field Part Related to Discretization in Direction: To
) — ) derive a relation for the field parts related to discretization in
ﬁw(z — Slnh_(F(—H__Z))_WA Mﬁwﬁ (55) = direction at ports A and B from those at ports C and D in
sinh(I'H) sinh(I'H) Fig. 5 we adapt the solutions in Section 11-B.2. The (29) reads

whereTl = k(25— 24). The diagonal matriinh(I'H) in the for the surfaces C and D and the field parts under investigation

denominator really needs to be inverted. This equation must (-H,.c)
now be discretized for values of discretization lines in [_(_ﬁ D)}
Wwz

~ EZZ
=%¥cp [— N } (66)
direction. At such a position; (see Fig. 5), we may write

EZZD

where the submatrices @jcp are obtained from (35) by

H,.(z)=A%H, .» + AL H,, 56 _ ) )
er(z) Aitlera + Apiers (56) exchanging the subscripts A and B by C and D, respectively.
with diagonal matrices\¢ given by the expressions All quantities have to be marked with a sub- or superscript
4 . . . — D for region D, which is omitted here. To derive a suitable
Aj; = sinh(I'(H — 7z;))(sinh(I'H)) (57) formula for fields at arbitrary radii, we can adapt the general
A%, = sinh(I'z;)(sinh(I'H)) ™" (58) solution in (27), which we write in the following form:
The vectorH,.(z;) = T H,(#;) then gives the valueH.,, = _ A
in the points marked by circles in Fig. 5. For the matching Hoo(r) = [N(k,m) Yi(k07)] B (67)

procedure we need the values of the field at the boundaries )
r = rc andr = rp. Because of the Neumann condition§©r the surfaces C and D we obtain
we must extrapolate from points near the bounda_ry to th_e H,.c (k7o) Yilkic)] [A
boundary. This can easily be done by the transformation matrix P = - - .

i X " H._.p Ji(k,7 ) Yi(k.7p)||B
T, (see Appendix). We obtain at the position on the left
(R=C,r=rc) orright (R=D, r = rp) boundary (marked The inversion yields
by e at the surfaces C and D)

~ _ Al [ itk
Heor(zi) = Trar(ASHpra + AR Hy ). (59) {B} =h [—Jl(k,f

T,ar is a row vector constructed from weighted first (Iasti)n view of ([14, formula 9.1.32])

rows of the matrixr’, (see Appendix). If we want to change the

order of T, or and A¢ we must also change these quantities pSP = Jy(k,7c)Yi(k,7p) — Yi(k 7o) i (k7). (70)

in a suitable matrix formT, Ag should then be formed as a

diagonal matrixZ’s i and A¢—as a row vecton;. By doing The superscripts (C and D) a¢ here and in the following de-

this, the result can be written for all valuessimultaneously note the radii which have to be introduced into the arguments
q = P— of the cylinder functions. The order of the superscripts is the

Horr = AaToarHera + AT arHors (60)  same as the order of the radii in the functions,

where the full matrices\, and Ag are given by IntrodU(_:in_g (69) into (67), we therefore obtain for position
r = rn, Similarly to (56)

(68)

B

(Ap)ix = sinh(Iy(H — 7)) (sinh(I H)) ™t (61)

— IT — o d I d IT
(Ap)ir = sinh(I'vz) (sinh(Iy H)) 2. (62) He.(7m) = A Hezo + Ap Heop (71)
In transformed domain, we therefore have with
Hyrn = T2 AT ajHera + T AT agHys. (63) A, =p7PETP) Tt AL =D (72)

The relations between the magnetic field parts discretizgge vectorH,.(7,,) = T-H,.(7,,) then gives the values
in + direction at the four ports A, B, C, and D can now by __ in the points marked by empty squaresin Fig. 5. The
expressed in the following matrix form: values at the transition points (marked by full squamesn

[ (—H,c) Vea Vep H,.» planes A (R= A) and B (R= B) are again obtained by an
g = 57 T = (64) analogous process. The following equation holds:
_(_HWD)} [VDA VDB} [_HWB} ' '
~——— — —
‘,_Afgg Ht,czR = ACTgARchzC + ADTgARHt,cZD (73)
where where A¢g and Ap are full matrices. They are constructed

— — analogousA ; in (61) and (62
Voa=—T'AaTiac Ver =T AsTiAc g a.m i (61) (62)

Vor= —T:'ApTinn  Voa =T AsTiAp. (65) (AC)mn =272 /0F°  (AD)mn =77 /05>, (74)



PREGLA: ANALYSIS OF GENERAL AXIALLY SYMMETRIC ANTENNAS WITH COAXIAL FEED LINE BY METHOD OF LINES 1439

2 + A ABC
- 1 B b Lk it gt Spngh .
‘B 1o —H_E ek ':'":":EIF R A
| HE R e, =D
! Ik : i N | " 'E',_ ’ f—--;':'-':"!'-i- ]l ————— e
| I i o i i I - —H_.E
T t i 2 Bl 8 " Bl R S R PR . | T
i L : T _.I ] |
i — ! -
Z, P-4 l} - | 8 e
| I e = i
| {E | H,.I I Zni
| i |45 ipoter P B e T
| i | A i
[} .
ol [ b AR e
| ] ] : l l.-.‘-_| PJIF 5 |||'|
| Sl ————
' | -.i-'&..]l:.'u 1-.;
Fig. 6. Transition section with crossed lines. 1 [ 11 ]
RIS
e ,
In the argument of the cylinder functions th¢h component ! L 12 i B

of k, has to be introduced. The general solution is
_ Fig. 7. Region D with multilayered dielectric.

[ EWA} |:ZAC ZAD:| [ (—Ewc)} (75)
—Hezs M ~(=Hezp) insertingE..c. = 0 in the general equation. Thus, we obtain
ﬁ?f} for the magnetic field part at port A
where H,.a =T, ' ApTa.aH,.p = VapH,.p. (82)
Vac= T AT\ Vap =T P ApT? 4 9) Special Case Il—Region D with Layered Dielectriiet

Fig. 7, the situation with two dielectric layers is given. The
region D now has to be subdivided into two subregidhs
Again, the field extrapolation to planes A and B is performe@pdDQ. In comparison to the general case, only the situation in
by the diagonal matrice®_, andT% .. z direction has been changed. Therefore, we will give only the

8) Special Case |—Region D with Short Circuited portiormulas for this direction. The magnetic field resulting from
B and C: In this subsection, we assume that the ports Bart H,, must be determined at an arbitrazy by the field
and C are short circuited. The region D now transforms tHd.ra. Taking into account the ABC's in plane B or—which
waves from coaxial line directly to the radial parallel platéS identical in this case—assuming an infinite height of region
transmission line. In Fig. 6, this transition region is showR1 the following results are valid

with some details. In this special case, we have a short circuit z 7 - L 1
' Zpr = Ly, = Zo1 = —je,; T1. 83

on the upper side (plane or port B) of this region. Therefore, B " ot Jer T (83)
we obtain as input admittance for this field part The magnetic field depends in the following way 5f

Y ar =7, = Yo.(tanh(I'.H))™? (77) H, =cNEZH,p (84)
with Y. given by to (13). The magnetic field part at port On region D, we adapt the general solution (14)
from field partH,, at port A is given by [ETA} _ Fl 22} [ ﬁwA} @)

ngrD = VDAH@TA VDA = T;lAATgAD (78) E.r Zy Z1 [Py —ngrF '

where Introducing E,.r = Zo1H,,r into the second equation of

_ — system (85) we obtain
(AA)7k = COSh(Fk(H — Z;))(COSh(I‘kH))_ . (79) o - o

The surf ) C on the left side is a short circuit, 7 2) EH e = ViaHo (©o
e surface (or port) C on the left side is a short circuit. Ve = (cosh(TsHp) +70170_21 sinh(TyHp))~L. (87)

The expression for the admittan&g,, becomes

Y. = —jkflpglsglplqoﬁ- (80) The first equation in (85) yields

VA =2z —Z z,) 1z =z —__,
The radii to be introduced in (80) afg: and7p. We obtain Zar =2 = Z(Zo +7)" Z =7 — 2V (88)

the field relationH.,. () = ApH.p with Now, instead of (60) we can write
— m 2 — 1. m AA + AF VFA — —
Ap = (P?D) ! <P§j + = (k:Tcqo) 1P1 D) (81) Her = [ = :|T’I‘ARH‘{"TA (89)
7 ApiVia
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where from the source (coaxial feed line). Then the impedance

— — matricesZp, Zc, Zp defined b
(AA)zk = sinh(I‘gk(HD — 7i))(sinh(I‘2kHD))_1 (90) B © b y

(Ar, )i = Sillh(rgkzi)(Sinh(I‘QkHD))_l (92) E.. = ZAE@A EZC = Zcﬁwc
(Ap, )i = e T1eGEi—Hp) (92) E.p=ZsH.s E.p = Zp(—H,p) (101)

In (90) and (91): runs for the positiorg; in region D, and are the load impedance matrices. They are defined inside the
in (92) for the positiorz; in D;. The analogous equations toregion D and are obtained from the impedance matrices of the

(64) are connecting waveguides by a transformation according to (20)
ﬁwc Veale fiom the admittances of the_neighboring regions B, E, and D.
[ﬁ ATD} = [VDJ erA (93) Y, e.qg., is calculated fronZy in (39) using transformation
¥ formula (20). The input impedance matri¥, has to be
with determined from (98). Then the load impedance matrix of the
— L [AA+ Ap2VEa coaxial fed line has to be calculated by (20).
Voa =T { ApiVia }T;{AC (94) The solution may be obtained by the following algorithm.
o L [As+ARVEs Equation (98) has to be inverted. We combine also the port
Vpa =T, [ Ap Vs }Tfma- (95) impedance matrices in the following way:

It should be noted that the antenna in Figs. 1(c) and 7 can also ?AB = Diag(Z4, —Zs) ?CD = Diag(Zc, Zp).
be analyzed using only the concept described in Section 11-B.1, (102)
that means with discretization lines only indirection. The Then the combined impedance ma@gs can be calculated

sections above the ground plane must have a much greglefhe known and usual way. In a second step, the impedance
radius than the coaxial line and ABC’s must be introduced gfarix Z, can obtained in an analogous manner.

the outer wall. For the special cases | and Il we will give explicit formulas.

In the special case |, the total fields at ports A and D in

C. Port Relations of Section D transform domain are given by

In this chapter, the results in previous sections will be _ _ _
collected to for a general relation between the fields at the four {E*A} _ [_L VAD} {Esm} (103)
ports A, B, C, and D of Section D in Fig. 5. Then, e.g., the H.p Voa I. ||Hgp)|

input impedance/admittance of one port can be calculated from _

the known load impedance/admittance of the other ports byHera andHe,n may now be replaced b¥., andE,p,

means of this general relation. We have derived four systefg$Pectively, with the help of the admittances in (77) and (80),
of equations: (54), (64), (66), and (75). We have only orl€SPectively
tangential part for the E field at each port. Therefore, we may [

ﬁ(,cA:| _ |: ?Ar ‘_/AD?DZ:| |:E1*A:|

H VDA?Ar ?DZ

abbreviate in the following way: =
¢D

= (104)

EZD )

E,» p=E, E.c.p = Ec p. 96
&8 &8 @b @b (%6) With the load admittance in plane D (input admittance of the
The H field parts have to be added radial waveguide Section II-B) defined by
H(,cR = Ht,czR + Ht,ch = HR R= A: Bv C! or D (97) EZD = _?Dﬁch (105)

This can also be done in the transform domain. Introduciwe

from (104) the total i i in plane A
(54) in (64) and (66) in (75) and adding according to (97), wac 9t Tom (104) the total input admitiance in plane A by

obtain in compact form as Ya=Ya —VanYo,(¥p+Yn,) Vpa¥a.. (106)
Hup Ysn /?_)é% Eas . " - . .
[_ECJ = Egg §CD:| |:ECD:| (98) Ifin thg tra.nsmon plane frgm co:?mal line t(? region D thgre is
a step in diameters (e.g., if an diaphragm is introduced in that
where plane), a further transformation according to (20) is necessary
~cop _ Sopa ~AB  SaABS to obtain the load admittance of the coaxial line.
YaB = ViBYas  ¥ch = Vebyen 9 For the special case II, we obtain from (66), (75), (88), and
and (93) in a similar procedure as in the general case by adding

1, £, the magnetic field parts at the ports the following three-port
Hap cp = { —A’C} Eap,cp = [Eg]ﬂ (100) relation:

—Hg p , _ _ _ _ _
. . . . H,, Yar Yac Y, E,.,
Equation (98) is a general port relation. Knowing the sources e N e e
and the loads all the fields at ports can be calculated. Let us _E%@C) - KCA gCC gCD Ezc (107)
assume that port A is the port connected with the waveguide L—(—Hyp) Ypa ¥pc ¥ppd LE:p
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10+——"7 —— measurement (Mack) o
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Fig. 8. Current distribution on one stub ofg2 dipole antenna. For dimen- .
sions see Fig. 9. The results for comparison are taken from Collin—Zucker
[15].
. I . [
where the following abbreviations are used: 0 200 400 600 800 Q 1000
Yac = — VacHoe + Van¥pc real partof Z ———=
Y.ip=— VAC@Q]) + VADﬂDD Fig. 9. Input impedance loci of a dipole antenna parametrized ijtH
— . (ko = free-space wave number):___ lossless; - - with loss, x results
Yca=—VcaYa, from King.
Ypa=VpaYa, (108)

k]

We introduce the impedancdé: according tak.c = ZcH,c ,

where 1K

Ze =Tt TeZ Ty Tor (109) 2

maginary partof £ L —=

with the reduced matrif’n, according to the region E yielding e L1 -
Tpg. Zr and T have to be computed with ABC’s on the I F
upper side of regioit. Then we obtain the two port relation i ik
i
H@A :| |:§KA ggD:| |:ErA:| W= 156ain; Tk, < 4.7 in; o
= = |_ o — . (110) D= Smm;d,~ %mm AR = o =
|:_(_H(’CD) y%A y%D EZD : e ’ :Ill'...: il l-'l Fa i--l.- —-—H.I i
We obtain from the last equation the input admittance - =
Fig. 10. Input impedance of a coaxial line-fed monopole antenna at two
Yi=94s -7p(YD +y%D)—1y%A (111) different positions. (a) Sketch of the antenna with dimensions. (b) Input

impedance in the complex plane.
with the load admittanc& , according to (105).

resonance in all three cases is abouft/ Traking into account
. NUMERICAL RESULTS losses for the dipole of copper with= 56 2~! m/mn¥ the
lllustrative numerical results for some example structurg@shed curve was achieved. The loss resistance has the value of

are presented. In the first example, results for dipole anterfi@23€2 in the series type equivalent circuit for tBé&l = A\/2
is presented. Fig. 8 shows the current distribution. The curréfipole and the value of 39, 9.6, and 6.20h the parallel type
distribution for a)\ dipole is given in [16] obtained with a equivalent circuit for the H = A dipole. In the next example,
slightly different algorithm. In the results by the MoL theresults for a coaxial line fed monopole antenna are plotted in
finite radius of the antenna is taken into account. Therefofdg. 10. The antenna input impedance for two different places
the values at the end are not zero as it is also the case in ith@lotted in the complex plane. Place (1) is in the outer gap
measured results of Mack taken from Collin—Zucker [15]. Theide of the monopole and the ground, place (2) is on the end
results of R. W. King also taken from Collin—Zucker [15] aref the coaxial feed line. The diagram shows the well-known
obtained by an integral equation method. The radius of tispiral behavior. The first real input impedance has a value of
dipole stubs are assumed to be approximately zero. In FigaBout 36.652.
the diagram for the input impedance of the dipole obtainedIn Fig. 11, results for the input impedances on a Smith
from the field in the gap between the stubs and the inpcitart of a monopole partially buried in a grounded dielectric
current is drawn. Curves a, b, and c for three different gapabstrate. These results are obtained with 115 discretization
of increasing values are shown. The impedance in the seri@ges in horizontal direction (65 in region C) and 45 in
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Fig. 11. Input impedance on a Smith chart of the monopole partly buried fig- 13. Reflection coefficientS;; of a coaxial line-fed circular patch
a dielectric substrate with the dimensions given in [&7]: o MoL, x  antenna at the marked position. (a) Sketch of the antenna with dimensions.

— — —x numerical results of [17]s e e experimental results of [19]. (b) Reflection coefficient in the complex plane.

— ‘H‘“-“"-u.h i
— L5 Ny
¥
i | | F 4 =]
II__I K, ‘]’r ; \
e HE i
{ . S0 | |
| # Fig. 14. Other forms of axially symmetric antennas.
H 4 i JI
g & (RIS 1 | . g ),
; i / o . . .
By o ) - g ! ground metallization with radiusy;. The region A then has to
L be interpreted as a radial line which transforms the impedance
. from the aperture aty;. The procedure for calculation of the
S impedance at = r; is completely analogous to thatat= rg
Fig. 12. Inputimpedance of a planar circular antenna=atR. on a Smith described in Section II-B.4. The Fig. 14 shows other forms of
chart. Parameteko R, (ko = free-space wave numben: — — — e results axially symmetric antennas.
from [20].
the coaxial line. For a convergence investigation concerning V. CONCLUSIONS

the crossed discretization lines (see [3]). Numerical results | hod i 4 for the effici vsis of
obtained with the modal expansion method [17] are given for gelnere} I:net od is proposed for t (; € 'lc'en,thana, ysIS OI
comparison. Also measured values reported by Alexopoul@§neral axially symmetric antennas. The algorithm is anal-
[19] are introduced. All results are in very good agreemerﬁ.gous to the well-known transmission line theory but using

In Fig. 12, the input impedance of a centered microstrip dide Mmany as necessary modes_ in each of the sections in the
antenna is plotted in a Smith chart with a center impedanégucmre‘ The modes are obtained by the method of lines. To

of 50 2. The parameter ig,R,. For comparison, the resultmaintain the impedance/admittance transfer from the load to

from [20] obtained by the moment-method solution are givewe input adequate transfer relations for the different sections
Up to koR, ~ 6.5 there is a quite good agreement Apar"f‘.re developed and written in similar forms. A special section
» & 6. . |

from discretization no approximations are introduced in tHg that where waveguide sections of different direction are
MoL. Fig. 13(b) is a plot in polar coordinates of the inpu{:oncatenated. Here, crossed lines are introduced (this should
reflection coefficient for the circular patch antenna sketch&@t P& ‘mixed up” with two-dimensional discretization). The

in Fig. 13(a). The antenna is fed by a coaxial line Furthgetermination of the field should be done in reverse direction.
elements can be introduced in the feed line, e.g., to match tAgiNg at the source and using the impedances/admittances

input impedance. ca cylated before the fields can be.successi.vely calculated fr.om
section to section analogous as in a multilayered waveguide
cross section described in [10]. The far field of the antenna can
IV.  OTHER STRUCTURES be obtained from the tangential fields on the surrounding area
The analysis procedure can be modified in a suitable waydb the device by the usual near-field/far-field transformation
enable investigations of circular patch antennas with feed lined from that the radiation pattern can be extracted. This
positioned outside the center and rectangular patch antennemsformation is well developed. To improve the accuracy
In this case, a discretization also ¢gndirection is necessary. a further partition especially of the region A as described
The algorithm can also be used for studying various trangit Section Il can be introduced. In principle, all necessary
tions between coaxial and parallel plate lines. The describfedmulas are given for this case. For radial discretization
algorithm can also be used to investigate the effect of finileBC’s have to be introduced on the outer side.
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[3] W. Pascher and R. Pregla, “Analysis of rectangular waveguide junctions

(4]
(5]

(6]

(7]

(8]

(9]

[10]

For the analysis algorithms developed in the previous sec-
tions, we need the fields at the boundaries in case of NeumahH

boundary conditions. We consider an arbitrary functigi).

Let £ be a coordinate perpendicular to the boundary. Th&]
first discretization line in the vicinity of the boundary is at
distance%h from it (see Fig. 15). We must extrapolate from
the neighboring discretization lines. The field behavior is d#3]

approximately parabolic form. Introducing

2
T/)Ii/)R-i-a(%)

we obtain from the valuegy and+; on the lines a = %h
and¢ = 2h on the boundary

YR = 391 — s

For the discretized field we havg = T4. For the values
on the boundaries we therefore obtain(y) = Tary(y)
whereT Ar depends on the boundary side£RA: side where

(112)

(113)

discretization starts, R= B: side where discretization ends).

Explicitly, we have
Taa = 39T —Ty)  Tap=2(9Tn — Tn_1) (114)

on start site of discretization and end, respectivdly.andT’;

[14]
[15]
[16]

[17]

(18]

[19]

[20]

(Ty and Ty_;) are the first (last) and the second (last but

one) row vector of7".

In general, we must assume that the curve contains a line

term. We need now a further discretization ling () and a
further row of . The new row vectord’Ar are given by

Taa,p=3(15T n — 10Ty x 1 +3T3 ny-2). (115)
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