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The Concurrent Complementary Operators
Method for FDTD Mesh Truncation

Omar M. Ramahi,Member, IEEE

Abstract—The complementary operators were developed for
the purpose of truncating the computational domain of finite-
difference time-domain (FDTD) open-region simulations. In the
original implementation of the complementary operators method,
two independent simulations were performed. The solutions from
these two simulations were then averaged to obtain a solution
devoid of first-order reflections. In this paper, the complementary
operators are implemented in a concurrent fashion. This new
implementation, referred to as the concurrent complementary
operators method (C-COM), requires only one simulation, thus
reducing the operation count by approximately one half. The
implementation for two-dimensional (2-D) space is outlined first
with emphasis on reducing reflections from corner regions; then
the extension to three dimensions is developed. Numerical results
are provided in addition to an analysis of the source of error that
arises from this new implementation.

Index Terms—FDTD methods.

I. INTRODUCTION

T HE complementary operators method (COM) was orig-
inally introduced as a mesh truncation technique for

open-region finite-difference time-domain (FDTD) simulations
[1], [2]. The basic premise of the COM is the cancellation
of the first-order reflection that arises when the computational
domain is terminated with a single-equation boundary operator
or absorbing boundary condition (ABC). This cancellation
is made possible by averaging two independent solutions to
the problem. These two solutions are obtained by imposing
boundary operators that are complementary to each other.
Two operators are considered to be complementary if their
reflection coefficients are equal in magnitude but are 180out
of phase. Therefore, the two solutions that are generated from
applying each of the two operators separately, when averaged,
result in a solution that does not contain any of the first-
order reflections. The primary strength of the COM is that
the cancellation of the first-order reflections takes place for
any field independent of the wave number, which implies that
effective suppression of the reflections occur whether the fields
are composed of evanescent or purely traveling waves.

The COM requires two independent solutions of the prob-
lem, which lead to doubling the total operation count in com-
parison to the traditional implementation of ABC’s. Despite
this, however, the COM was found to be highly effective and
efficient in comparison to other mesh truncation techniques
[2]-[4]. This is primarily due to the fact that the COM
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allows the terminal boundaries to be brought very close
to the radiating structure. Despite the COM effectiveness,
nevertheless, it would still be even more desirable to avoid two
independent simulations, since the overhead requirement of
the simulation is then reduced by one half, and further allows
for effective modeling of nonlinear media [3]. In a recent
letter, a new implementation of COM was presented [5]. In
this implementation, instead of applying each of the operators
in a separate simulation, the complementary operators were
applied concurrently. This new implementation is referred to
as the concurrent complementary operators method (C-COM).
In this paper, we review the theory of complementary operators
as was originally implemented in the COM method. Next, we
discuss the implementation and performance of the concurrent
implementation of the COM in two-dimensional (2-D) space,
followed by an extension to three-dimensional (3-D) space.
Finally, we analyze the source of spurious reflections that arise
when using the C-COM method.

II. COMPLEMENTARY OPERATORSMETHOD

The concept underlying the COM method is the application
of two independent boundary operators given by

(1)

(2)

where is the unknown field on which the boundary condition
is applied and is the speed of light [3]. The parameter
ensures the stability of the simulation and has been shown
empirically to depend on the cell size and the dimensionality of
the problem, and is typically and
for 2-D and 3-D space, respectively. The anglecan be
optimized to minimize reflection in a specific propagation di-
rection. In a general application, however, where no advanced
knowledge of propagation is assumed,is set to zero.

For a time-harmonic plane wave, the reflection coefficients
for and are given respectively by

(3)

(4)

Both of these operators result in reflection coefficients that
are equal in magnitude; that is . The
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Fig. 1. Multiple reflections due to terminal boundaries, corner regions, and
the scatterer (for simplicity, the scatterer is assumed to reflect the field by
a factor a).

averaging of the two solutions obtained from applying each
of the two operators separately, gives a solution containing
only second-order reflections, including those that arise from
corner regions. An illustration of the cancellation that takes
place when these two operators are applied separately to two
independent simulations is given in Fig. 1. In this figure, we
show the reflections that take place when the incident wave
interacts with the side boundaries and corner regions. In Fig. 1,
we assume the original radiating pulse has a magnitude of one
and denote the reflections due to by brackets and the
reflections due to by parentheses.

Clearly visible from Fig. 1 is that second-order reflections
arising from the corner regions are not annihilated when the
two solutions are averaged. These reflections, although second-
order in nature, can be a significant source of error since
the fields impinge at the corners at highly oblique angles,
which cause the second-order reflection to remain substantial
in comparison to second-order reflections coming from the
sides. For instance, when using COM4 [employing (1) and (2)
with ], a wave incident at the corner at an angle of 70
comes back into the domain with approximately 1% reflection.

To cancel corner region reflections in 2-D space, four
independent simulations (instead of two) would be needed. For
each simulation, one needs to impose a unique combination of

and over the four sides of the outer boundary as
shown in Fig. 2, where for brevity, we use to denote
and to denote .

Further illustration is shown in Table I. the magnitudes of
the first- and second-order reflections due to the upper-right

Fig. 2. The four different permutations of boundary operators needed to
annihilate corner reflections for 2-D space.

TABLE I
CORNER REGION REFLECTIONS

corner (assuming an incident pulse of unity magnitude) for
each of the four needed solutions. Notice that the average
of all the values in the second column eliminates the corner
reflections.

In the original implementation of the COM, the focus
was on the annihilation of first-order reflections and, thus,
only two independent simulations were considered. The four
solution scheme was avoided because it was believed to
lead to an excessive operation count for practical problems
requiring large space and a large number of time steps. The
concurrent implementation of COM is intended to achieve
the two objectives: 1) implement the complementary operators
within one single simulation and 2) allow the annihilation of
corner region reflections.

III. CONCURRENT COMPLEMENTARY OPERATORS

METHOD IN TWO-DIMENSIONAL SPACE

The concurrent implementation of the COM involves the
application of complementary operators at a distance from
the terminal boundary (into the computational domain) such
that the first-order reflections are canceled right before they
reenter the computational domain. The implementation entails
dividing the FDTD computational space into two regions—a
boundary layer and an interior region. The interior region
includes the scattering object and any localized sources.

First, we illustrate the application of the C-COM to reduce
reflections from side boundaries only. To this end, we assign
two storage (memory) locations to each nodal field in the
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Fig. 3. Boundary layer showing the field locations and the averaging inter-
face. Also shown is the stencil needed to discretizeB

+

4
andB�

4
.

boundary layer. (The following discussion focuses only on the
treatment for the TM polarization case; the TE polarization is
fully analogous.) We denote the two storage locations assigned
to as and . Similar assignment is made for
and , giving , and , , respectively.

Within the interior region, each of the field components
is assigned a single storage location, as in typical FDTD
implementation. Within the boundary layer, and
are updated independently using their associatedfields.
Next, we apply the two boundary operators (1) and (2) to

and , respectively. Notice that each set of fields in
the boundary layer is updated independently of the other set.
This amounts to having two independent simulations in the
boundary layer.

The next step is to connect the solutions in the two regions.
This is performed by averaging the two values obtained for
each field at the interface lying between the interior region
and the boundary layer. The exact location of this interface
defines the width of the boundary layer. This width directly
impacts the additional memory overhead that will be required
in comparison to standard ABC implementation. The width of
the boundary layer is required to be at least the width (size)
of the stencil which is essential for the discretization of the
ABC in (1) or (2). Fig. 3 highlights the corner segment of an
FDTD mesh where, for illustration, we show a five-cell wide
boundary layer for the TM polarization case.

The above steps required for the implementation of the
C-COM are summarized as follows.

1) , , and are updated in the interior region
according to standard FDTD equations.

2) On the mesh terminal boundary, apply on and
on .

3) Within the boundary layer, is updated from
and and is updated from and . Both
sets are updated using standard FDTD equations.

4) and are averaged along the interface connect-
ing the two regions (see Fig. 3). The new values of
and along the interface are given the value of the
average .

5) Advance time by one-half time step.
6) Update and in the interior region. At the in-

terface, and in the interior region will use
as calculated in (4).

7) In the boundary layer, and are updated using
and and are updated using .

We mention here that if the averaging is carried out at an
interface placed within the stencil of the ABC [(1) or (2)],
then the solution becomes unstable as will be explained in the
section on analysis.

The procedure outlined above annihilates reflections arising
from side boundaries. To extend the annihilation to corner
reflections, four storage locations need to be assigned to
each field in the boundary layer to account for second-order
reflections. For each field set, i.e.,

, one of the ABC combinations shown in Fig. 2
is applied. Then an identical averaging procedure to the one
outlined above is performed, with the exception of having four
field values to update in the boundary layer and four field
values to average at the interface.

In a manner consistent with the nomenclature used for
the COM method [3], the C-COM employing a fourth-order
operator [ in (1) and (2)] will be denoted as C-COM4.
For this, the width of the stencil is five cells inclusive of the
boundary node. Furthermore, we use two additional parameters
to fully identify the methodology used in terms of doubling
or quadrupling the fields in the boundary layer and its width.
When the fields are doubled in the boundary region resulting
in the cancellation of side reflections only, we refer to the
method as C-COM4 (2, ), where indicates the width of
the boundary layer. Similarly, when the fields are quadrupled
in the boundary region, annihilating corner reflections, we refer
to the method as C-COM4 (4, ).

To demonstrate the performance of the C-COM4, we first
consider an experiment chosen such that the reflections due
to the sides and corners of the computational domain are
clearly distinguished from the incident (reflection-free) pulse.
We consider a space of size 400 400 . The excitation
is a line current source (impressed current) located at (100

, 100 ). We consider a uniform mesh in the- and -
directions, with a space step of m and time step
of seconds, where is the Courant limit.

The observation point is at (50 , 50 ). The pulse
is chosen narrow enough to isolate the reflections as stated
earlier. The excitation waveform is a compact pulse given by
the convolution where is defined over the time
interval and is given by

(5)

where and .
Fig. 4 shows a segment of the computational domain em-

phasizing the primary reflections that contribute to the signal
level at the observation point. Notice that the sides and
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Fig. 4. Part of the 400�s � 400�s computational domain highlighting
dominant reflections arising from side and corner regions.

Fig. 5. Ez field at observation point (50�s, 50 �s) showing side and
corner reflections.

corners that are not shown contribute reflections that will
not be present in the solution window that was intentionally
considered. In Fig. 5, we show the solutions obtained using
COM4, , and ( and are referred to in Fig. 5
as and , respectively). A comparison is made with the
reference solution. For this and the following experiments, the
reference solution is a reflection-free solution obtained in a
domain large enough such that the boundary reflections do not
appear in the solution time window.

In Fig. 5, we note that the reflection due to the sides is
clearly visible as it is the first to arrive at the observation
point. Also shown in the figure is the reflection due to

Fig. 6. Ez field at observation point (50�s, 50�s) showing the C-COM4
(4, W ) annihilation of side and corner reflections.

Fig. 7. Effect of varying the width of the boundary layer on accuracy.

the corner region when the COM is applied. (The corner
reflection corresponds to the second glitch in the signal.) Fig. 6
shows how the C-COM4 (4, 10) can be quite successful in
annihilating side and corner reflections, whereas, C-COM4
(2, 10) cannot reduce the corner reflection. For a perspective
on the error levels seen in Figs. 5 and 6, we note that the
maximum amplitude of the solution waveform is 7.2210
and it occurs at .

A second experiment is provided to show the level of
improvement achieved when considering a more practical
scenario where the terminal boundary is close to the source
of radiation. Here, we choose a space of size 21 21 .
The boundary layer will then be added to this space as will be
shown below. A line current source positioned at (11, 11

), and an observation point is chosen close to the source
at (16 , 16 ) . The excitation waveform, space and time
steps are as before. In Fig. 7, we show the effect of varying
the width of the boundary layer, from 8–12 cells. Comparison
is made with Higdon’s fourth-order ABC. Here, the results are
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Fig. 8. Error from using C-COM4 (2, 12) and C-COM4 (4, 12).

presented in terms of the normalized absolute error defined a

(6)

where is the solution that corresponds to the C-COM4
or Higdon fourth ABC solutions and is the reference
solution.

Fig. 8 shows the improvement achieved when using C-
COM4 (4, 12) over COM4(2, 12) for the same size geometry.
Notice that C-COM4(2, 12) gives a solution very comparable
to COM4 as would be expected. What is important to note
from these results is that corner reflections comprise a signif-
icant portion of the total reflected field. This is in accordance
with the predictions made earlier about the relatively high
reflection coefficients arising from waves impinging on the
corner regions at highly oblique angles.

Before concluding this section, we present a third numerical
experiment to show the performance of the C-COM method
in treating waves traveling at near grazing incidence. For
this purpose, we consider reflection from one side of the
computational domain. The size of the FDTD domain is 1800

218 . A line source is positioned at (300 , 18 )
and three observation points, OP1, OP2, and OP3 are situated
at (450 , 18 ), (560 , 18 ), and at (1300 ,
18 ), respectively, as shown in Fig. 9. The corresponding
angles of incidence (measured with respect to the normal) at
the terminal boundary for OP1, OP2, and OP3 are 76.5, 82 ,
and 88 , respectively. The FDTD source and space parameters
are chosen as before.

Notice that the domain was chosen such that the only
artificial reflections that appear in the solution over the time
duration of interest arrive from the nearest terminal boundary,
which is the only one shown in Fig. 9.

In this test, we study the behavior of a 16-layer C-COM.
This layer makes the distance between the source or obser-
vation points and the layer 2 . Fig. 10(a)–(c) shows the
pulse as it arrives at the three observation points. Here, we
show a comparison between the solution obtained using C-
COM4 (2, 16) and a 16-layer perfectly matched layer (PML)

Fig. 9. Reflection of waves traveling at near grazing incidence.

[6] employing a quadratic conductivity profile and a normal
incidence theoretical reflection of 10. In accordance with
[6], the PML solution is denoted as PML (16, 3, 10).
Comparison is also made to the reference solution, which is
devoid of any terminal boundary reflections.

This numerical experiment demonstrates the effectiveness
of the C-COM method in predicting solutions with high
degree of accuracy even when the solution is composed of
waves traveling at near-grazing incidence to the terminal
boundary. We also see that for OP3, the angle of incidence
at the boundary is approximately 88and for this, both the
PML and the C-COM show higher deviation than what was
obtained when the observation points had lower angles of
incidence, which would be intuitively expected. However,
clearly visible from Fig. 10(c) is that the C-COM4 solution
strongly resembles the shape of the reference solution, whereas
the PML deviation is observed to be in magnitude as well as
in form.

Further scrutiny of the PML and the C-COM4 solutions
is made possible by looking at their respective frequency-
domain responses. Fig. 11 shows the frequency response of the
PML and C-COM solutions for OP3 (88angle of incidence).
The frequency response is obtained by performing Fourier
transformation using 2048 points. (In Fig. 11, the abscissa
corresponds to the normalized frequency which assumes a
unity time step.) Fig. 11 shows a maximum error in the C-
COM 4 (2, 16) solution of approximately 3 dB, which occurs
at the frequency corresponding to the maximum amplitude in
the reference solution (the numerically exact solution). The
PML solution, on the other hand, is seen to deviate markedly,
especially in predicting the maximum amplitude frequency.

IV. CONCURRENT COMPLEMENTARY

OPERATORSMETHOD IN 3-D SPACE

The extension of the C-COM implementation to 3-D space
is performed in an entirely analogous fashion to the implemen-
tation in 2-D space. To suppress reflections arising from side
boundaries (single-reflection), two storage locations need to be
reserved for each field in the boundary layer. The annihilation
of corner reflections, however, and unlike the 2-D space case,
would require a total of eight storage locations for each field
in the boundary layer. This is because the cancellation of
corner reflections requires the imposition of eight possible
unique permutations of (1) and (2) at the boundaries (2,
where is the number of sides forming a single corner).
Notice that in the computational space, there are two types
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(a)

(b)

(c)

Fig. 10. (a) Solution at OP1 corresponding to 76.5� angle of incidence at
the terminal boundary. (b) Solution at OP2 corresponding to 82� angle of
incidence at the terminal boundary. (c) Solution at OP3 corresponding to 88�

angle of incidence at the terminal boundary.

Fig. 11. Frequency domain response at OP3 corresponding to 88� angle of
incidence at the terminal boundary.

of corners. The first type is a corner formed by two planes;
the second is the one formed by three planes. It can easily
be demonstrated that the cancellation of secondary reflections
arising from either of the two types of corners would require
eight storage locations.

Consistent with the nomenclature for the 2-D space, we
denote C-COM4 (2,W) and C-COM4 (8,W) as corresponding
to the implementation where the fields in the boundary layer
are either doubled or increased eight-fold, respectively.

To test the effectiveness of C-COM4 in space, we consider
the experiment in which a-polarized Herzian dipole is located
in the center of the computational space having uniform space
steps in the , , and directions of . Here
we consider a space of size 21 21 21 inclusive
of the boundary layer to make the point that the observation
point can be positioned within the boundary layer.

The time step is seconds. The excitation
waveform is a Gaussian pulse modulating a sinusoidal signal

(7)

where , , and .
The results are presented in terms of the absolute normalized

error [as in (6)] in the field at an observation point eight
cells away from the source at (11 , 11 , 19 ). Fig. 12
shows the performance of C-COM4 (2, 8) and C-COM4 (8,
8). Finally, we note that the C-COM4 (8, W) yields a higher
accuracy solution, however, its memory burden is substantial
and, thus, it is recommended that it be reserved for applications
with more stringent accuracy requirements.

V. ERROR ANALYSIS

In this section, we will focus on the error canceling mech-
anism of the C-COM implementation. For illustration and
without any loss of generality, we will only give analysis based
on reflections from side boundaries.

When the averaging interface is positioned at a distance
from the terminal boundary that exceeds the width of the
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Fig. 12. Results for the problem of the Hertzian dipole radiating in
free-space.

Fig. 13. Illustration showing the cancellation mechanism of the C-COM
method.

stencil needed to discretize the ABC, a virtual or nonphysical
discontinuity is effectively created at this interface. When
the fields (corresponding to each of the two field sets in the
boundary layer) are reflected off the boundary, each will have
an error which is opposite in phase but equal in magnitude to
the other. Averaging these two solutions leaves the field in the
interior region with no error. In other words, the nonphysical
boundary results in a reflection back into the boundary layer
of the first reflection. The complete reflection of the first-order
error at the interface must take place in order to satisfy the
continuity of the field at the interface. An illustration of these
reflections is shown in Fig. 13 where the reflection that occurs
when is enforced is shown in brackets while the reflections
due to are shown in parentheses.

The first reflection goes back to the terminal boundary and
is partially reflected, giving rise to a second reflected wave.
The second reflections due to each of the two complementary
operators have equal magnitudes and arein phaseunlike the
first reflections. Consequently, when the second reflections are
averaged at the interface, no cancellation takes place and these
reflections penetrate into the interior region.

Therefore, the net effect of implementing the complemen-
tary operators in a concurrent fashion is to double the order
of the reflection coefficient of each of the complementary
operators in (1) or (2). More specifically, if the complementary
ABC’s give a reflection coefficient of magnitude , then the
C-COM implementation results in a reflection coefficient of

, in addition to a propagation delay equivalent to twice the
width of the boundary layer.

A quantitative study of the performance of the C-COM is
performed by analyzing the reflection of a plane wave from the
terminal side boundary. We set up a numerical experiment in
which we simulate the reflection of a plane wave with varying
angle of incidence. We consider a 2-D space of size 210
1400 . A perfectly conducting screen is positioned across
the entire computational domain at . The cell size
and the time step are chosen as before for the 2-D space
experiments.

An incident field is propagated from the left-hand side of the
domain starting at the terminal boundary. The time waveform
of the incident plane wave is given by

(8)

where , , and . This time
waveform is a sinusoidal signal with a smooth initial transition
to obtain faster convergence.

The function satisfies Maxwell’s equations and it
represents a plane wave incident normally at the screen coming
from the left-hand side (negativedirection). To simulate the
effect of a plane wave with an angle of incidence different
from normal incidence, we adjust the anglein Higdon’s
ABC operators [see (1) and (2)]. (For this problem, we use a
scattered field formulation where the incident wave interacts
only with the screen.) Next, we apply C-COM2 (2, 20) and
observe the maximum magnitude of the reflected pulse at
an observation point located at (30, 700). This particular
location of the observation point ensures that the reflections
from the horizontal side boundaries do not interfere with the
solution which is observed over the first 1500 time steps. The
C-COM2 instead of the C-COM4 was chosen to allow for
clear quantization of the reflection. Had we applied C-COM4,
the reflections would be very difficult to isolate considering
the artifacts of the simulation (for instance, at ,

(C-COM4) .
Fig. 14 shows the reflection coefficient calculated using

Higdon’s first-order ABC and the C-COM2 solution as ob-
tained numerically and as predicted (calculated) from theory.
An excellent match is observed between theory and experiment
since (C-COM2) (Higdon’s first-order ABC) .

An additional factor that further reduces the reflection coef-
ficient in practical applications and is more difficult to quantify
is attributed to the delay that the reflected waves experience
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Fig. 14. Reflection coefficients for Higdon’s first-order ABC and C-COM2.

during their multiple reflections within the boundary layer.
Such delay causes the second reflected wave that penetrates
into the interior region to be diminished in magnitude. This
delay can be interpreted as a virtual enlargement of the
computational space. This is a significant advantage when the
fields contain sufficient energy in the evanescent spectrum.

This analysis also explains why the averaging interface
cannot be positioned within the stencil needed for or
(see Fig. 3). The stencil defines the domain of application of
Higdon ABC, which is constructed based on the one-way wave
equation in a uniform and homogeneous space. The averaging
of the fields at the interface creates a discontinuity of the
reflected fields, which is equivalent to positioning a source
at the interface. Such source cannot be allowed within the
stencil of the ABC. Numerical experiments have shown that
the solution grows without bound within several time steps
after the field reaches the terminal boundary.

VI. SUMMARY

A novel implementation of the complementary operators
method is presented. This new implementation is based on
the application of complementary operators at a distance from
the terminal boundaries such that first-order reflections are
annihilated before they enter the computational domain. The
method is very simple to implement since it is based on the
one-way wave equations such as Higdon’s boundary operators.

The major accomplishment of the C-COM method is the
implementation of complementary operators without the need
for two independent simulations as was originally conceived in
the COM method. Furthermore, the C-COM theory allows for
the annihilation of corner reflections with reasonable efficiency

in the 2-D space. In the 3-D space, the annihilation of corner
reflections levies a heavy memory burden and it is, therefore,
reserved for applications in which substantial computational
overhead justifies the desired accuracy.

The performance of the C-COM has been proven highly
effective yielding unprecedented levels of suppression of spuri-
ous terminal boundary reflections. The strength of the C-COM
method was especially demonstrated for waves incident at
terminal boundaries at near grazing incidence. This makes
the C-COM well-suited for FDTD studies of atmospheric
propagation. Finally, we note that unlike the COM method,
the C-COM extends the scope and applicability of the comple-
mentary operators theory to the efficient treatment of nonlinear
media.
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