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Methods in Scattering and Propagation
In Strip- or Slot-Loaded Structures

John L. Tsalamengasember, IEEE

Abstract— Problems of three-dimensional (3-D) scatter-
ing/hybrid-wave propagation for strip- or slot-loaded structures
are often formulated in terms of systems of singular integral-
integrodifferential equations (SIE-SIDE) of the first kind. Proper
handling of the singular part of the kernels constitutes a major
difficulty in carrying out method of moments (MoM). Three
powerful techniques explored in the present paper provide
efficient solutions by direct recourse to the theory of singular
integral equations. In contrast to low-frequency methods wherein
similar concepts are utilized for electrically narrow strips/slots,
the proposed procedures are applicable uniformly to the whole
range of widths from very narrow to very wide scatterers with
remarkable accuracy. Numerical results are presented to validate
and compare to one another the various numerical codes.

Index Terms—Electromagnetic propagation, electromagnetic
scattering.

. INTRODUCTION

ETHOD of moments (MoM)-oriented direct singular

loaded by strips or slots. The solution to these systems is
obtained by three versions of the DSIET. The first version
(Section 1ll) is based on [9]. The second version (Section 1V)
is an extension of the method used in [7] and [10], whereas
the third one (Section V) uses interpolation polynomials in
the way described in [11] and [12]. (Variants of the last two
methods have been also used in [13]-[16]). The validity, accu-
racy, and efficiency of these DSIET are amply demonstrated
in Section VI by detailed numerical results and comparisons.
Their use is exemplified in Section VII in connection with
the practical problem of 3-D scattering by a strip right on the
interface between two dissimilar media. Further applications to
more complex configurations will be presented in forthcoming
papers.

II. STATEMENT OF THE PROBLEM
Consider the following two systems of:2 2 SIE-SIDE of

integral equation techniques (DSIET) are useful ithe first kind

problems of three-dimensional (3-D) diffraction/hybrid-wave
propagation for two-dimensional structures loaded by infinite 41
strips or slots. With their help, the major problem of compu-
tation of singular or slowly convergent integrals inherent in
the implementation of conventional MoM is faced head on. In “
addition, the edge conditions are automatically incorporated.Agi/ fi(2)G
As a result, filling the matrix elements—via efficient analytical ds J_y
expressions—becomes most expeditious. 5

DSIET [1], [2] are only one group of methods out of many + A4 <k + _> / falz
for solving singular integral-integrodifferential equations (SIE-
SIDE). In this context, exact and approximate Wiener—Hopf
techniques are limited to a few canonical geometries [?(]|.3| < w), designated by the subscript (or superscripty =
Reduction or regularization (indirect) methods [4], [5] (inl,2). Here, A; (j = 1,2,3,4) are multiplicative constants,
general, rather complex and multistage closely connectgd and g, are known continuous functions; and f, are
with the classical “Riemann—Hilbert—Carleman” problem) maynknowns, and
be used to obtain equivalent second-kind regular Fredholm

/_L:) fi(z)G
ek [ e

Gz —s)dx
(o—sdr=g(s)  (1a)

Gz —s)dx

(x - 5)dv = ga(s)
(1b)

equations [6], [7]. Dual-series (or integral)-equation methods Gi(z —s) =Gi(z — s;k) = H(Q)(k|$ - S|) (2a)
have also been very successfully used [8].
In this paper, we investigate two systems, each consisting Ga(z — s) = Ga2(x — s; ko, k1) = kQ Z

of two coupled SIE commonly encountered in problems of
hybrid-wave propagation/3-D diffraction for layered media +H2(2)(kn|a:—s|)]

(2b)

K2[HS (koo — s])
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The kernelsGy(x — s) (g = 1,2) possess logarithmic C](é)]\,(kw)

singularities. Change in the order of integration and single o0

differentiation (d/ds) is permissible, leading to Cauchy-type qu [kw](M QOEI(N, )+ (j/7)

singular integrals. In (1b), however, the operatéi/ds? 7=0

cannot be moved behind the integral sign since the resulting o

integral would then diverge; that is, the SIDE (1b) cannot be . ZEpI(P,Q)@a(p7q707M7 N)] (8)
reduced to a SIE. p=0

Suppose that the unknown%s(x) and f2(z) possess end- C( ) ) (kow, kyw)
point singularities of the fornfil — (/w)?]¥1/2, respectively, B 2 2 g2
dictated by physical constraints (edge conditions). It is then [R5T ey (Row) = ML agw (Rrw)l/ (k5 — F) ©)
natural to expand the unknown functions in terms of Cheb;FMN( )

shev polynomials: J =
= Zeq l% Zepl(p,q) Z (1+6,0)
g=0 p=0 n=-2,0,2

)Y anTn(t)
N=0

0 '@a(p7Q7n7M7N)+ HWI(N,Q)SA4{ﬁq}]
1) bNUN(E);  t=a/fw (3)

(I{ = k‘o, kl) (10)

1) /.2
where ay and by are expansion constants ang (t) = Dy (ke kw)

jwa(t) = (1 —2)=4/2 :
Jws(t) = (1 - 82) 3., F VH(M. g) — djn—
lll. THE FIRST DSIET =
We change variables = wt,s = wr (-1 < t,7<1), : Z@b(p,q,O,M, N)] (11)
insert (3) in (1), multiply both sides of (1a) [of (1b)] by p=0

e e alocbraic ayeter MK kow. )
T= g y = [R2Puin (K2, kow) — K2 Parn (K2, kyw)] /(K — K2)

of the form
oo oo (12)
wAL Z CLNAE&)N + Ay Z bNBJ(\Z)N —65\14) P]w]\f(kg, Iiw)
N=0 N=0 oo oo
1
:ZE(I _4j7r_22 Z _®b(p7Q7n7M7N)
A Z anCify + A4 Z bvDify =7 (@) 4=0 l p=0n=—2,0,2 "
N=0
M =0,1,2--;g=10rg =2 + SN, @)Sm{Ve} (k= ko, k1) (13)
The present method for evaluating the matrix elements,
based on Neumann-type expansions of the kernels and Bl,ﬁ\‘j),\, = —C,(\??w (¢=1,2). (14)

the analytical evaluation of all singular integrals encountered,
is given in detail in [9]. The final results take the followingHere, 6,,,,, = 0 if n # m,8., = 1 (Kronecker delta) and

concise form: en = 2 — 8n0. All other symbols involved are defined in
AW Appendix A.
2 woz Remarks:
=) eg[I(M,q)Z1(N,q) — j2n~? 1) As a consequence of the Neumann-type expansions used
q=0 for the kernels, results (5)—(14) are applicable uniformly
nd to the whole range ofw, kow and kyw. In contrast,
: Z epl (P, ) Na(p, g, M, N)] (5) use of power series expansions for the kernels is limited
) p=0 due to well known severe roundoff errors to the lower
Agw)zv(/fow,/ﬁw) regime of these parameters [9].
= [k v (kow) — E2® gy v (yw)]/ (kS — k) (6) 2) In(q?dditiorgq)to (1(21)) we r(w(gte the symmetry(qr)elations
SN /«aw) Ayin = Anny Dy = Dy)y- Furthermore Ay, =
0 = D{Y, when M + N is odd andBY, = 0 =
= qu —jr~ Zsp pg) Y. (1+6m0) 9. when M + N is even. These relations reduce

p=0 n=—2,0,2 considerably the number of matrix elements that need

separate computation.

Ao(pog+n, M,N)+ I(N,¢)Sn{A; } 3) As seen, all matrix elements involve series of the form

S = Yo ¥3lo d"ln‘](nl-l-n)/? (ﬁw/2) J(m—n)/Q
(k= ko, k1) (7 (mw/2) (k =k, ko, k1) solely, whered,,,,, is of order 1
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or smaller. Thus, in view of the asymptotic expressiooarrying out the second derivativ® /ds*. In order to avoid
Ju(x) VT [ex/(2v)]” /27w, the terms of5 diminish  high-order singularities, the proper decompositiorGof = —
very rapidly as the summation indexes increase, the large—suitable for handling the terrW?/dr?)L2(G,)—has the
ones being those with small valuesraf n. Furthermore, form

in generating the matrix elements the only functions to

be evaluated are the Bessel functiohs(xw/2) (m = jEGq[x(t) — s(7)]

0,1,2,---) of prescribed argument. Finally, problems )

due to roundoff errors are completely avoided as ex- =1 = (r=1t)°Cy)ln |7 —t| + (Fy[z(t) — s(7)]
plained in detail in [9]. The efficiency of the present + (17— t)2Cq In |7 —¢#|) (21)

DSIET is further discussed in Sections VI-VII.
where
IV. THE SECOND DSIET

In this section, we describe an alternative method to evaluate C,, =
the matrix elements in (4).
Lett = x/w,7 = s/w (=1 < t,7 < 1). We define the Using (21), we get
analytic functions
- &2 ot 2
Pyz—s)=j5Golz—s) ~ln|r—t  (1=12) W/ . F2[x(O]Go[2(t) — s(r)] dt = —j —[1(7) + L2(Ly)]

(15a) (23)

@(q =1), é[(kow)"’ +(kw)’(a=2).  (22)

2P, (0) = jin[k3T1 (kow) — k2T (kyw)]/ (k3 — k%) +1  Where

(15b)
2/ Fla@](1 = (r = £2C,) In |r —#] dt
with 'y andI'; defined in the Appendix (91) and introduce dr
the simplifying notation (24)
(P,) = /1 Fle®IB, ) — s(D)]dt  (j =1,2). whereasL,(x — s) (¢ = 1,2) are new analytic functions
defined by
(16)
Then, with the help of the results [9] Lq(z = ) = Lyfa(t) — s(7)]
1 LG o) = s+ ——
En(r) = / Wi BTy () In |- — ¢ dt 2 dr? (r—1)?
-1 - + (B +2In |7 —¢)C, (25)
=—mbnoln2 — =Tn(7) an L1(0) = —j7Cy Ty (kw)
1 - w2 1
Cnv(r) = /_1 we(t)Un(t) In |7 — t| dt 2L5(0) =—-Cs —i—jgw nz_:o(—l)
: —
= 5N (7) + 7Ty 42(7) /(N +2)] (18) . |:_F1(k'nw) + %Fg(knw):| . (26)
R Jdt
()= /_1 wQ(t)UN(t)T -t mIv(7) I(7) may be evaluated as follows:
() =—7Un_a(r)  (N>0),0 (N=0) (19)
(1a) becomes / falz (1 —1)CqIn |7 — ¢
°0 - —t))d
Ajw | L1(Fy) + Z aArSAr(T)] (1T t) Col/(r = 1)) dt
N=0

d > =20 /71 folz(®)]In |7 — ¢| dt
“2 <5Pq> T ]\ZZ:OZ’NTJ\%JL(T)] s / s / N
{

+ Ay

= jggl(wT). (20)

The primes in (19) denote differentiation with respecttdn N—o0
(17), 7 /N is set by convention equal to zero foF = 0.

Equation (1b) can be treated in the same way. In connection + (N + 1)UN(T)}- (27)
with the second integral in (1b), care is needed, however, in

-C, |:§7T6N0 + 2<N(7'):|
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Equation (1b) then becomes 7r

D E\Z)N ==J

|

{—[(kcw)2 In2+ Cy(3 —21n2)]6a00n0

As ﬁl( ) Z ané’ w +2(N + 1w + %[(kcw)“‘ - 20,
~A4{[<kcw> IORRESS ' [—%SMN+15<IM—N+1'—1>° S e
Mo
. b]\r|:(/€cw)2<1\f(7')+{—cq [gwé,\rﬁ%\r(v)} ' 5(|M—N—1l—1>0}+<%ﬂ>Qi(l—fi)UN(fn)
(N + 1>UN<T>H : §Lj (1 = ) Ut (b)) [(hew) 2Py [2(En) — 5(En)]
= jgm(vﬂ)- (28) " .

Multiplying both sides of (20) and (28) by, (7)T/(7) and
by wo(7)Un (1), respectively, and integrating from = —1 In (33
to = = 1 one obtains again the linear system (4). In carrying ’

out the integrations in the last step, the contributions to the d
Pyl (t) — s(7)]

matrix elements due t&;(F,), £;(L,) and similar terms in dr
(20) and (28) are here obtained by numerical integration using _ jj iG [(t) — s(r)] - 1 (t #7)
the quasi-analytical Lobatto’s integration formulas [18]. For 2dr " T—t
instance 0 (=) (35)
1 Note: The second DSIET, although very similar in spirit
[1w1(t)TA’(t)Pq[$(t) — s(7)] dt with the first DSIET discussed in the preceding section, has
I quite different performance characteristics. ket= {(L +
_T ZTN(tn)Pq[af(tn) — s(7)] (29) /2 {L/2} + 1], 'with {m/n} denoting.the integer part
L &~ of m/n, then L, in (34) as well asP, in each of (32)
1 and (34) have to be evaluatedtimes, taking into account
/1w2(t)UN(t)Pq[$(t) — s(7)] the symmetry relationsg”(?, = 0 when M + N is odd;

F9 = F@ (F = A D). Finally, dP,/dr in (33) needs
__T Z(l — RYUNGEDP, () — s(D)]dt (30) L(L + 1) — 2v separate computations. This, in conjunction
with the comparatively large values @f needed to achieve

n=1
o — 1 R R a prescribed high accuracy, renders the present approach very
tn = cos¥p, Upn = o, tn = cos ¥y, time consuming as will be made clear in Section VI by specific
5 T (31) examples. So, in spite of its simplicity, the second DSIET has
" L+1 inferior performance characteristics in comparison with the
first one.
L in series (29)—(30) is any fixed integer selected as high as
needed to ensure convergence. V. THE THIRD DSIET

The final expressions of the matrix elements take the form . . .
P The method to be explored in this section, based on rather

I different principles, uses the following expansions:

(@) _ o, MmN 1

Apin =297 dnodnoln2 + — 5 > Tn(t) L1
2N L

L n=t fl (37) =1 (t)Fl (t) = w1 (t) Z CLNTN(t)
N=0
> T (b)) Pylas(tn) — S(tm)]} (32) I
m=1

fg(ai) Ew2(t)F2(t) = ZUQ(t) Z bNUN(t) (36)

(6mn/(2N) is set by convention equal to zero fof = 0)
t = xz/w. Here, unlike (3),L is finite, i.e., only finite series

1 1 L are used from the beginning.
C,(\Z)N = —2j7r{—§6M(N_1) + Tt D Z Tr(tn) Following step by step the procedure outlined in the preced-
(L+1) n=1 ing section, we get equations identical with (20) and (28) in
L ) . d which all infinite series=%7_,, are replaced by corresponding
-y = ) U (Bm) o Pal(tn) — S(T)]Tzfm} finite sums:%~1. From now on we depart and attempt a
m=1 discretization of (20) and (28) in the form of a finite, linear

= —BE\?ZW (33) algebraic system of equations for unknowns the valigs,, )
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and Fy(t,) (n = 1,2,---, L); the discrete points, and?, Since P, is given in closed form, filling the matrix elements
(zeros ofTr(t) and Uy (t), respectively) are given by (31). Tovia (42) requires simply the evaluation od(¢) for ¢ =
this end we first re-expressy and by using the summation 0,1,---,2L — 1.

formulas [12]

en o Expressions 0B, (kw), C (kw)
anN = Z TN )
L
2 o . B0 — —2) ( .
by =7 (- RUNEIRE) @) P = P L [2 Z U (En) T (tm)
n=1
. . . _ d .
(denyed from (36) using the orthogonalrty of Cr_lebyshev poly 4P x(E) — S(T)]thm} (44)
nomials in conjunction with Lobatto’s integration formulas). d
Next, using Lobatto’s integration formulas, we obtain
Cr(gr)rz_ 2ZTN JUN-1(tm)
/ Al @R [o(r) — ()] o
d
e . + L Pfa(t) - s(v)HT:ﬁ-m} (=12
== tn x(t,) — s
L; () Byo(tn) = 5(7) (38) us)

Using the relation [19]

o Dr(z)= > sin[(N + 1)a]
= Y (=B FaEa)Ry[x(Fa) — s(r)]  (39)
L+1:= o (L+1\ . (L« x 46
where R,(z — s) may represent either ofP,(z — s), - < a:) S <7) cosee (5) (46)

(d/dr)Pylz(t) — s(1)], or Ly(x — s). Insert (37)~(39) in we obtain the closed-form expressions
both (20) and (28) Set successrveby = t1,t9,+ -, IN

by oA oa d N
(20) andr = #1,%,,---; in (28). Then, after some term B'%), =TT sin 9y, [SlnﬁnEPq[w(tn) — s(7)]|7=t¢.,
rearrangement we obtain

N + DL (an_/&rn) +DL(Q§n +Q97n):|
wA; Z Fi(t,)AD 4 4, Z Fy(£,)BD

(47)
- J§gl(wtm) (40) oW — % [ % Pole(t) — s()]|es — Sinlgm
As Z Fi(t,)C9) + A4 Z Fy(t,) D), (D Do)+ Dy 1 (Dt ﬁn))}
=1
= J§92(wfm) (41) q=1,2. (48)

(m = 1,2,---,L;g = 1 or ¢ = 2). The matrix elements Expressions oDr(nzL(k?:,kw),Dﬁ,%%(kf,kow,klw)
assume several forms as described below.

Expressions ofieh (kw), A2, (kow, kyw) o — T 2 2 SN f

+ Lq[x(fn) - S(Em)] + [(kcw)Q —2C]

AlD =A@ — — | _In2—2 Tr )TN (¢ 1 .
mn n Z w( n(tn) ) [_1112 + 5TQ(tm)} — 3C, + [(kew)? — 2C,]

L—1 ~ ~
+ Py(|wt,, — wtn|)] ) - _TN(tm) Trnia2(tm)
2 Unhn) N TNtz
N=1
L—1
_1112—A(|m—n|)_»/4(|m+71_1|) +2Z(N+1)UN(Em)UN(tAn)} g=1,2.
N=0
+ P(|lwtm — wtn|)] . g=1.2 (42) (49)
Let us define
where in the last step we introduced the quantity L-1

m 1 1 JN=
A () == Z N——i—meﬂ\ lel/(L+1)

—cm 0) + jS(m) &) (m=0,2). (50)

Z — cos <—7rz) (43)
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VALUES OF THE LEADING MATRIX ELEMENT ASO) As OBTAINED BY IHAEBIIE:IEQSIT DSIET [(5)] AND BY THE SEcOND DSIET [(32)] FOR kw = 0.57
First DSIET
©  |Pax|%aax|Prox Ao’ cey
10—S 5 8 6 |5.5356851780217+31.5768834234042)|0.0
10710 8 14 9 |5.5356851780386+71.5768818926162(0.0
1071'® 10 18 11 |5.5356851780386+j1.5768818926202(0.0
107 2° 10 20 11 |5.5356851780386+71.5768818926202]0.0
Second DSIET
L Al CPU
20 5.5356851780386+jl;iz70276716025 0.1
30 5.5356851780386+jl;§1§9250554212 0.3
50 ]5.5356851780386+j1.5768912123676|0.9
100 |5.5356851780386+3j1.5768830574086|3.6
200 |5.5356851780386+j1.5768820382131 |14
500 |5.5356851780386+j1.5768819019380|90
1000(|5.5356851780386+j1.5768818937849 (343
2000|5.5356851780386+31.5768818927657|1378

Then (49) recasts into the following computationally mostVI. V ALIDATION OF THE ALGORITHMS AND COMPARISONS

convenient form The validity of the algorithms developed will be demon-

D) — L - sin an{ sind, |:(I€CTU)2PQ[.T(£”) — ()] strlated by comparing to one another their corresponding re-
sults.
+ L,[x(£,) — s(tm)] + [(kew)? — 2C,] In order to show the relative advantages of the first and
of the second DSIET, in Table | we present the values of
[ 2+ _COS (20,) } } the leading matrix elementll}) for kw = x/2 as obtained
) 3 by these two methods along with the elapsed CPU times in
+ [((Ol;cw) 2] - [ssn (n —m)( (C;))S On seconds on a Silicon Graphics workstation. In the case of the
-5 (lm = n[) + cos (19,,, - 219,,,,)5 (Im —nl[)) first DSIET and for a given absolute accuracwe also show
— sin 0, CO(|m — n|) + sin (¥,, — 20,,) the required truncation Size€Snax, gmax, and nmax for the
-C(Im = n|) — cos 9,5 (m +n) series ovep, g, an.dn in each of (5) and thg Appendix (90).
4 cos (5 429 )5(2)(m ) — sind Ins_pectlon of this table re\{eals that the first DS_IET reach_es
" m . . " the final values of the matrix elements very quickly and in
- COm + n) +sin (9, + 20,,)CP (m + )] a remarkably stable manner. In contrast, the second DSIET
4 [1“( im _n|> —F<L|m+n|>:|/ approaches these same values asymptotically. The needed
L+1 L+1 large values of the parametérin each of (32)—(34) lead to
excessive central processing unit (CPU) times, which render
sin 19"'} (51)  the second DSIET impractical, especially when a high degree
Here [19] of accuracy is required.
L1 The behavior of all other matrix elements was found to be
— quite similar.
Plw) = ]\ZQO(N 1) cos{(N + D)a] From now on we are restricted to the comparison between
oI, _ 1 the first and the third DSIET. This is carried out in Table II,
Lsin < 5 x) 1 — cos (Lz) wherela, | (n = 0—8) are shown as obtained; (a) from (4) for
= Lcos (Lz) + 2sin (2/2) T I the casey = 1,4; = 1,4, =0 = A3 = A, and for several
s (x/2252) truncation sizesV,. [N, is the number of basis functions used

in each of (3)] and (b) from{(37), (40)} for several values

with T'(0) = L(L + 1)/2. Filling the matrix elementD’?),  of L. (In this exampleq,, = 0 for » = odd sinceg;(z) was

via (51) requires simply the evaluation g% (¢) and A®(¢) chosen to be even).

for £ =0,1,---,2L. One clearly observes from Table Il that results obtained on
The simplicity of the third DSIET is striking. The matrixthe basis of the first DSIET settle down to their final values

elements assume either closed-form express@;ﬁ)ﬁ,%ﬂ, C*f,’{%) very quickly and in an extremely stable manner. Thus, e.g., a

or expressions solely involving single finite series. The conalue of N, = 14 suffices to obtain an accuracy to within

vergence of this algorithm is discussed just below. ten significant digits. In contrast, the corresponding values
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TABLE 1l
|an| (n =0,2,4,6,8) As OBTAINED FROM THE SOLUTION OF (la)FOrR(A| = 1,42 = 0,9 = 1,91 (x) = 1/k, kw = 7) BY THE FIRST AND BY THE THIRD DSIET

First DSIET
1 2 4 CPU
Nr Iaol |a2| |a4|xlO la6|x10 IaslxlO (s)
810.3234133427|0.2060992449{0.1999407833(0.1333104558
10{0.3234133437|0.2060992487|0.1999404955|0.1331863936/0.5168987221|0.2
12]10.3234133437(10.2060992487|0.199940495410.1331863714{0.5167125076|0.2
14(0.323413343710.2060992487(0.1999404954|0.1331863714/0.5167125076[0.2
Third DSIET
L la_ | la_| la |x10® la |x102 la |x10* |CFU
0 2 4 6 8 (s)
10[0.3235858283[0.2056472308|0.19990055686]0.1268142088|0.4577906306(0.2
20|/0.3234345980{0.2060442450(0.1999588788|0.1328151436|0.5130877222(0.3
40{0.3234159737{0.2060924170/10.19994344780.1331443389(0.5163365552]1.1
60]10.323414121510.2060972268(0.1999414053(0.1331741451(0.5166049795/1.5
100|0.3234135116]0.2060988122|0.1999406958|0.1331837554|0.5166897008 |4
20010.3234133647({0.2060991941{0.1999405206}0.1331860457|0.5167096787|15
400]0.3234133463|0.2060992418(0.1999404986(0.1331863307|0.5167121547|62
0.862
. Ag=1,A,=0,9=2
0.860 - Vo Kw=n
’ | (ki/ko)f’=2
~ |
~. 0.858 - \ y
= LT
l,: \ -——— 3r
T 08561 N (&5 Mo) T
e -»>X
0.854 : : : —
0 10 20 Eo 40 50 -w w
r ]
(&5 1Y)

Fig. 1. |fi(« = w/2)| versusN, as obtained from the solution of (1b) for
A3 = 1,4, = 0,9 = 2,¢92(x) = 1, k1 /ko \/i (— first DSIET;
third DSIET).

Fig. 2. A strip at the interface between two dielectric half-spaces, illuminated
by an obliquely incident plane wave.

obtained on the basis of the third DSIET take on their findl*| < w). Here, E<**(y)exp (jk.x + jBz) denotes the
values for considerably greater matrix sizes. Very illustratiiknown) field excited by the incident wave in the absence
in this respect is also Fig. 1, which shoys(z)| atz = w/2 Of the strip, while

obtained from (1) for the casdz = 1,44 = 0 = A; =
Ag,q=2,g2(x) = 1, kow = 7,k /ko = /2 and for several ~ Z1(u) =2 /Y"

—u?/Y®,  Zo(u) =uB(1/Y" +1/Y°)

matrix sizes. Clearly, the third DSIET exhibits an almost Zs(u) =u?/Y" — 5%/Y*¢ (54)
asymptotic convergence ending up with the same results as
those obtained earlier by the first DSIET.
y Y=+ /8 (p=eh)
[ h_ i+ . ;=

VII. | LLUSTRATION OF THE APPLICATION OF THEALGORITHMS Vi =—jweifvi, Vi'=—jvi/(wpwi)  (i=,0,1)

Consider (Fig. 2) a strip of width2w right on the ) 2312 (55)
interface between the dielectric half-spacgs, ji;, ki = vi =7i(u) = (v — K7)
wyEipi) (i = 0,1). Let Em(F) = Egexp(Gk = - 7), ki =ki — 3% —g <arg(y) < g (56)

H™(7) = Hyexp(jk  -7) be thez components of an
arbitrarily polarized plane wave that is obliquely incident in
the direction ofk™"“(ko, ©, ®) = ko(sin O sin ®2 + cos O +  Singulariy Extraction
sin © cos ©2) = k,.& + ky§ + 82. The surface current density  One easily verifies thak;(u) vary as|ul|*~/ (j = 1,2,3)
induced on the strip, denoted by/..(x)Z + J.(2)2)e’P*,  whenu — 4oo. This implies the divergence or (at best)
satisfies the system the conditional convergence of the real-axis spectral integrals
w oo / in (53). Thus, (53) becomes rather impractical in the course
! —ju(z—z") Zl(u’) Jw(x ) . H H
dx c Zo(u) J. (") du of conventional MoM. To recast it into a convenient form,
- - 2 i taking advantage of the preceding DSIET without necessarily
_ o (EE0) Y ikea (53)
ES(0)

Z2 (U,)
Z3 (U,)

departing from real-axis integration, one may proceed as
follows.
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Let us introduce the shorthand notation

e=e1feo, = p1/po, &= (1—p?)/(e —p)
L=(epn—1)/(e —p), & = (ki —ri)/(e—p)
(57)
fo(w) =1/(n+py), Ap=20-1)/(p+1)*
By =4/(p+1)° (p=e,p) (58)

then, after some lengthy straightforward algebra, we obtain

Zn(w) = —j{[€fu(w) + Eafe(Wu® = kS pf(w)}/ (weo)
Zo(u) = jupBl& fu(u) + a2 fo (w)]/(weo)
Zs(u) = —jl&s fu(u) + &% f-(w)] /(weo)- (59)
The decomposition
Ap Bp _ ﬂ ”
Jolw) 2% Yo+ m 2 Ep(w)
2 1.2)\2
Fy( o — ) (p=e,n) (60)

Yo(vo +71)* (71 + pyo)

in conjunction with [17, egs. (14) and (15)] help recast (53)

in the form

d2
kA —— + k2

dweg ES(0)T=* = K*2(x) + ( P

)i
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Discretization of (61) and (62) by the First DSIET

We setr = wt, sz’ = wr and identify.J,(x) and J,,(x) with
fi(z) and f2(x) of (3), respectively. Then, from (61) and (62)
on the basis of the first DSIET we end up with the following
linear algebraic system:

oo

> (bnRigy + an Rijy) =dweocsy)
N=0

oo

> (nEiEy + anRiiy) =4weoCly)
N=0

(68)

(M =0,1,2,---,00) where

1
MN

m—{ PN R+ B (2 o)

+ B3 DC) (k3 K, kow, nlw)]} df,,  (69a)
2y = 1= 1OIM, N; R + B[ Cliy (row)
+ EHC S (ow, syw)]} dyyy = —Riy  (69b)
zz  __ f_ 700 N _ 1)
Ry —{ I [Ma N7R3] w[TAAMN(“Ow)
+ TBAEé)N(ﬁow, rkiw)|} dLN (69c¢)
i = 53" Faszw) + Tarsa(kow) | ES(0)
82 = 1M Jag (kpw) EZ¥(0) (70)
dﬁN = [1 + (—1)M+N]/2- (71)

The integralsI™ (m,n = 0,1) given in Appendix B have
to be evaluated numerically. They convergel#s®, i.e, very

strongly. For a given truncation siZg€, (the number of basis

S 2\ 72 ~
kB@ + kD>~7m (x)+JpB
d
P RAT (@) + kT ()] (61)
dweg BE(0)e’*" = K*(x) +j/3%[/@24~7§($)
+ kRT3 (@)] = TaJ (x) = Tp T2 ()
(62)
(lz| £ w), where
Mi=&Au+ A, Kk =&B, + 6B
kZ =pkiA,, k3 = pukiB,
Iy _£3Qu + B26:0Q. (Q=A4,B) (63)
Kt / e [ R ) )
Rj(w)J-(z")] du (64)
Rl :21{[51 y! ;L( ) + £2A€F€(u)]u - kOI’LAHFH(u)}
(65)
Ry = —2j/3u[£1AuFH(u) + £2A€F€(U,)] |
Ry =2j[Es 4, () + &AL F. (1) (66)
jzf(az) = / Jp(2")G1(x — 2’5 ko) d’
jﬁ(az) = / Jp(2")Go(z — 2’5 ko, k1) do’ (p==zx,2)
(67)

with G; and G> defined in (2).

functions used for/,, J.) the needed numerical integrations
reduce to( NV, + 1) x

(N, +2). This is a consequence of Ap-

pendix (93), (94) and the symmetry relatié®’ (M, N; R) =
I99(N, M; R) in conjunction with the vanishing of most of
the matrix elements (depending on weathér N is odd or
even). WhenyV,. = 9, e.g., 110 numerical integrations suffice
to fill all the 400 matrix elements.

Discretization of (61) and (62) by the Third DSIET

We identify nowJ,(z) and J,(z) with f;(z) and f2(x) of

(36). Then, on the basis of the third DSIET, one obtains the

inear algebraic system

L
Z anxn F2 Rfrfn Fl ( )) = 4w50E;XC(O) ejka, Wi
(72a)
L .
Z (Rfr;rnFQ( ) + Rfranl( )) = 4w50E§X“(O)C]kwwtm

fan

n=

(72b)
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seen, this last integral, which results from a brutal MoM
solution of (53) (without singularity extraction), requires
large values ofuy,.x/k1. In contrast, the relative error of
I™(M,N,R;) (m,n = 0,1;j = 1,2,3) diminishes very
rapidly aswu.,., increases. This is more clearly shown in
Fig. 4(b), which results after enlarging the encircled area
near the origin in Fig. 4(a). The aforementioned very strong
convergence of the procedure leads to very accurate evaluation
Ep=ZoH,o=1 of the integrals for extremely small values @f,.../ k.

2w=MX,
£,=4.0

10 —65 0.0 05 1.0 VIIl. CONCLUSIONS

x/w Three powerful DSIET have been applied to the solution of
Fig. 3. Induced current densities versuw for the structure of Fig. 2. Systems of singular integral equations frequently encountered
in scattering and propagation problems related to strip/slot-
loaded structures. The first and the second DSIET are very
similar in spirit, yet the latter is considerably more time
. o 2 . consuming when a high accuracy is desirable. The great
Ry = Jtm, te; Ba] + m[kiDﬁii(kf/ki, Kqw) computational advantage of the third DSIET is the simplicity
of the analytical—either closed form or in terms of simple

(m =1,2,---,L) where

2 12 1.2 /1.2
+ kBD"m(kD/kg’ row, i1 w)] (73 finite series expressions of the matrix elements, which makes it
R% = 't ta; Ro] + _/3[163107(71%(,{0@ easily programmable. From the standpoint of accuracy, the first
2 A(2) & DSIET vyields results, which settle down to their final values
+ kpChn (Kow, K1w)] (74) in a very stable manner requiring very small matrix sizes.
R = Tt s Ro] + 2 Bk Br(i% (Kow) These same values are approached asymptotically by the third
) 7r (and by the second) DSIET at the expense of much greater
+ k3B (kow, r1w)] (75) matrix sizes. In conclusion, the first and the third DSIET are

promising alternatives, useful in treating a very wide class of

~ 2w ~
zz __ 7b . _ (69}
R = I [t 1 B in [T Ay (row) 3-D problems for strip/slot-loaded structures.

mn

+TpA)

mn

(kow, K1w)]. (76)

APPENDIX A
The integralsJ(t,7;R; (g = a,b;5 = 1,2,3) given in
Appendix B converge uniformly as/|u|3+7.

To further appreciate the convergence characteristics of i )
algorithms, Fig. 3 shows.J,(z)|Z, and |J.(z)|Zo (Zo = Throughout _thls Appendlx, the entryw (kw =
V10/20) versusz as obtained by the first DSIET fav, =8 ~w,kow,kiw) is specified by the left side of (5), (7),
(the parameter values afev = Ao, e, = e1/e0 = 4, = (8), (10), (11), and (;_3). Let_(??),.as shown at the bottom _of
10, ® = © = 45°, Ey = ZoHy = 1). These results were the page. The quaqt|t|§s defined in (78)—(88) below comprise
also independently rederived by the third DSIET foe= 12. Simple linear combinations of(p, g):

As seen, both methods yield indistinguishable final results for
comparatively small matrix sizes. I(p,q) =

Evaluation of the spectral integral§*™ (m,n = 0,1) and

J9 (¢ = a,b,c) is a crucial factor affecting the efficiency of the

tlﬁgfinition of the Symboils Introduced in (5)—(13)

L(p,q) = I(p+2,9)]

J(M,q—1)—J(M,q+1)]  (78)

—~ —

)
proposed algorithms. The observed rapid convergence of these hy(M,m) =J(M,q+m)+ J(M,q—m)
integrals is a very important feature minimizing CPU time. Bo(M — (M J(M.a— 79
To see this, Fig. 4(a) shows the relative error in evaluating o(M,m) =J(M,q+m)+J(M,q—m) (79)
10,0, Ry), 199(0,0, Rs), and I'°(1,0,R,). The relative Ag(Mym) =I(M,q+m)+ I(M,q —m)
error is defined byI™" {00} — I {timax }] /1™ {00} % 100. Vo(M,m) =H(M,m+q)+ (-1)*H(M,m — q)
Here, 1™ {u.x} is the value of the integral when the (80)

integration is carried out fromx = 0 t0 u = wpyay; I {00} B 5 1 5
is approximated by ™" {100k, }. For the sake of comparison H(M, q) = (kew)™J (M, q) + 7 (kw)[he(M, 2)
the relative error of 1°°(0,0,Z5) is also indicated. As — hg(M.,0)] (81)

RW
I(p,Q)=I(p,q;ﬁw)=WJPZE<7J%(W> (p+qeven, 0 (p+qodd). (77)
ke
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T 0.010
&.=4
0.008 -
S 1°(0,0,Rs) 5
= 3 11 =
@ I'°(0,0,R,) $0.006
10
F(1,0.k:) "
s 0 "5 0.004 1°°(0,0,R,)
LS 1°°(0,0,Z5) = /
11
= *0.002 - 1'°(0,0,R,)
J I'(1,0,Re)
S : : . 0.000 ,
21 41 61 81 2.5 4.5 6.5
umax/kl umax/kl

@ (b)

Fig. 4. (a) Convergence of the spectral integrd$(0,0, R1), I1°(1,0, R2), I°°(0,0, R3), and I°°(0,0, Z3). (b) More detailed examination of the
convergence of the first three of the above integrals.

1 s
Lo(m.n.q) = 5[I(Jm — n].q) + I(m +n.q)] M lp= N =1 =1)] = Srw
1
Jolg,m,n) = S[I(Jm = n|,q) = I(m +n +2,q)] é:z_; lg[‘]”(M’erNJr b
) (82) q+n+ K) + SN—p+1
Jb(mvnv Q) = §[J(m + n, Q) + Snl—n+1‘](|n —m — 1| . Jb(M, |p — N — 1|a q +n+ Z)] + g
— L9l sm=sgu(m) (83) Ap+N+1)Ju(qg+n,M,p+N)
AJ(pa q, Ma N) = g |:_6(Np)0‘](Ma Q)£n2 - (p - N - 1)
_Jb(M7|p_N|7Q) "]a(Q+n7M7|p_N_1|_1)]
N —pl
M N+2
- In (5)-(13), Sm{f} (f = XAy, hy, V), Er, and Z; are short-
Ar(p.q, M, N) = —5 [(1 + 6po)Onpd (M, q)n2 hand symbols for
Jy(M,|p — N,
A | ]3’ i S31{F} = 33 (s F(M, 0) + D) (M 2)]
J(M,p+ N,q) 1" f(M, 2m + 2)
85
p+N (85) {2 r; (m+ 1)(m+2)
Mulp.g. M, N) = [( bp0)onpl (M. )n2 = [ f(2m)
2 > (2m +1)(2m + 2)
Ia(Mv |p_N|7(J) m=0
R g J(M.2m+2) F(M,2m + 4) ”
I(M,p+N,q) ©6) 2m+1)(2m+3) (2m+2)(2m+3)
p+ N ' ) (89)
Oulp, q,n, M, N) = _:w [Ar(p,g+n—1,M,N) Zr(N, q) = Do(kw)L(N, ) +j =
—Arlp, g+ 1M N) > U (N, g + 20) + L(N, g — 20)]
Ja((]—i-ﬂ,M,N—i-p—l) nzleIJ 90
+Jalg +n, M, [N —p| = 1) 87) (L=1J) (20)
Oy(p, ¢,n, M, N) = (kow)>J(p, )N 1(p,q+n, M, N) (Er(IV,q) = 0 for N-+¢ odd). All these series are very rapidly
) (exponentially) convergent. In (89) and (90)
+ 1EPI(p7 (.Z) _M Z 2 KU
2 4 =—2,0,2 Lo(rw) =1~ 1; (111 -+ ’y)
1
(=D A0, + £+, M, Lo (kw) = To(kw) + j—  (m =1,2)
gy mm

N+p)+ sn_pt10,;(0,g+ £+ n, v=0.7721---. (91)
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