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Direct Singular Integral Equation
Methods in Scattering and Propagation

in Strip- or Slot-Loaded Structures
John L. Tsalamengas,Member, IEEE

Abstract— Problems of three-dimensional (3-D) scatter-
ing/hybrid-wave propagation for strip- or slot-loaded structures
are often formulated in terms of systems of singular integral-
integrodifferential equations (SIE-SIDE) of the first kind. Proper
handling of the singular part of the kernels constitutes a major
difficulty in carrying out method of moments (MoM). Three
powerful techniques explored in the present paper provide
efficient solutions by direct recourse to the theory of singular
integral equations. In contrast to low-frequency methods wherein
similar concepts are utilized for electrically narrow strips/slots,
the proposed procedures are applicable uniformly to the whole
range of widths from very narrow to very wide scatterers with
remarkable accuracy. Numerical results are presented to validate
and compare to one another the various numerical codes.

Index Terms—Electromagnetic propagation, electromagnetic
scattering.

I. INTRODUCTION

M ETHOD of moments (MoM)-oriented direct singular
integral equation techniques (DSIET) are useful in

problems of three-dimensional (3-D) diffraction/hybrid-wave
propagation for two-dimensional structures loaded by infinite
strips or slots. With their help, the major problem of compu-
tation of singular or slowly convergent integrals inherent in
the implementation of conventional MoM is faced head on. In
addition, the edge conditions are automatically incorporated.
As a result, filling the matrix elements—via efficient analytical
expressions—becomes most expeditious.

DSIET [1], [2] are only one group of methods out of many
for solving singular integral-integrodifferential equations (SIE-
SIDE). In this context, exact and approximate Wiener–Hopf
techniques are limited to a few canonical geometries [3].
Reduction or regularization (indirect) methods [4], [5] (in
general, rather complex and multistage closely connected
with the classical “Riemann–Hilbert–Carleman” problem) may
be used to obtain equivalent second-kind regular Fredholm
equations [6], [7]. Dual-series (or integral)-equation methods
have also been very successfully used [8].

In this paper, we investigate two systems, each consisting
of two coupled SIE commonly encountered in problems of
hybrid-wave propagation/3-D diffraction for layered media
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loaded by strips or slots. The solution to these systems is
obtained by three versions of the DSIET. The first version
(Section III) is based on [9]. The second version (Section IV)
is an extension of the method used in [7] and [10], whereas
the third one (Section V) uses interpolation polynomials in
the way described in [11] and [12]. (Variants of the last two
methods have been also used in [13]–[16]). The validity, accu-
racy, and efficiency of these DSIET are amply demonstrated
in Section VI by detailed numerical results and comparisons.
Their use is exemplified in Section VII in connection with
the practical problem of 3-D scattering by a strip right on the
interface between two dissimilar media. Further applications to
more complex configurations will be presented in forthcoming
papers.

II. STATEMENT OF THE PROBLEM

Consider the following two systems of 2 2 SIE-SIDE of
the first kind

(1a)

(1b)

, designated by the subscript (or superscript)
. Here, are multiplicative constants,

and are known continuous functions, and are
unknowns, and

(2a)

(2b)

where the Hankel functions are of the second kind. In
actual problems, the scalar constants would denote
suitably selected wavenumbers.
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The kernels possess logarithmic
singularities. Change in the order of integration and single
differentiation is permissible, leading to Cauchy-type
singular integrals. In (1b), however, the operator
cannot be moved behind the integral sign since the resulting
integral would then diverge; that is, the SIDE (1b) cannot be
reduced to a SIE.

Suppose that the unknowns and possess end-
point singularities of the form , respectively,
dictated by physical constraints (edge conditions). It is then
natural to expand the unknown functions in terms of Cheby-
shev polynomials:

(3)

where and are expansion constants and
.

III. T HE FIRST DSIET

We change variables ,
insert (3) in (1), multiply both sides of (1a) [of (1b)] by

[by ], and integrate from
to . We thus obtain an infinite linear algebraic system
of the form

(4)

or .
The present method for evaluating the matrix elements,

based on Neumann-type expansions of the kernels and on
the analytical evaluation of all singular integrals encountered,
is given in detail in [9]. The final results take the following
concise form:

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Here, if (Kronecker delta) and
. All other symbols involved are defined in

Appendix A.
Remarks:

1) As a consequence of the Neumann-type expansions used
for the kernels, results (5)–(14) are applicable uniformly
to the whole range of and . In contrast,
use of power series expansions for the kernels is limited
due to well known severe roundoff errors to the lower
regime of these parameters [9].

2) In addition to (14), we note the symmetry relations
. Furthermore,

when is odd and
when is even. These relations reduce

considerably the number of matrix elements that need
separate computation.

3) As seen, all matrix elements involve series of the form

solely, where is of order 1
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or smaller. Thus, in view of the asymptotic expression
, the terms of diminish

very rapidly as the summation indexes increase, the large
ones being those with small values of . Furthermore,
in generating the matrix elements the only functions to
be evaluated are the Bessel functions

of prescribed argument. Finally, problems
due to roundoff errors are completely avoided as ex-
plained in detail in [9]. The efficiency of the present
DSIET is further discussed in Sections VI–VII.

IV. THE SECOND DSIET

In this section, we describe an alternative method to evaluate
the matrix elements in (4).

Let . We define the
analytic functions

(15a)

(15b)

with and defined in the Appendix (91) and introduce
the simplifying notation

(16)

Then, with the help of the results [9]

(17)

(18)

(19)

(1a) becomes

(20)

The primes in (19) denote differentiation with respect to. In
(17), is set by convention equal to zero for .

Equation (1b) can be treated in the same way. In connection
with the second integral in (1b), care is needed, however, in

carrying out the second derivative . In order to avoid
high-order singularities, the proper decomposition of

—suitable for handling the term —has the
form

(21)

where

(22)

Using (21), we get

(23)

where

(24)

whereas are new analytic functions
defined by

(25)

(26)

may be evaluated as follows:

(27)
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Equation (1b) then becomes

(28)

Multiplying both sides of (20) and (28) by and
by , respectively, and integrating from
to one obtains again the linear system (4). In carrying
out the integrations in the last step, the contributions to the
matrix elements due to and similar terms in
(20) and (28) are here obtained by numerical integration using
the quasi-analytical Lobatto’s integration formulas [18]. For
instance

(29)

(30)

(31)

in series (29)–(30) is any fixed integer selected as high as
needed to ensure convergence.

The final expressions of the matrix elements take the form

(32)

is set by convention equal to zero for

(33)

(34)

In (33),

(35)

Note: The second DSIET, although very similar in spirit
with the first DSIET discussed in the preceding section, has
quite different performance characteristics. Let

, with denoting the integer part
of , then in (34) as well as in each of (32)
and (34) have to be evaluatedtimes, taking into account
the symmetry relations when is odd;

. Finally, in (33) needs
separate computations. This, in conjunction

with the comparatively large values of needed to achieve
a prescribed high accuracy, renders the present approach very
time consuming as will be made clear in Section VI by specific
examples. So, in spite of its simplicity, the second DSIET has
inferior performance characteristics in comparison with the
first one.

V. THE THIRD DSIET

The method to be explored in this section, based on rather
different principles, uses the following expansions:

(36)

. Here, unlike (3), is finite, i.e., only finite series
are used from the beginning.

Following step by step the procedure outlined in the preced-
ing section, we get equations identical with (20) and (28) in
which all infinite series are replaced by corresponding
finite sums . From now on we depart and attempt a
discretization of (20) and (28) in the form of a finite, linear
algebraic system of equations for unknowns the values
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and the discrete points and
(zeros of and , respectively) are given by (31). To
this end we first re-express and using the summation
formulas [12]

(37)

(derived from (36) using the orthogonality of Chebyshev poly-
nomials in conjunction with Lobatto’s integration formulas).
Next, using Lobatto’s integration formulas, we obtain

(38)

(39)

where may represent either of
or . Insert (37)–(39) in

both (20) and (28). Set successively, in
(20) and in (28). Then, after some term
rearrangement, we obtain

(40)

(41)

or . The matrix elements
assume several forms as described below.

Expressions of

(42)

where in the last step we introduced the quantity

(43)

Since is given in closed form, filling the matrix elements
via (42) requires simply the evaluation of for

.

Expressions of

(44)

(45)

Using the relation [19]

(46)

we obtain the closed-form expressions

(47)

(48)

Expressions of

(49)

Let us define

(50)
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TABLE I
VALUES OF THE LEADING MATRIX ELEMENT A

(1)
00 AS OBTAINED BY THE FIRST DSIET [(5)] AND BY THE SECOND DSIET [(32)] FOR kw = 0:5�

Then (49) recasts into the following computationally most
convenient form

(51)

Here [19]

(52)

with . Filling the matrix elements
via (51) requires simply the evaluation of and
for .

The simplicity of the third DSIET is striking. The matrix
elements assume either closed-form expressions
or expressions solely involving single finite series. The con-
vergence of this algorithm is discussed just below.

VI. V ALIDATION OF THE ALGORITHMS AND COMPARISONS

The validity of the algorithms developed will be demon-
strated by comparing to one another their corresponding re-
sults.

In order to show the relative advantages of the first and
of the second DSIET, in Table I we present the values of
the leading matrix element for as obtained
by these two methods along with the elapsed CPU times in
seconds on a Silicon Graphics workstation. In the case of the
first DSIET and for a given absolute accuracywe also show
the required truncation sizes , , and for the
series over , , and in each of (5) and the Appendix (90).

Inspection of this table reveals that the first DSIET reaches
the final values of the matrix elements very quickly and in
a remarkably stable manner. In contrast, the second DSIET
approaches these same values asymptotically. The needed
large values of the parameter in each of (32)–(34) lead to
excessive central processing unit (CPU) times, which render
the second DSIET impractical, especially when a high degree
of accuracy is required.

The behavior of all other matrix elements was found to be
quite similar.

From now on we are restricted to the comparison between
the first and the third DSIET. This is carried out in Table II,
where are shown as obtained; (a) from (4) for
the case and for several
truncation sizes is the number of basis functions used
in each of (3)] and (b) from for several values
of . (In this example, for odd since was
chosen to be even).

One clearly observes from Table II that results obtained on
the basis of the first DSIET settle down to their final values
very quickly and in an extremely stable manner. Thus, e.g., a
value of suffices to obtain an accuracy to within
ten significant digits. In contrast, the corresponding values
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TABLE II
janj (n = 0; 2; 4; 6; 8) AS OBTAINED FROM THE SOLUTION OF (1a)FOR (A1 = 1; A2 = 0; q = 1; g1(x) = 1=k; kw = �) BY THE FIRST AND BY THE THIRD DSIET

Fig. 1. jf1(x = w=2)j versusNr as obtained from the solution of (1b) for
A3 = 1; A4 = 0; q = 2; g2(x) = 1; k1=k0 =

p
2. ( first DSIET;

- - - - - third DSIET).

obtained on the basis of the third DSIET take on their final
values for considerably greater matrix sizes. Very illustrative
in this respect is also Fig. 1, which shows at
obtained from (1) for the case

and for several
matrix sizes. Clearly, the third DSIET exhibits an almost
asymptotic convergence ending up with the same results as
those obtained earlier by the first DSIET.

VII. I LLUSTRATION OF THE APPLICATION OF THEALGORITHMS

Consider (Fig. 2) a strip of width right on the
interface between the dielectric half-spaces

. Let

be the components of an
arbitrarily polarized plane wave that is obliquely incident in
the direction of

. The surface current density
induced on the strip, denoted by ,
satisfies the system

(53)

Fig. 2. A strip at the interface between two dielectric half-spaces, illuminated
by an obliquely incident plane wave.

. Here, denotes the
(known) field excited by the incident wave in the absence
of the strip, while

(54)

(55)

(56)

Singulariy Extraction

One easily verifies that vary as
when . This implies the divergence or (at best)
the conditional convergence of the real-axis spectral integrals
in (53). Thus, (53) becomes rather impractical in the course
of conventional MoM. To recast it into a convenient form,
taking advantage of the preceding DSIET without necessarily
departing from real-axis integration, one may proceed as
follows.
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Let us introduce the shorthand notation

(57)

(58)

then, after some lengthy straightforward algebra, we obtain

(59)

The decomposition

(60)

in conjunction with [17, eqs. (14) and (15)] help recast (53)
in the form

(61)

(62)

, where

(63)

(64)

(65)

(66)

(67)

with and defined in (2).

Discretization of (61) and (62) by the First DSIET

We set and identify and with
and of (3), respectively. Then, from (61) and (62)

on the basis of the first DSIET we end up with the following
linear algebraic system:

(68)

where

(69a)

(69b)

(69c)

(70)

(71)

The integrals given in Appendix B have
to be evaluated numerically. They converge as , i.e, very
strongly. For a given truncation size (the number of basis
functions used for the needed numerical integrations
reduce to . This is a consequence of Ap-
pendix (93), (94) and the symmetry relation

in conjunction with the vanishing of most of
the matrix elements (depending on weather is odd or
even). When , e.g., 110 numerical integrations suffice
to fill all the 400 matrix elements.

Discretization of (61) and (62) by the Third DSIET

We identify now and with and of
(36). Then, on the basis of the third DSIET, one obtains the
linear algebraic system

(72a)

(72b)
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Fig. 3. Induced current densities versusx=w for the structure of Fig. 2.

where

(73)

(74)

(75)

(76)

The integrals given in
Appendix B converge uniformly as .

To further appreciate the convergence characteristics of the
algorithms, Fig. 3 shows and

versus as obtained by the first DSIET for
(the parameter values are

. These results were
also independently rederived by the third DSIET for .
As seen, both methods yield indistinguishable final results for
comparatively small matrix sizes.

Evaluation of the spectral integrals and
is a crucial factor affecting the efficiency of the

proposed algorithms. The observed rapid convergence of these
integrals is a very important feature minimizing CPU time.
To see this, Fig. 4(a) shows the relative error in evaluating

, , and . The relative
error is defined by .
Here, is the value of the integral when the
integration is carried out from to
is approximated by . For the sake of comparison
the relative error of is also indicated. As

seen, this last integral, which results from a brutal MoM
solution of (53) (without singularity extraction), requires
large values of In contrast, the relative error of

diminishes very
rapidly as increases. This is more clearly shown in
Fig. 4(b), which results after enlarging the encircled area
near the origin in Fig. 4(a). The aforementioned very strong
convergence of the procedure leads to very accurate evaluation
of the integrals for extremely small values of .

VIII. C ONCLUSIONS

Three powerful DSIET have been applied to the solution of
systems of singular integral equations frequently encountered
in scattering and propagation problems related to strip/slot-
loaded structures. The first and the second DSIET are very
similar in spirit, yet the latter is considerably more time
consuming when a high accuracy is desirable. The great
computational advantage of the third DSIET is the simplicity
of the analytical—either closed form or in terms of simple
finite series expressions of the matrix elements, which makes it
easily programmable. From the standpoint of accuracy, the first
DSIET yields results, which settle down to their final values
in a very stable manner requiring very small matrix sizes.
These same values are approached asymptotically by the third
(and by the second) DSIET at the expense of much greater
matrix sizes. In conclusion, the first and the third DSIET are
promising alternatives, useful in treating a very wide class of
3-D problems for strip/slot-loaded structures.

APPENDIX A

Definition of the Symbols Introduced in (5)–(13)

Throughout this Appendix, the entry
is specified by the left side of (5), (7),

(8), (10), (11), and (13). Let (77), as shown at the bottom of
the page. The quantities defined in (78)–(88) below comprise
simple linear combinations of :

(78)

(79)

(80)

(81)

even odd (77)
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(a) (b)

Fig. 4. (a) Convergence of the spectral integralsI11(0; 0; R1), I10(1; 0; R2), I00(0;0; R3), and I00(0;0; Z3). (b) More detailed examination of the
convergence of the first three of the above integrals.

(82)

(83)

(84)

(85)

(86)

(87)

(88)

In (5)–(13), and are short-
hand symbols for

(89)

(90)

for odd). All these series are very rapidly
(exponentially) convergent. In (89) and (90)

(91)
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APPENDIX B

Definition of

(92)

We note that

(93)

(94)

Definition of

(95)
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