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Resistive and Conductive Tube Boundary Condition
Models for Material Wire-Shaped Scatterers

Keith W. Whites,Member, IEEE

Abstract—An equivalent boundary condition model is intro-
duced in this paper for computing the scattering by material
wire-shaped scatterers which are either dielectric or magnetic,
but not both simultaneously. While the methodology for numeri-
cally computing the scattering by perfectly conducting thin-wire
scatterers has been developed for decades, no simple model
for material scatterers with large length-to-radius ratios (wire
shapes) has been available. This new model can be easily in-
tegrated into existing thin-wire computer codes while adding
virtually no computational burden. Validating results are shown
using comparisons of the full-wave scattering from a number of
thin wire-shaped dielectric and magnetic structures with this new
equivalent boundary condition model. It is demonstrated that
this model is, in essence, an extension of the internal impedance
expression for a conducting wire (developed over 50 years ago)
to simple-material wire-shaped scatterers possessing a very wide
range of material parameters.

Index Terms—Electromagnetic scattering, wire scatterers.

I. INTRODUCTION AND OVERVIEW

A thin wire-scatterer, by definition, is a structure with a
circular cross section and is very long with respect to

the transverse dimension. The numerical computation of the
scattering by such perfectly electrically conducting (PEC)
structures was greatly aided by the introduction of the thin wire
model (see, for example, [1]). Given that the aspect ratio is
extremely large, a surface integral formulation of the scattering
would be prohibitively expensive except for the most trivial
of geometries.

The new model for material wire-shaped scatterers devel-
oped in this paper provides the same utility and computational
savings as that achieved for PEC wires. Such a thin wire model
for wire-shaped scatterers that are not PEC nor are highly
lossy would be of value in such applications as scattering by
vegetation, wave propagation along insulating wires, and in the
modeling of complex composite materials [2]–[4]. At optical
frequencies, the scattering by polymer strands would also be a
practical use of this model. The first methodology for material
wire scattering to appear in the literature (to our knowledge)
was that developed by Newman [5]. As will be demonstrated
later in this paper, the new model developed here gives the
same level of accuracy as [5], but has the advantage of further
simplicity and a satisfying relationship to existing models for
conductive wires. However, a limitation of this new model that
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does not appear in [5] is that the material scatterer is either
dielectric or magnetic, but not both simultaneously.

If the wire-shaped scatterer is very lossy, one may apply the
impedance boundary condition (IBC) to formulate an accurate
equivalent scattering problem [6]. Using this method, the
scatterer is replaced by another of the same shape having null
internal fields and a boundary condition on the surface

(1)

where is the unit outward normal and is the surface
impedance. As clearly dictated in [6], constraints need to be
imposed on the scatterer for an accurate representation of
the scattering using (1). These constraints are: 1)
where is the index of refraction; 2)Im
where is the smallest radius of curvature or dimension;
and 3) the penetration depth is sufficiently small such that
no fields may pass through a given structure. From a study
examining the scattering by two-dimensional (2-D) circular
cylinders, it has been found that the loss criteria 2) and 3)
are generally much more restrictive than the contrast criterion
1) [7].

Unfortunately, these restrictions may preclude the use of the
IBC with thin material wire-shaped scatterers. In particular,
considering a circular cross section, the restrictions 2) and
3) would place a larger lower bound on the loss for small
diameter wires than for large ones.

In this paper, a new model for round material wire-shaped
scatterers will be presented which is applicable regardless of
the loss of the scatterer. In particular, accurate results are
obtained for lossless bodies of virtually arbitrary constitu-
tive parameters provided the typical thin-wire constraints are
imposed. For lossless dielectric or magnetic scatterers, this
new model is applicable provided where is the
wavenumber of the material wire and is the wire radius.
Since is necessarily small, extremely large values of the
constitutive parameters for the material cylinder are allowed.

The development of this new round material-wire scatterer
model is given in the following section for dielectric-wire
scatterers and in Section III for magnetic-wire scatterers. Re-
sults are shown in Section IV for a number of geometries
that validate the accuracy of this model. Finally, in Section V,
the behavior of this model is investigated in extreme values of
the constitutive parameters and compared with known limiting
cases. It will be shown that this new model is effectively an
extension of the conductive wire boundary condition [8]–[13]
to scatterers that may or may not be lossy.
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(a) (b) (c)

Fig. 1. Geometry of (a) the tube boundary condition model, (b) the material
rod scatterer, and (c) the circular material loop scatterer.

II. RESISTIVE TUBE BOUNDARY CONDITION MODEL

The structure chosen to equivalently model the scattering
by dielectric wire-shaped objects is a “resistive tube.” The
development of this model will proceed from a 2-D analysis
and will then be postulated to hold in three-dimensional (3-D)
as well. Referring to Fig. 1(a), the resistive tube scatterer has
the same circular cross section as the dielectric wire, is hollow
inside, and has the boundary condition [14], [15]

(2)

(3)

imposed on the surface . In (2) and (3), is the unit
normal in the “ ” direction, and the “ ” and “ ” superscripts
refer to surfaces at and , respectively. While (the
complex surface resistivity) has a specific value for dielectric
sheets [14], [15], it will be treated now as an unknown
quantity.

Assume that a uniform plane wave is normally incident upon
this scatterer polarized with the electric field parallel to the
resistive tube cylinder (TM). The total fields internal and
external to the resistive cylinder are, respectively, for

(4)

(5)

where the prime indicates differentiation with respect to the
argument, while for

(6)

(7)

assuming a suppressed time variation of . The regions
interior and exterior to the resistive tube have a wavenumber
and characteristic impedanceand , respectively. The coef-
ficients and can be solved for by enforcing the boundary
conditions that from (2) is continuous giving

(8)

and that from (3) is discontinuous giving

(9)
The quantity of interest is , which can be solved for using
(8) and (9) such that

(10)

where

(11)

The utility of the resistive tube model is the ability to
accurately represent the scattered fields external to a dielectric
cylinder. This can be accomplished exactly for the circular 2-
D cylinder by equating the scattered fields given in (6) and
(7) with those of a dielectric cylinder and solving for the
equivalentsurface resistivity.

For the same plane wave illumination as above, the total
fields external to the material cylinder can easily be found
following a procedure similar to that in [16, ch. 5]

(12)

where

(13)

Here

and (14)

with and the constitutive parameters of the cylinder.
Equating (6) and (12) term-by-term leads to the requirement
that

(15)

or

(16)

From this last equation, it can be seen that in order for the
resistive tube cylinder to exactly model the scattering by a
dielectric cylinder, the equivalent surface resistivity must be
a function of . However, for certain small diameter material
cylinders (in terms of wavelength in the surrounding material)
the scattering will be dominated by the term leading
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to the approximate equivalent surface resistivity for dielectric
wires

(17)

This azimuthally symmetric scattering assumption will pre-
scribe limits (given in Section IV) on the dielectric wire
material parameters for a valid application of this model.
Strictly speaking, the equivalent surface resistivity in (17)
is only valid for infinite 2-D cylinders. However, it will be
hypothesized that this model and the resistivity expression
(17) remain approximately valid for a certain class of finite, 3-
D shaped dielectric structures. In particular, evidence for the
validity of this hypothesis for thin wire-shaped scatterers is
presented in the next section.

Implementation of this resistive tube boundary condition
(RTBC) model for wire-shaped dielectric scatterers into a
frequency-domain integral equation solution for the scattering
is very similar to PEC scatterers [1]. Provided the length of
the scatterer is much greater than the radius and that the
radius is much smaller than a wavelength in the surrounding
material, the equivalent current is assumed to be only axially
varying and possesses no azimuthal variation. Additionally, the
equivalent currents on the endcaps are ignored. Construction
of the electric field integral equation (EFIE) proceeds by
enforcing the relation

(18)

for points on tube where the superscriptsand refer
to the incident and scattered fields, respectively. Employing
the RBC (2) and (3) on the surface of the tube, usingfrom
(17), gives the EFIE for the axial componentof the field

(19)

or for the equivalent electric current along the surface of the
wire using a mixed potential source/field relationship

(20)

The unit vector points along the axis of the wire structure
and varies with parameter along the wire. Assuming that

is approximately constant within the tube, this current
can be assumed to exist, in the usual fashion, as a filament
along the axis of the scatterer. Again, this approximation
would be reasonable for long, thin, wire-shaped scatterers.
Equation (20) is very similar to the standard EFIE for PEC
wire scatterers other than the additional term containing.

Two of the most appealing attributes of this RTBC model are
the negligible computational cost and the ease at which it can
be integrated into existing PEC wire scattering codes. Both of
these attributes can be established by considering the formation
of the system of equations used in a moment method (MM)
solution. Expanding the current in a set of basis functions
and forming the inner product of (20) with a testing function

along the contour of the wires where ,

gives

(21)

It is apparent that the first term in the right-hand side of (21)
is nonzero only when the basis and testing functions overlap.
For example, using a pulse-expansion/point-match solution,
only terms on the main diagonal of the impedance matrix
would be modified beyond that for PEC wires, while a triangle
expansion/pulse test would modify the main diagonal plus the
two adjacent off-diagonal terms in each row.

III. CONDUCTIVE TUBE BOUNDARY CONDITION MODEL

The development of the equivalent model for the scattering
by magnetic wires ( , ) proceeds in a like manner
as that discussed in the previous section for dielectric wires.
However, duality can be invoked to expedite this development
since both Maxwell’s equations and the boundary conditions
for the two types of material scatterers are dual.

Applying duality ( , , ) to (2) and
(3) yields what has been labeled the (magnetically) conductive
sheet boundary condition [15], [17]

(22)

(23)

where is the complex surface conductivity. The scattered
fields external to a conductive tube having these boundary
conditions under TEillumination can be equated with those of
a round magnetic material cylinder, similar to the last section,
to yield the equivalent conductive tube boundary condition
(CTBC) for magnetic wire-shaped scatterers. Alternatively,
applying duality to (17) yields

(24)

Implementation of this CTBC for magnetic wire-shaped
scatterers into an integral equation solution proceeds in a
dual fashion to the development presented in the last section.
Applying duality to (18) gives

(25)

while applying duality to (20) or, alternatively, applying the
boundary conditions (22) and (23), yields the magnetic field
integral equation

(26)

where is the equivalent magnetic current along the wire,
is the tangential electric vector potential, and is the scalar
magnetic potential. This integral equation can be numerically
solved by expanding in a basis set and testing as in (21).
Comparing (20) with (26), however, it is noted that the same
computer code can be used to solve the magnetic material
wire-shaped scattering problem (CTBC) as that used for di-
electric wire-shaped geometries (RTBC) provided
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Fig. 2. Bistatic RCS comparison in they = 0 plane of Fig. 1(b) for a
rod material wire scatterer of wire radius= a = 0:0075 m and length
= L = 0:75 m with "r = 15 and �r = 1 at f = 300 MHz. The
TMz polarized plane wave is normally incident to the rod at�inc = 90�,
�inc = 0�.

in the latter code. A mixture of dielectric and magnetic wire-
shaped scatterers would require additional code modifications.

IV. V ALIDATING RESULTS AND LIMITS OF APPLICABILITY

Two types of validating comparisons will be given. The
first type is a far-field comparison between the RTBC and
CTBC models and the scattering by 3-D volumetric shapes
as computed using a surface integral equation approach. The
material-wire scattering was computed using the integral equa-
tions (20) and (26) with a triangle basis function expansion
and pulse testing as developed in [18]. The natural boundary
condition of zero current at the ends of the material wires was
enforced, contrary to the development in [5]. The scattering by
the 3-D volumetric shapes was computed using the Poggioet
al.(PMCHW) integral equation formulation with flat triangular
vector basis functions [19], [20].

For these comparisons, two material wire-shaped bodies
were considered. Shown in Figs. 2 and 3 is the bistatic RCS
for a straight dielectric rod of radius 0.0075 m and

length 0.75 m, orientated as in Fig. 1(b), with
and at MHz. In Fig. 2 the TM polarized
plane wave is “normally” incident at ,
and the scattered field is observed atin the plane. In
Fig. 3, the TM polarized plane wave is “obliquely” incident
at , . The scattered fields in the
plane (not shown) were observed to have nearly the same
agreement for both of these examples.

Shown in Figs. 4 and 5 are the comparisons of the bistatic
RCS for a circular dielectric-wire loop of radius 0.12 m and

m, orientated as in Fig. 1(c), with and
at MHz. In Fig. 4, the TE plane wave is

incident at , while in Fig. 5, the plane wave
is incident at , . Shown in Fig. 6 is the
monostatic scattering by a TEplane wave in the plane
incident on the same loop.

Because of duality, the results from the comparison of the
CTBC model for magnetic material wire-shaped scatterers and
the surface patch results can be ascertained from Figs. 2–6. In

Fig. 3. Bistatic RCS comparison in they = 0 plane of Fig. 1(b) for the rod
material wire scatterer of Fig. 2. The TMz polarized plane wave is obliquely
incident to the rod at�inc = 60�, �inc = 0�.

(a)

(b)

Fig. 4. Bistatic RCS comparison in the (a)y = 0 and (b)x = 0 planes of
Fig. 1(c) for a circular thin-wire material loop scatterer of radius= b = 0:12

m anda = 0:0075 m with "r = 15 and�r = 1 at f = 300 MHz. The TEz

polarized plane wave is normally incident to the loop at�inc = �inc = 0�.

particular, Figs. 2 and 3 pertain to TEplane-wave scattering
by a material rod with constitutive parameters and

while Figs. 4–6 pertain to TEplane-wave scattering
by a magnetic material loop also with constitutive parameters
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(a)

(b)

Fig. 5. Bistatic RCS comparison in the (a)y = 0 and (b)x = 0 planes
of Fig. 1(c) for the circular thin-wire material loop scatterer of Fig. 4. The
TEz polarized plane wave is obliquely incident to the loop at�inc = 30

�

and �inc
= 0

�.

Fig. 6. Monostatic RCS comparison for the circular, thin-wire material loop
of Fig. 4. The TEz polarized plane wave is incident in they = 0 plane of
Fig. 1(c).

and . These results were confirmed using
the RTBC computer code (with as mentioned in
the previous section) and the surface patch code with TE
illumination and the magnetic material parameters.

Because of the high-aspect ratio, the number of unknowns
in the PMCHW MM surface-patch solution was quite large.
To keep the problem within a manageable size, the surface
patch model had a pentagon cross section with a total of
2256 unknowns (nonboundary edges with 378 nodes and
752 triangular elements) for the rod and 3180 unknowns
(530 nodes and 1060 triangular elements) for the loop. Some
error is expected in this surface-patch solution due to the
faceting approximation and the fact that the radar cross section
(RCS) is approaching the “noise floor” of this PMCHW
model using the same vector basis function expansions for
the equivalent surface electric and magnetic currents. Never-
theless, the agreement in the far-scattered fields of Figs. 2–6 is
close—within approximately 1 dB or less. This agreement in
the far-scattered fields is achieved at an enormous reduction
in the computational expense since only 49 triangular basis
functions were used in the RTBC rod solution in Figs. 2 and
3 while 100 triangular basis functions were used in the RTBC
loop solution in Figs. 4–6.

The second type of comparison is between the RTBC and
CTBC models and an infinite 2-D circular cylinder. Shown
in Fig. 7(a) is the backscattered RCS for TMplane-wave
illumination at “normal” incidence ( , ) for
a dielectric cylinder with m and m at
MHz using 99 triangular basis functions. The 2-D circular
cylinder results were obtained using (12) and (13) with the
appropriate far-field simplifications. The resulting echo width
was scaled by the factor [5]

RCS echo width (27)

This comparison illustrates the wide range of material param-
eters for which this RTBC model applies. The data shown in
Fig. 7(a) agrees nearly identically with that given in Fig. 5 of
[5]. Similar agreement was found when varying the conduction
loss of the cylinder as given in Fig. 4 of [5].

However, extending the range of the cylinder permittivity
yields the results shown in Fig. 7(b). While the relative
permittivity range in this figure is quite large, it is not
physically unrealistic. Barium strontium titanate helices in
[21], manufactured for chiral materials research, had a reported
dielectric constant of 1000–1500 at microwave frequencies.
From Fig. 7(b) it is quite obvious that the RTBC model fails
to accurately predict the scattering of the scaled eigenfunction
solution near a certain “resonance” occurring at

. It can be analytically shown from (12) using (13) that
near this permittivity value, the harmonic terms and

all contribute the same order of magnitude to the scattered
fields external to the cylinder. In fact, at the center resonance
value of where

(28)

then . Therefore, it is no surprise that
the RTBC model fails to predict the scattering near the
resonance since this thin-wire modeling assumes that the
longitudinally induced current is axially symmetric and that
only the harmonic contributes significantly to the
scattering. Since both the 1 harmonics contribute
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(a)

(b)

Fig. 7. Backscattered RCS comparison for a dielectric rod wire scatterer
with a = 0:01 m andL = 2 m for �r = 1 at f = 300 MHz (a) � = 0

and (b)� = 0, 3 S/m. The TMz polarized plane wave is normally incident
to the rod at�inc = 90

�, �inc
= 0

�.

significantly to the scattering, no thin-wire model based on
azimuthally symmetric current assumptions will yield correct
scattering predictions near this resonance. As the loss,, of
the cylinder is increased following , this
resonance is greatly dampened as attested by the results in
Fig. 7(b) with S/m.

Based on these findings, and other numerical experimen-
tation, the RTBC model has been determined to accurately
predict the scattering by wire-shaped dielectric objects pro-
vided

(29)

With and in Fig. 7(b), .
In the case of lossless material wires, further simplification of
(29) can be obtained using (28) and Fig. 7 to give the region
of validity of the RTBC model as

(30)

Since these wire-shaped scatterers will necessarily have small
radii, , the allowed values of the constitutive parameters can
be quite large as seen in the results of Fig. 7.

By duality, the data in Fig. 7 also pertain to a magnetic
material rod scatterer with TEplane-wave illumination and

. Hence, the limitations of the CTBC model for
magnetic wire-shaped scatterers are identical to those for the
RTBC model and dielectric wire-shaped scatterers given in
(29) and (30). This finding and the resonance behavior have
both been verified using the eigenfunction solution for TE
scattering by a round magnetic material cylinder and the CTBC
material wire scattering code.

V. DISCUSSION AND BEHAVIOR

The comparisons displayed in the last section present com-
pelling evidence for the accuracy of the RTBC and CTBC
models for material wire-shaped scatterers. In this section,
attention will be focused on the expression for in (17).
In particular, a few physically meaningful properties will be
examined and, where appropriate, compared to results obtained
by others.

The first property to be examined from (17) is when the
material is lossless. In such cases, is purely imaginary.
Applying Poynting’s theorem to a resistive sheet with surface
current density it can be easily shown that the time-
averaged power absorbed by the sheet is given by

(31)

Hence, if is purely imaginary, there will be no time-
averaged power absorbed in the RTBC model as required.
Conversely, from (31) time-averaged power absorption would
be expected when is complex which is precisely the
outcome when the scatterer becomes lossy as seen in (17).

The second property of the RTBC model to be examined
is the limit when the scatterer is a “good” conductor. One of
the earliest works pertaining to the numerical computation of
scattering by finite wires of finite conductivity was Cassedy
and Fainberg [10]. They employed a boundary condition for
the ratio of the total longitudinal electric field and current

(32)

derived from a two-dimensional round lossy cylinder provided
. While Cassedy and Fainberg reference this equation

from [9], King presented this same result four years earlier [8].
Sometime later, improvements to the computation of the

scattering by lossy wire structures was developed in [11]–[13].
However, these improvements involved only the numerical
solution methodology while the internal surface impedance ex-
pression used remained the same as (32). Under the condition
that

(33)

which is wholly satisfied if the scatterer is a good conductor,
then the internal impedance defined as

(34)
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using (17) becomes

(35)

which is identical to (32). Hence, the RTBC model reduces to
the accepted model for lossy wires provided the scatterer is a
“good” conductor. In the small argument limit ( ) when
the frequency or wire radius become very small, then from
(35) , which is the typical expression for the per
unit length dc resistance of a wire, as expected. Furthermore,
from (17) in the limit as becomes very large (regardless
of frequency), approaches zero as would be expected for
PEC scatterers.

VI. SUMMARY AND CONCLUSIONS

New boundary condition models have been developed in
this paper for wire-shaped scatterers that are composed of a
material which may or may not be lossy. These new models
provide the same level of accuracy and computational savings
as the widely used formulation for PEC thin-wire scatterers.
Furthermore, these RTBC and CTBC models can be added to
an existing PEC thin-wire code (within the moment method
matrix fill) with little effort while adding only a negligible
computational burden to the code.

These new models were subjected to a number of validating
tests. In Section IV, the scattering by straight rods and circular
loops were favorably compared to the full-wave surface-patch
moment-method solutions. Also, the scaled scattering by a
round 2-D cylinder was compared to the RTBC (CTBC) results
of a long straight rod as the relative permittivity (permeability)
of the lossless cylinder varied from nearly one to over 1000.
The results of this comparison demonstrate the extremely wide
range of material constants for which the scattering may be
accurately predicted using the two models. In particular, it was
shown in Section IV that the RTBC and CTBC models are
applicable to lossless material wire-shaped bodies satisfying
the constraint where is the wavenumber of
the material composing the wire and is the wire radius.
Since is necessarily small, then the material-wire constitutive
parameters can be very large. For lossy material wires, the
requirement (29) must be satisfied.

Finally, it was shown in Section V that in the limit as the
scatterer becomes a good conductor, the RTBC model reduces
to that used for more than five decades for lossy conduc-
tors. However, this RTBC model also pertains to dielectric
scatterers which are not conductors at all (that is, lossless)
as demonstrated in Section IV. Therefore, this RTBC model
(17), (19) can be viewed as essentially an extension of the
internal impedance expression (32)—given by King some 50
years ago—to wire-shaped dielectric scatterers composed of
simple media and possessing a very wide range of material
parameters.
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