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Plane Wave Scattering and Absorption by
Resistive-Strip and Dielectric-Strip Periodic Gratings

Tatiana L. Zinenko, Alexander |. NosicBgenior Member, IEEEand Yoichi Okuno Senior Member, IEEE

Abstract—The problems of plane wave scattering by resistive reveals that in théf-wave case, the results have been obtained
and dielectric strip gratings are considered. The formulation with no convergence; in thé-wave case, the previously
involves a set of resistive-type boundary conditions that charac- used algorithms have been less efficient for narrow-strip or

terizes nonzero jumps in tangential field components. The method ot fi | t thi b f th
of solution is based on analytical inversion of the static part of the narrow-siot gratings. In part this was because none of the

full-wave equations and results in a rapidly convergent numerical Published analyses was based on the regularization concept. In
algorithm. The dependences of the transmitted, reflected, and ab- [14], an analytical-regularization-based algorithm for studying

sorbed power fractions on the electrical and material parameters the problem of a circularly curved resistive strip has been

are presented. developed; in [15] it has been extended to a nonuniformly
Index Terms—Absorbing media, electromagnetic scattering, resistive reflector. The goal of the present paper is to apply
gratings, periodic structures, strip scatterers. this approach to the problems of the resistive and dielectric

strip gratings.
The paper is organized as follows. Section Il deals with

) . the scattering of/- and E-waves by a resistive strip grating.
I HERE has been continuous attention to the problem pfore  the boundary conditions involve an electrical resis-

~ wave scattering by a flat-strip grating with zero thicknesgiry that characterizes a nonzero jump of the tangential
This is because it is one of the canonical problems that attragis netic field. Two polarization cases are handled separately
theoreticians’ interest and has a wide range of applications ﬂf@‘tcope with the different features of the basic equations.
include microwave beam polarizers and diplexers. In additiogction 111 extends our approach to the problem of a thin
a solution to this problem can serve as a reference in validatifi@|ectric grating. Here, the introduction of magnetic resistivity
a numerical code for a more complicated problem. is required to characterize the jump in the tangential electric

In & great number of research work, the strip-grating proRg|q that eventually involves the solution of both types of
lem has been analyzed under the assumption that the stfiggations met in Section Il. In Section IV, we derive uniform
were made of a perfect electric conductor (PEC) [1]-{4]. IRy.-frequency asymptotics based on the analytical iterations.

this direction accurate results were obtained by the methogls tion v summarizes the conclusions. In the paper, the time
based on the analytical inversion of the static part (i.e., regél'épendence is assumed @=«t and omitted.
larization) [2], [4] of the full-wave integral equation (IE). This

procedure converts the original first-kind IE into a Fredholm

second-kind one with a smooth kernel and, thus, proves the ex-

istence of a solution and convergence of standard discretizat’i&)n

schemes. The difference between [2] and [4] may be found’in

the choice of the expansion functions employed: entire-periodLet us consider the scattering of an incident plane wave from

exponents and Chebyshev polynomials, respectively. a grating consisting of zero-thickness resistive strips. Fig. 1
The use of PEC boundary conditions, however, prevents $lows the geometry of the problem: the grating is periodic

from studying the absorption, which is of considerable intereiéx the y-direction with a period/ and is uniform in thex

for many practical applications. An important example is théirection. The strip width iss and, hence, the slot width is

case of a partially transparent thin-strip grating made of metal= { —w. In the E-wave case we assume thatepolarized

or dielectic. It is known that such a strip can be simulated Blane waveE™ (y, z) = iU (y, z) is incident; while in

a combination of resistive-type boundary conditions [5]-[8jhe H-wave case we takél""(y, z) = @, U™ (y, z) as the

Thus, the scattering of a plane wave from a resistive-stiipcident wave. Here,

grating is a key problem in this area as emphasized in several Un(y, 7) = ooz sin f—ikoy cos (1)

papers published previously [9]-[13]. A close view, however, U
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Fig. 1.

the strip and slot, respectively.

under

A B. Solution Methods

The total strip domainV/ is an infinite-periodic set of the
N zero-thickness strips along the axis and the incident field
o V Uin(y, z) is a pseudoperiodic function of as suggested by
(1). Hence, the scattered field“(y, =) is also a pseudoperi-
S odic function ofy and, thus, can be expanded in terms of a
Flogquet—Rayleigh series such as

sc S Un,y z>0
Y v = Y i 220}

% Cikggn|z|ei((27rn/l)—k0 cos By (8)

Here, a,, and b,, are the Floguet-mode amplitudes (complex
numbers) of the scattered field in the reflection and trans-
Geometry of the strip grating scattering problevi.and S denote  mission half-space, respectively. Besidgs,= [1 — (n/x —

cos 3)%]/2? and k = kol/27 = I/, A being the wavelength.
the conditions C1)-C3) given below, which guaranté¥ote that the radiation condition requires that for each mode,

the uniqueness of solution. either Reg,, > 0, or Im g, > 0. Expansions in (8) lead us to

C1)

C2

~

C3)

The set of resistive-surface boundary conditions [-yljle following expressions for the normalized power fractions
couples the tangential field components on the stripvolved in (7):
surfaceM: {# =0, |y — /2 — ml| < w/2, m = 0, Pt = 3" Z gnlanl?,

+1, } In—k cos Bl<k
L+~ (] — = 7+ (= (7= (7
2lB7 () + B ()] = ZoRit x [Hp(7) = Hp (M), Po=go' D gulba+éonl® ©)
(3) In—k cos Bl<k
E3(7) = Bz (). (4)

whereéy,, is the Kronecker delta, and summation is taken over
The plus (or minus) superscript means that the quantifye modes that carry power to infinity.

is the limiting value from the upper (lower) side of the Let us consider first thé/-wave case, Wheré?T = H,%o,
strip M. Here,ii = 7y, Z, is the free-space impedance £, — E,io, and E, = —(Zy/iko)OH.,,/dz. The amplitudes
and R is the normalized electric resistivity simulatingof the modes:,, andb,, are coupled by the boundary conditions
either a thin dielectric layer or a thinner-than-skin¢3) and (4) onM and the continuity conditions across the slot
depth layer of imperfect metal. Respective formulagomain S. Hence, the equatioﬁ,‘; = E, is valid for all y

for R are [5], [8] and z = 0. This yieldsb,, = —a,, SO one set of coefficients,
Ryier = i[koh(er — 1)] 7L, Ruet = (Zoho)™t (5) S&,b, can be excluded from further consideration.

. i . ) , To determine the coefficients,, let us use a dual set of
where 7 is the strip thicknesse,. is the relative g nqary conditions that hold on the complementary subinter-
permittivity, ands is the conductivity. vals M and S on they axis, namely
Strictly speaking, (3) and (4) do not hold at the strip

edges. There, the field should meet the condition of (E + E, ) =ZoR(H; — H;), (y, z) e M (10)
finite stored energy Hf =H, (y, %) € S. (11)

02 712
/D(€0|E| + polH|") dy dz < oo (6) By introducing the notationg = 27y/l, 6 = wd/l, and

where D is an arbitrary finite domain enclosing an . — |n| +i[x? — (n — & cos B)?]*2 = |n| +irgn (12)
edge point.

The radiation condition eliminates, in the scattereghd using the series expansion (8), we arrive at the dual series
field U*¢, any waves that do not comply with theequations (DSE)

principle “no sources at infinity i.e., in our case, at . oo

z — Zoo. Z ap|n|e™? = —ixk sin 3

Besides these conditions, the Poynting theorem results in | n=—o0

the power conservation law

+ Z an(rn +i26R)e™? < |p| <7 (13)

1= Pref + Ptr + Pabs (7) n=—oo
where P,.¢, P, and P,y,; are the power fractions reflected, i )
. . . E a4 e¢™? =0 |p| < 6.
transmitted, and absorbed by the grating, respectivély, (= n ’

0 in the lossless case of B&= 0). They relate to a single

\N=—0C

period of the grating and are normalized to the power carried,These DSE are of canonical form, whose left-hand side
at one period, by the incident wave. forms the Riemann-Hilbert problem (RHP) [2], [16], [17].
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B L of the exponents. This leads us to the following set of
Y ! equations:
0.001 f “N\ AN
é‘ v \'l - \‘ I:\‘ l:‘ " Ao oo
10° § TV A NN 1 1
1 VNSRS A AR A A A == 5 Z anSmn(0) — TR Smo(0)
w 107 ; R B A v 2 Im oo 2 Im
1S £
I~ 14
= o F m=0, +1, £2, --- 18
5 107 ¥ H-polarization 7 7 7 ( )
e Fol----- E-polarization ] ) ) )
5 where the functionsS,,,,,(#) are given in the Appendix. For
107 f ) any R # 0, this is a regularized infinite-matrix equation since
1o | /\ D o mm—oo AR P < 00, AL, being the matrix elements.
N S — ) = Further, note that the rate of decay of the matrix elements of
107 C s« 11 T SR OSSN S L MU St . . .
0 10 50 30 40 s (18) with respect to the largen| and largejn| is different. To

symmetrize it, we introduce new variables = a,,w, with

the weightw, = (|n| + 1)%/2 and we arrive at
Fig. 2. (a) Normalized computation errors and (b) power conservation
balance as a function of the matrix truncation number forihevave (solid oo 1
curves) andE-wave (dashed curvesy. = 1.5, 3 = 90°, R = i. _ Wm Wm
Ty = — E Ty — Spn(0)— =—=— Spo(8). (19
m 2Rgm a n w, rnn( ) 2Rgm rnO( ) ( )

n=—

truncation number

Exact analytical solution to the RHP, as given in [17], yieldSolving this matrix equation has a preference over (18), for the

an infinite-matrix equation equivalent to (13) same accuracy, due to a more rapid decrement of the elements.
oo Note also that ifx = 0, matrix elements of both (18) and
P Z n (7 4 126R) Ty (6) — irs sin BT 0(6), (19) vanish identically; this means that the static problem is
oo solved analytically.

m=0, 1, £2, ... (14)

where the functiong’,,,(#) are given in the Appendix. BasedC. Numerical Results
on the large-index asymptotics of the Legendre polynomials,tha matrix equations (14) and (19) can be used to com-

H _ —-1/2 —1
one can verify thatl;,, = O([|mn| Zlm —n + 1|7 pute the coefficientss,, and b, whatever the parameters
uniformly for all 8. This is enough to prove that the operatok’ 3, and d/l are. The regularized nature of these equations

2 _ o0 H |2 H
norm [|A[] = >0 o [Amal” < oo [here A, denotes %ljjearantees that the greater the number of equati¥ps

the matrix elements of (14)] and, hence, (14) is a regularizgfly, smajler the error in the approximate numerical solution.

matrix equation, i.e., of the Fredholm second kind. It can a'%‘hus, the accuracy is limited only by the digital precision

be shown (see [17]) that the solution based on (14) salisfigSine computer used. In fact, the truncation number needed

the condition (6). This is due to the fact that the edge behavifarr, say, a uniform three-digit accuracy, does not depend

is taken into account when inverting the RHP [2], [16], [17]on d/l and g; it is found empirically that in theH-wave
Note that if = 0 all the matrix elements are identically zero .. N, = w(1 + |R[“?) + 10. Our computations have

This shows that (14) delivers an exact analytical solution Lrhown an agreement within one to three digits with the

this limit. . . previously published data [9]-[13]. However, here a correct
_Consider now thet-wave case. Therby = E,zo and oq0),gjon should be done. Comparing the matrix equation
Hy = Hyyo, with H, = (1/ikoZo)0E, /0. Instead of (10) (14) with its H-wave counterparts in [9], [11], and [12], one
and (11), we have now the dual conditions may easily see that the latter have the elements that do not
%(E;L YE )= — ZOR(HJ —H,), (y, ) € M (15) decrgase with large: an_d, hence, unable to yiel(_j a convergent
I solution for a progressively largé€¥;,. Our algorithm, on the
Hy=H, (y, 2) € 5. (16) contrary, shows a rapid decrement of the relative truncation
error as demonstrated in Fig. 2 (see [14] for the definition
8§ the relative truncation error). The matrix equation (19)
iIs somewhat similar to it#-wave counterparts in [9], [10],
and [12] due to the fact that the resistive boundary condition
i .G ¢ leads us immediately to a Fredholm second-kind IE for the
I current; hence, no analytical regularization is needed. The
- unknown current density function here has no singularity at
L <1 + Z ancinqb)’ o <|p|<m the edges_of a resistive_ strip. Comput_ationally,_any rea_sonable
= 2R (17) discretization scheme yields a regularized matrix equation. Our
0 16 < 6. choice of entire-period exponents as expansion functions has a
’ merit that the algorithm efficiency does not depend ondhe
The left-hand side of (17) can be inverted analytically byalue. A uniform three-digit accuracy in thB-wave case is
using the inverse Fourier transformation and the orthogonalighieved withV,, = x(14|R|~'/2)+10. The truncation error

By using these boundary conditions and the fact that
b, holds in this polarization, we obtain a series equation
follows:

n=—0o0

n=—o&
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Fig. 4. Power fractions for the scattering by a resistive-strip grating versus
i9 g by pg 9

Fig. 3. Transmitted, reflected, and absorbed power fractions for the SCRE elative slot width3 = 30°. k = 1.5, R = 1

tering by a resistive-strip grating versus the electrical perigd= 30°,
d/l = 05, R = 1.

T

here decays with oscillations (Fig. 2). Note that the power [ __oe-e-omtttTTTTOT

conservation law is always satisfied to the machine precision,’® & e

even if the number of equations is small. Hence, an agreement [\ — ecion 1 e

with [9]-[13] should be interpreted as a partial validation of 06 -\ |----- transmission PPEL

the latter results if obtained by nonconvergent techniques. Lo\ Ebeereen
In Fig. 3, we present the values of the transmitted, reflectedg.s |

and absorbed power fractions as a function of the electrical | T T T L .

period of the grating (i.e., the period normalized by the ,, [ /--""__ _

wavelength). They show that for realistic values of electric  (~ @ o= -—____ H — wave

resistivity, the power absorbed is quite comparable with the // , ‘ L —wave”]
scattered power. The Wood anomalies are observed when a° ;.. | ' s ,

harmonic is “passing over horizon,” in the form of abrupt R
extrema (the curve derivative has singularities of the square-
root-type at these points). However, they are less strong trfﬁm 5. Pﬁwedf fftf{CtionS fti?f,tthe SlczjtfiggObyﬁa_fﬁsirsti(\ilel-Sfig grating versus
in the PEC case. The analysis of the power dependences on' {R&0™maized strip resistivity valugi. = 30%, » = 1.5, /I = 0.5.
relative width of the slot (Fig. 4) shows the decrement of thel - L 1 . At L
scattered and absorbed power fractions with the strip widthg [H7(P) + Hp(M)] = — Zo Qi x [E7.(7) — Bz (7] (21)
we erT_lphasize_ here tha_t our algorith_m is equall_y eﬁiCieWhereR and @ are the normalized electric and magnetic
for arblFrary strip/slot ratio qf the grating. Intgrestmgly, th‘?esistivities simulating a thin material layer. Following [7],
absorption power as a function of the normalized real-valug\gE set

a

electric resistivity (Fig. 5) demonstrates existence of a bro

maximum of which amplitude and position depend on the RziZcotF (Crur)l/?/foh}

relative width of the strip and the angle of incidence. This 2 2

is because the initial growth of absorption, with increasitig 0= 2 eot [} (G’N’)1/2k011:|

is further cancelled by an increased transmission. The reflected 27 2

power undergoes a larger degradation than the transmitted one; e 1/2

this fact has been reported previously for a different resistive Z = <F—’> (22)

periodic surface [18].
The edge condition and the radiation condition are the same
as in the previous section. Here, of course, (6) leads to a
[ll. DIELECTRIC STRIP GRATING different edge behavior from the resistive-strip problem. For
a detailed discussion on this question see [19]. Note also
A. Formulation that the formulas (22) permit a transition to the PEC case
Consider now a plane wave incident on a thin dieIectrl(éhat 'S‘.R = i0 and @ = o) by f|X|r_1g thg prOdUCté”’iL”
) ) . and letting|e,.| — oo. Generally, (22) is valid for the high-
strip grating. We assume that the geometry is the same as . S ..
. ; . . ontrast case, i.e., the case where the following inequalities
before (Fig. 1) and the strips have zero thickness; however, ﬁ“ﬁ ;
. - o old simultaneously [7]ko <« 1 and e,z | > 1.
following modified set of boundary conditions at the surface S
of the stripsM is introduced [7] In the case of low contrast, i.e., if the second of the above
is not true, one should use, instead of (22), the first option

LER(®) + Ep] = ZoRi x [H}(7) — Hy(7)] (20) of (5) and a similar formula for the magnetic resistivity [7],
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[8]: @ = i[koh(ss, — 1)]7*. Nevertheless, conditions (20) and Similarly in the E-wave case, we use the sets of dual
(21) with the resistivities (22) have an important feature: thdyoundary conditions as
describe the case of the full transparendy £ @ = i0)

provided that(e, i, )/2koh = (2n + Dm, n = 0,1,2, ... 2 (B +E7) =~ ZOR(H+ H), (v 2) e M;

Of course, an accurate evaluation of the range of parameter HJr =H;, (y,2)€S (30)
variation ensuring a good accuracy of approximate conditions 1 _ +

(20)—(22) needs a comparison with a solution of the original Q(Hy +H )= - — Q(E ED), (y, 2) € M;
problem formulated without any approximation. Ej —E-, (y,2) € (31)

B. Solution Method Then we obtain a pair of DSE’s similar to (25) and (26).

In the H-wave case we expand the scattered field géjrther we regularize them retracing all the steps in the
in (8). To determine the coefficients, and b,, we use H-wave case and come to the following pair of decoupled

two scalar sets of dual conditions that come from (20) arﬁguatlons.
(21); and we request that the total field is continuous across 0
the slot: drn = Z dn(7n + L2’“"Q) rnn( ) 125K sin ﬁTrnO(e)v
3 (BEf +E)) = ZoR(HS - HT),  (y,2) € M; =0, £1, +2, (32)
Ha—cl— = Hac_v (y7 Z) € Sv (23) Wm
1 B 1 B Cm = 2R Z Cp — rnn ) - R— SrnO(e)a
SHI+H) = —QEf-E)), (4,2 €M gm L om
0
=0,+1, +£2, --- 33
El=E,, (y, z) € S. (24) me= L =S (33)

By introducing the same notations as before we arrive apere the definitions of, andd,, are the same as in (29).

the two sets of the DSE as .
C. Numerical Results

Z (an — by)|n|e™® = —i2k sin B Figs. 6 and 7 demonstrate the values of the transmitted,
n=—oo reflected, and absorbed power fractions as a function of the
electrical period of the grating with. = 10 + ¢ that roughly
ing
+ Z )+ 2ikR)e™?, 6 <[4] <7 (25) corresponds to wood permittivity. These values are given by

n=—oo

- (9) and coupled by the same power conservation law (7)
Z (an — by )ei™® =0, 6| < 6 as in th_e case qf a resistive gra.tin'g'..Note that unlike in

the previous section, here the resistivitiBsand ¢ are the
functions of the frequency, thickness, and material parameters,
Z (ap + b)) gnein® = —= and the sol\_/eq matrix size must be .ada.pted to their _values.
£ nonnsam Q A characteristic feature of the plots in Figs. 6 and 7 is that
0o they have a generally similar character for both polarizations
- Z (an +bp)e™®, < |p|<m (26) that is different from the PEC or constant-resistivity case.
n=—oo Note that in the low-frequency limit, the strip grating is well
o ‘ transparent for an arbitrarily polarized plane wave and more
Z (an + bp)gne™® =0, o] < 6. power is absorbed than reflected. For a comparison, in the
\ n=—oo same figures the powers computed by usiig Ry Of (5)

These DSE are of the form studied in the previous sectigifld @ = oo are presented by the dotted curves. One may see
The left-hand side of each can be inverted analytically thitat the low-contrast and high-contrast models agree well only

yields equivalent decoupled infinite-matrix equations as  in the low-frequency range. In thé-wave case the curves are
monotonic, except for the small ripples in the Wood anomalies,

\N=—0

_ . . . . but in the F-wave case a number of stronger resonances are

o = n:z_:ood o+ 25 R) L (8) — 826 sin STmo(0) observed. They belong to several different types according to
—0 +1. 49, ... (27) the nature of a resonance. The most remarkable one is the

00 narrow and deep drop of transmission near-thérst Wood's
= — —2m Z cn igmn(g) — ﬂgmo(@ anomaly & = 1, for the normal incidence). Zooming this

209m = wn Qgm area shows that here both reflection and absorption have sharp
m=0,+1,2 --- (28) maxima, the latter exceeding the former (see Fig. 8). So, a

thin “wooden” grating of flat strips can serve as a narrow-

where band isolating screen. Comparison of these results with the

dy = an — ba,  cn = (an + bn) (29) similar ones (marked with triangles) computed by the volume

integral equation (VIE) method of [20] shows a remarkably
and (28) has been symmetrized in the same way as it wgmd agreement. This is due to the fact that in our approach,
done for (18). the approximation comes only in the model via introducing the
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Fig. 6. Transmitted, reflected, and absorbed power fractions fai theave 1/ A

scattering by a dielectric strip grating versus the electrical periog: 90°,
d/l = 0.5, R/l = 0.01, &, = 10 + i. Two models are compared: (a) Fig. 8. The same as the high-contrast data in Fig. 7 but in the vicinity of
high-contrast, i.e.R andQ based on (22) witht,, = 1 and (b) low-contrast, the first Wood's anomaly. For comparison, similar data computed with the

i.e., R based on the first of (5) an@ = oc. volume |E technique of [20] are presented by the marked curves.
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Fig. 7. The same as in Fig. 6 but for the-wave. Fig. 9. Power fractions for th&-wave scattering by a dielectric strip grating
versus the angle of incidence:= 1.05,d/l = 0.5, h/1 = 0.01, ¢, = 10+,
and py,r = 1.

resistivities R and @, but not from the algorithm itself. This
model is known as very accurate in ti&polarization case o . .
due to the absence of nontangential electric field. The resj?&lanzat'on caslA|| < con_st. This means that in the IOV\."
of VIE method can be considered as exact ones becaus rﬁguency range the approximate formulas can be obta|r_1ed
the case off’-polarization the VIE is of the Fredholm second" €' expand_mg all the quantities in termg of the POWEr Series
kind, so the convergence of numerical solution is guaranteé’(ﬁ.”' Resulting low-frequency asymptot_lcs will be_uniform
Central processing unit (CPU) expenditures of VIE method aY‘ﬂth respect to/? gr)d d/L. In domg.thls, we start from
naturally greater than in our treatment. In Fig. 9, we show tlﬁge cc_)nstant-re5|st|V|ty case of Section Il and come to the
power fractions at: = 1.05 versus the angle of incidengefor Ollowing formulas for theH- and E-cases, respectively:
a dielectric-strip grating of the relative thicknekgl = 0.01 o )
ande, = 10+i. One may see that the effect of screeninghe G — i _ —2us sin fToo(0) + O(r7)
polarized plane wave is observed in a narrow sector of angles. O 7 1—ir(sin B+ 2R)Tpo(6)
E _LE _ ~_ Soo(#) + ir(2m2R)"ta(8) + O(K?) (34)
V. MODIFIED LAMB'S FORMULAS o= = 2R sin 3+ Soo(6)
Besides the guaranteed accuracy of numerical solution, the
regularized matrix equations offer a way to derive analyticathere a(f) = >°°7 | sin?(n6)n~3. These formulas serve as
solutions by iterations. This important property is characteristicodifications of the Lamb formulas [1], but unlike the latter
only to the Fredholm second-kind equations and is justifiedey are obtained in a mathematically rigorous manner.
provided that the norm of the corresponding matrix operatorin the same way the matrix equations (27) and (28) and
|A]] < 1. As we have inverted the static parts of the full{32) and (33) yield the Lamb-type formulas for a dielectric
wave equations, it is not surprising to see that in the eastrip due to a high contrast. Then, with the same accuracy as
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in the previous case the results presented here coincide within a desired number
H . of digits with similar data obtained by another regularization-
ag ik sin 3Too(6) - : : o
o= " type analysis: the singular-equation method of [4] modified
b 1 —ir(sin § + 2R)Too(6) for resistive strips in [21].
~ Soo(6) +ir(272Q) "t a(h) (35)
2Q sin f + Soo(6) APPENDIX
E - .
<Z%) =Fr— L? 'Sm/J[iT;OC(;)T @ 1) Consider a DSE of the following form:
0 — tR{S1n 00
Soo(6) +ir(272R)"La(f — i — i
S = o 3 anlnlet = 3 fuet, 0 <ol <7
n:ogoo n=—oo (39)
If the frequency is even lower so thdtkh(c,p,)/? = Z I 6| < 6

ar(h/D)(erp)t? < 1 as well, a further simplification brings
us to the following result:

n=—o0

where the expansion coefficienfs, of the right-hand

<a5{> _ { £ sin BTo0(f) side are supposed to be known and are decreasing as
bl 14 2(eph/1)~1T00(0) O(|n|71*®), @ > 0 for great |n|. Following [16],
pir (R /1) S00(0) } (37) an exact analytical solution to this equation can be
2 sin B+ ikpr (1 /1)S00(6) conveniently written as
aéﬂ - p +sin [3T00(9) oo
<bg> - |:1 + 2(u7h/l)_1T00(9) Tm = Z fnTnln(9)7 m= 07 ilv i27 T
e-(h/1)Soo(8) nETee
2 sin [3 + LHF,(h/l)Soo(e):| ) (38) ( 1)m+n (40)
It is seen from (37) and (38) that a small-period dielectric Lon(9) = 2(m — n) [Pr(=w)Por(-w)
strip grating is equally well transparent for an arbitrarily — P i (—w) Po(—)]
polarized plane wave, except for the case of grazing incidence
(1 = 0) that causes total reflection. The sector of near-grazing m #n, u = cos 0 (41)
angles of good reflection is narrower for a smaller period of the Too(8) = —In 1—cosé

grating. These considerations appear to be in agreement with 2

the numerical results presented in Figs. 6, 7, and 9. The Lamb- 1 |

type formulas can further be used for deriving the equivalent  7,,,,,.(8) = —< 1+ Zts(—u)Ps_l(—u)

boundary conditions for a strip grating as uniform interface 2|m| { s=1 }

(so-called homogenization analysis) provided that the period m # 0. (42)
is considerably smaller than the free-space wavelength.

Hereto(—u) =1, tl(—u) = Uu, tszg(—u) = PS(—U,) +
2uP;_1(—u) + Ps_o(—u), and P, are the Legendre

) ) ) polynomials.
We have presented a simple but numerically exact algorlthmz) For a series equation given as

for computing the transmission, reflection, and absorption

V. CONCLUSIONS

characteristics of ark- or H-polarized plane wave incident oo > iné g <
on a resistive or dielectric flat-strip periodic grating. Unlike Z L. Z fae™?, O <|p| <
the previously published solutions to these problems, here the o e

accuracy is limited not by the method, but only by the digital 0, (2R

precision of the computer used. Practically importantis the fact e apply the inverse Fourier transformation; that is,
that for a fairly good relative accuracy of 2-3 decimal places,  muyltiply both sides bye—i"¢ and integrate fron® to

one should take a rather small number of equations determined 9, The result is
only by the relative period and resistivities but independent

of the strip width and the angle of incidence. Besides, uni- Gy = i FaSmn(6),

form low-frequency asymptotics have been derived for the il

scattering amplitudes in a mathematically rigorous manner. m=0,+1, +2, --- (44)
Among the new features revealed by this accurate analysis sin (m — n)

is the existence of an optimum real-valued electric resistivity Smn(0) = — W

delivering a maximum absorption by a constant-resistivity strip P

grating, a similarity of low-frequency behavior of the and m#n, Spm(@)=1——. (45)

H-wave curves for a dielectric strip grating, and a quasi-total d

screening of theé-wave by a thin dielectric-strip grating near Note that both (40) and (44) are the number sequences

the first Wood's anomaly. In the case of a resistive grating,  of the clasds, i.e., > - |zn]? < 00.

n=—0o0
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