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Plane Wave Scattering and Absorption by
Resistive-Strip and Dielectric-Strip Periodic Gratings

Tatiana L. Zinenko, Alexander I. Nosich,Senior Member, IEEE,and Yoichi Okuno,Senior Member, IEEE

Abstract—The problems of plane wave scattering by resistive
and dielectric strip gratings are considered. The formulation
involves a set of resistive-type boundary conditions that charac-
terizes nonzero jumps in tangential field components. The method
of solution is based on analytical inversion of the static part of the
full-wave equations and results in a rapidly convergent numerical
algorithm. The dependences of the transmitted, reflected, and ab-
sorbed power fractions on the electrical and material parameters
are presented.

Index Terms—Absorbing media, electromagnetic scattering,
gratings, periodic structures, strip scatterers.

I. INTRODUCTION

T HERE has been continuous attention to the problem of
wave scattering by a flat-strip grating with zero thickness.

This is because it is one of the canonical problems that attracts
theoreticians’ interest and has a wide range of applications that
include microwave beam polarizers and diplexers. In addition,
a solution to this problem can serve as a reference in validating
a numerical code for a more complicated problem.

In a great number of research work, the strip-grating prob-
lem has been analyzed under the assumption that the strips
were made of a perfect electric conductor (PEC) [1]–[4]. In
this direction accurate results were obtained by the methods
based on the analytical inversion of the static part (i.e., regu-
larization) [2], [4] of the full-wave integral equation (IE). This
procedure converts the original first-kind IE into a Fredholm
second-kind one with a smooth kernel and, thus, proves the ex-
istence of a solution and convergence of standard discretization
schemes. The difference between [2] and [4] may be found in
the choice of the expansion functions employed: entire-period
exponents and Chebyshev polynomials, respectively.

The use of PEC boundary conditions, however, prevents us
from studying the absorption, which is of considerable interest
for many practical applications. An important example is the
case of a partially transparent thin-strip grating made of metal
or dielectic. It is known that such a strip can be simulated by
a combination of resistive-type boundary conditions [5]–[8].
Thus, the scattering of a plane wave from a resistive-strip
grating is a key problem in this area as emphasized in several
papers published previously [9]–[13]. A close view, however,
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reveals that in the -wave case, the results have been obtained
with no convergence; in the -wave case, the previously
used algorithms have been less efficient for narrow-strip or
narrow-slot gratings. In part this was because none of the
published analyses was based on the regularization concept. In
[14], an analytical-regularization-based algorithm for studying
the problem of a circularly curved resistive strip has been
developed; in [15] it has been extended to a nonuniformly
resistive reflector. The goal of the present paper is to apply
this approach to the problems of the resistive and dielectric
strip gratings.

The paper is organized as follows. Section II deals with
the scattering of - and -waves by a resistive strip grating.
Here, the boundary conditions involve an electrical resis-
tivity that characterizes a nonzero jump of the tangential
magnetic field. Two polarization cases are handled separately
to cope with the different features of the basic equations.
Section III extends our approach to the problem of a thin
dielectric grating. Here, the introduction of magnetic resistivity
is required to characterize the jump in the tangential electric
field that eventually involves the solution of both types of
equations met in Section II. In Section IV, we derive uniform
low-frequency asymptotics based on the analytical iterations.
Section V summarizes the conclusions. In the paper, the time
dependence is assumed as and omitted.

II. RESISTIVE STRIP GRATING

A. Formulation

Let us consider the scattering of an incident plane wave from
a grating consisting of zero-thickness resistive strips. Fig. 1
shows the geometry of the problem: the grating is periodic
in the -direction with a period and is uniform in the
direction. The strip width is and, hence, the slot width is

. In the -wave case we assume that an-polarized
plane wave is incident; while in
the -wave case we take as the
incident wave. Here,

(1)

is a scalar plane wave illuminating the grating at an angle of
incidence . The function , which denotes the

component of the total magnetic or electric field depending
on the polarization, must satisfy the two-dimensional (2-D)
Helmholtz equation

(2)
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Fig. 1. Geometry of the strip grating scattering problem.M andS denote
the strip and slot, respectively.

under the conditions C1)–C3) given below, which guarantee
the uniqueness of solution.

C1) The set of resistive-surface boundary conditions [7]
couples the tangential field components on the strip
surface : , , ,

,

(3)

(4)

The plus (or minus) superscript means that the quantity
is the limiting value from the upper (lower) side of the
strip . Here, , is the free-space impedance,
and is the normalized electric resistivity simulating
either a thin dielectric layer or a thinner-than-skin-
depth layer of imperfect metal. Respective formulas
for are [5], [8]

(5)

where is the strip thickness, is the relative
permittivity, and is the conductivity.

C2) Strictly speaking, (3) and (4) do not hold at the strip
edges. There, the field should meet the condition of
finite stored energy

(6)

where is an arbitrary finite domain enclosing an
edge point.

C3) The radiation condition eliminates, in the scattered
field , any waves that do not comply with the
principle “no sources at infinity,” i.e., in our case, at

.

Besides these conditions, the Poynting theorem results in
the power conservation law

(7)

where , , and are the power fractions reflected,
transmitted, and absorbed by the grating, respectively (

in the lossless case of Re ). They relate to a single
period of the grating and are normalized to the power carried,
at one period, by the incident wave.

B. Solution Methods

The total strip domain is an infinite-periodic set of the
zero-thickness strips along theaxis and the incident field

is a pseudoperiodic function of as suggested by
(1). Hence, the scattered field is also a pseudoperi-
odic function of and, thus, can be expanded in terms of a
Floquet–Rayleigh series such as

(8)

Here, and are the Floquet-mode amplitudes (complex
numbers) of the scattered field in the reflection and trans-
mission half-space, respectively. Besides,

and , being the wavelength.
Note that the radiation condition requires that for each mode,
either Re , or Im . Expansions in (8) lead us to
the following expressions for the normalized power fractions
involved in (7):

(9)

where is the Kronecker delta, and summation is taken over
the modes that carry power to infinity.

Let us consider first the -wave case, where ,
, and . The amplitudes

of the modes and are coupled by the boundary conditions
(3) and (4) on and the continuity conditions across the slot
domain . Hence, the equation is valid for all
and . This yields , so one set of coefficients,
say, can be excluded from further consideration.

To determine the coefficients , let us use a dual set of
boundary conditions that hold on the complementary subinter-
vals and on the axis, namely

(10)

(11)

By introducing the notations , , and

(12)

and using the series expansion (8), we arrive at the dual series
equations (DSE)

(13)

These DSE are of canonical form, whose left-hand side
forms the Riemann–Hilbert problem (RHP) [2], [16], [17].
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Fig. 2. (a) Normalized computation errors and (b) power conservation
balance as a function of the matrix truncation number for theH-wave (solid
curves) andE-wave (dashed curves).� = 1:5, � = 90

�, R = i.

Exact analytical solution to the RHP, as given in [17], yields
an infinite-matrix equation equivalent to (13)

(14)

where the functions are given in the Appendix. Based
on the large-index asymptotics of the Legendre polynomials,
one can verify that
uniformly for all . This is enough to prove that the operator
norm [here denotes
the matrix elements of (14)] and, hence, (14) is a regularized
matrix equation, i.e., of the Fredholm second kind. It can also
be shown (see [17]) that the solution based on (14) satisfies
the condition (6). This is due to the fact that the edge behavior
is taken into account when inverting the RHP [2], [16], [17].
Note that if all the matrix elements are identically zero.
This shows that (14) delivers an exact analytical solution in
this limit.

Consider now the -wave case. Then and
, with . Instead of (10)

and (11), we have now the dual conditions

(15)

(16)

By using these boundary conditions and the fact that
holds in this polarization, we obtain a series equation as

follows:

.

(17)

The left-hand side of (17) can be inverted analytically by
using the inverse Fourier transformation and the orthogonality

of the exponents. This leads us to the following set of
equations:

(18)

where the functions are given in the Appendix. For
any , this is a regularized infinite-matrix equation since

, being the matrix elements.
Further, note that the rate of decay of the matrix elements of
(18) with respect to the large and large is different. To
symmetrize it, we introduce new variables with
the weight and we arrive at

(19)

Solving this matrix equation has a preference over (18), for the
same accuracy, due to a more rapid decrement of the elements.
Note also that if , matrix elements of both (18) and
(19) vanish identically; this means that the static problem is
solved analytically.

C. Numerical Results

The matrix equations (14) and (19) can be used to com-
pute the coefficients and whatever the parameters

and are. The regularized nature of these equations
guarantees that the greater the number of equations,
the smaller the error in the approximate numerical solution.
Thus, the accuracy is limited only by the digital precision
of the computer used. In fact, the truncation number needed
for, say, a uniform three-digit accuracy, does not depend
on and ; it is found empirically that in the -wave
case . Our computations have
shown an agreement within one to three digits with the
previously published data [9]–[13]. However, here a correct
conclusion should be done. Comparing the matrix equation
(14) with its -wave counterparts in [9], [11], and [12], one
may easily see that the latter have the elements that do not
decrease with large and, hence, unable to yield a convergent
solution for a progressively larger . Our algorithm, on the
contrary, shows a rapid decrement of the relative truncation
error as demonstrated in Fig. 2 (see [14] for the definition
of the relative truncation error). The matrix equation (19)
is somewhat similar to its -wave counterparts in [9], [10],
and [12] due to the fact that the resistive boundary condition
leads us immediately to a Fredholm second-kind IE for the
current; hence, no analytical regularization is needed. The
unknown current density function here has no singularity at
the edges of a resistive strip. Computationally, any reasonable
discretization scheme yields a regularized matrix equation. Our
choice of entire-period exponents as expansion functions has a
merit that the algorithm efficiency does not depend on the
value. A uniform three-digit accuracy in the-wave case is
achieved with . The truncation error
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Fig. 3. Transmitted, reflected, and absorbed power fractions for the scat-
tering by a resistive-strip grating versus the electrical period.� = 30

�,
d=l = 0:5, R = 1.

here decays with oscillations (Fig. 2). Note that the power
conservation law is always satisfied to the machine precision,
even if the number of equations is small. Hence, an agreement
with [9]–[13] should be interpreted as a partial validation of
the latter results if obtained by nonconvergent techniques.

In Fig. 3, we present the values of the transmitted, reflected
and absorbed power fractions as a function of the electrical
period of the grating (i.e., the period normalized by the
wavelength). They show that for realistic values of electric
resistivity, the power absorbed is quite comparable with the
scattered power. The Wood anomalies are observed when a
harmonic is “passing over horizon,” in the form of abrupt
extrema (the curve derivative has singularities of the square-
root-type at these points). However, they are less strong than
in the PEC case. The analysis of the power dependences on the
relative width of the slot (Fig. 4) shows the decrement of the
scattered and absorbed power fractions with the strip width.
We emphasize here that our algorithm is equally efficient
for arbitrary strip/slot ratio of the grating. Interestingly, the
absorption power as a function of the normalized real-valued
electric resistivity (Fig. 5) demonstrates existence of a broad
maximum of which amplitude and position depend on the
relative width of the strip and the angle of incidence. This
is because the initial growth of absorption, with increasing,
is further cancelled by an increased transmission. The reflected
power undergoes a larger degradation than the transmitted one;
this fact has been reported previously for a different resistive
periodic surface [18].

III. D IELECTRIC STRIP GRATING

A. Formulation

Consider now a plane wave incident on a thin dielectric
strip grating. We assume that the geometry is the same as
before (Fig. 1) and the strips have zero thickness; however, the
following modified set of boundary conditions at the surface
of the strips is introduced [7]

(20)

Fig. 4. Power fractions for the scattering by a resistive-strip grating versus
the relative slot width.� = 30

�, � = 1:5, R = 1.

Fig. 5. Power fractions for the scattering by a resistive-strip grating versus
the normalized strip resistivity value.� = 30

�, � = 1:5, d=l = 0:5.

(21)

where and are the normalized electric and magnetic
resistivities simulating a thin material layer. Following [7],
we set

(22)

The edge condition and the radiation condition are the same
as in the previous section. Here, of course, (6) leads to a
different edge behavior from the resistive-strip problem. For
a detailed discussion on this question see [19]. Note also
that the formulas (22) permit a transition to the PEC case
(that is, and ) by fixing the product
and letting . Generally, (22) is valid for the high-
contrast case, i.e., the case where the following inequalities
hold simultaneously [7]: and .

In the case of low contrast, i.e., if the second of the above
is not true, one should use, instead of (22), the first option
of (5) and a similar formula for the magnetic resistivity [7],
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[8]: . Nevertheless, conditions (20) and
(21) with the resistivities (22) have an important feature: they
describe the case of the full transparency ( )
provided that ,
Of course, an accurate evaluation of the range of parameter
variation ensuring a good accuracy of approximate conditions
(20)–(22) needs a comparison with a solution of the original
problem formulated without any approximation.

B. Solution Method

In the -wave case we expand the scattered field as
in (8). To determine the coefficients and , we use
two scalar sets of dual conditions that come from (20) and
(21); and we request that the total field is continuous across
the slot:

(23)

(24)

By introducing the same notations as before we arrive at
the two sets of the DSE as

(25)

.

(26)

These DSE are of the form studied in the previous section.
The left-hand side of each can be inverted analytically that
yields equivalent decoupled infinite-matrix equations as

(27)

(28)

where

(29)

and (28) has been symmetrized in the same way as it was
done for (18).

Similarly in the -wave case, we use the sets of dual
boundary conditions as

(30)

(31)

Then we obtain a pair of DSE’s similar to (25) and (26).
Further, we regularize them retracing all the steps in the

-wave case and come to the following pair of decoupled
equations:

(32)

(33)

where the definitions of and are the same as in (29).

C. Numerical Results

Figs. 6 and 7 demonstrate the values of the transmitted,
reflected, and absorbed power fractions as a function of the
electrical period of the grating with that roughly
corresponds to wood permittivity. These values are given by
(9) and coupled by the same power conservation law (7)
as in the case of a resistive grating. Note that unlike in
the previous section, here the resistivitiesand are the
functions of the frequency, thickness, and material parameters,
and the solved matrix size must be adapted to their values.
A characteristic feature of the plots in Figs. 6 and 7 is that
they have a generally similar character for both polarizations
that is different from the PEC or constant-resistivity case.
Note that in the low-frequency limit, the strip grating is well
transparent for an arbitrarily polarized plane wave and more
power is absorbed than reflected. For a comparison, in the
same figures the powers computed by using of (5)
and are presented by the dotted curves. One may see
that the low-contrast and high-contrast models agree well only
in the low-frequency range. In the-wave case the curves are
monotonic, except for the small ripples in the Wood anomalies,
but in the -wave case a number of stronger resonances are
observed. They belong to several different types according to
the nature of a resonance. The most remarkable one is the
narrow and deep drop of transmission near thefirst Wood’s
anomaly ( , for the normal incidence). Zooming this
area shows that here both reflection and absorption have sharp
maxima, the latter exceeding the former (see Fig. 8). So, a
thin “wooden” grating of flat strips can serve as a narrow-
band isolating screen. Comparison of these results with the
similar ones (marked with triangles) computed by the volume
integral equation (VIE) method of [20] shows a remarkably
good agreement. This is due to the fact that in our approach,
the approximation comes only in the model via introducing the
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Fig. 6. Transmitted, reflected, and absorbed power fractions for theH-wave
scattering by a dielectric strip grating versus the electrical period.� = 90�,
d=l = 0:5, h=l = 0:01, �r = 10 + i. Two models are compared: (a)
high-contrast, i.e.,R andQ based on (22) with�r = 1 and (b) low-contrast,
i.e., R based on the first of (5) andQ = 1.

Fig. 7. The same as in Fig. 6 but for theE-wave.

resistivities and , but not from the algorithm itself. This
model is known as very accurate in the-polarization case
due to the absence of nontangential electric field. The results
of VIE method can be considered as exact ones because in
the case of -polarization the VIE is of the Fredholm second
kind, so the convergence of numerical solution is guaranteed.
Central processing unit (CPU) expenditures of VIE method are
naturally greater than in our treatment. In Fig. 9, we show the
power fractions at versus the angle of incidencefor
a dielectric-strip grating of the relative thickness
and . One may see that the effect of screening the-
polarized plane wave is observed in a narrow sector of angles.

IV. M ODIFIED LAMB’S FORMULAS

Besides the guaranteed accuracy of numerical solution, the
regularized matrix equations offer a way to derive analytical
solutions by iterations. This important property is characteristic
only to the Fredholm second-kind equations and is justified
provided that the norm of the corresponding matrix operator

. As we have inverted the static parts of the full-
wave equations, it is not surprising to see that in the each

Fig. 8. The same as the high-contrast data in Fig. 7 but in the vicinity of
the first Wood’s anomaly. For comparison, similar data computed with the
volume IE technique of [20] are presented by the marked curves.

Fig. 9. Power fractions for theE-wave scattering by a dielectric strip grating
versus the angle of incidence:� = 1:05, d=l = 0:5, h=l = 0:01, �r = 10+i,
and �r = 1.

polarization case const. This means that in the low-
frequency range the approximate formulas can be obtained
after expanding all the quantities in terms of the power series
of . Resulting low-frequency asymptotics will be uniform
with respect to and . In doing this, we start from
the constant-resistivity case of Section II and come to the
following formulas for the - and -cases, respectively:

(34)

where . These formulas serve as
modifications of the Lamb formulas [1], but unlike the latter
they are obtained in a mathematically rigorous manner.

In the same way the matrix equations (27) and (28) and
(32) and (33) yield the Lamb-type formulas for a dielectric
strip due to a high contrast. Then, with the same accuracy as
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in the previous case

(35)

(36)

If the frequency is even lower so that
as well, a further simplification brings

us to the following result:

(37)

(38)

It is seen from (37) and (38) that a small-period dielectric
strip grating is equally well transparent for an arbitrarily
polarized plane wave, except for the case of grazing incidence

that causes total reflection. The sector of near-grazing
angles of good reflection is narrower for a smaller period of the
grating. These considerations appear to be in agreement with
the numerical results presented in Figs. 6, 7, and 9. The Lamb-
type formulas can further be used for deriving the equivalent
boundary conditions for a strip grating as uniform interface
(so-called homogenization analysis) provided that the period
is considerably smaller than the free-space wavelength.

V. CONCLUSIONS

We have presented a simple but numerically exact algorithm
for computing the transmission, reflection, and absorption
characteristics of an - or -polarized plane wave incident
on a resistive or dielectric flat-strip periodic grating. Unlike
the previously published solutions to these problems, here the
accuracy is limited not by the method, but only by the digital
precision of the computer used. Practically important is the fact
that for a fairly good relative accuracy of 2–3 decimal places,
one should take a rather small number of equations determined
only by the relative period and resistivities but independent
of the strip width and the angle of incidence. Besides, uni-
form low-frequency asymptotics have been derived for the
scattering amplitudes in a mathematically rigorous manner.

Among the new features revealed by this accurate analysis
is the existence of an optimum real-valued electric resistivity
delivering a maximum absorption by a constant-resistivity strip
grating, a similarity of low-frequency behavior of the- and

-wave curves for a dielectric strip grating, and a quasi-total
screening of the -wave by a thin dielectric-strip grating near
the first Wood’s anomaly. In the case of a resistive grating,

the results presented here coincide within a desired number
of digits with similar data obtained by another regularization-
type analysis: the singular-equation method of [4] modified
for resistive strips in [21].

APPENDIX

1) Consider a DSE of the following form:

(39)

where the expansion coefficients of the right-hand
side are supposed to be known and are decreasing as

, for great . Following [16],
an exact analytical solution to this equation can be
conveniently written as

(40)

(41)

(42)

Here , ,
, and are the Legendre

polynomials.
2) For a series equation given as

we apply the inverse Fourier transformation; that is,
multiply both sides by and integrate from to

. The result is

(44)

(45)

Note that both (40) and (44) are the number sequences
of the class , i.e., .
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