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Plane Wave Diffraction by a Thick-Walled
Parallel-Plate Impedance Waveguide

Alinur Bluyukaksoy and Burak Polat

Abstract—The diffraction of FE-polarized plane waves by a
thick-walled parallel-plate impedance waveguide is investigated
rigorously by using the Fourier transform technique in conjunc-
tion with the mode-matching method. This mixed method of
formulation gives rise to a scalar Wiener-Hopf equation of the
second kind, the solution of which contains infinitely many con-
stants satisfying an infinite system of linear algebraic equations. A
numerical solution of this system is obtained for various values of
the plate impedances, plate thickness, and the distance between
the plates through which the effect of these parameters on the
diffraction phenomenon are studied.

Index Terms— Electromagnetic diffraction, parallel-plate
waveguides.

Fig. 1. Parallel-plate waveguide with thick impedance.
region and using the Fourier transform technique elsewhere,
gives rise to ascalar modified Wiener—Hopf equation. Note
HE diffraction and radiation by open-ended parallel-platéat a variant of this method was used by Matsiu [4] and then
waveguides is a classical problem, which, up until nowsy Ando [5] for the problem of diffraction of sound waves by
has been subjected to numerious investigations. Exact closgdgemi-infinite cylindrical rigid tube of certain wall thickness,
form solutions are available only in few cases and have begid by Yoshidomi and Aoki [6] in treating the scattering of an
obtained through the Wiener—-Hopf technique (see, for exam-polarized plane wave by two parallel rectangular impedance
ple, [1] and [2]). All these considerations were based up@ylinders. The solution contains infinitely many constants
the basic assumptions of infinitely thin waveguide walls arghtisfying an infinite system of linear algebraic equations.
of perfect conductivity. In practice, walls of a waveguide ara numerical solution of this system is obtained for various
neither infinitely thin nor perfectly conducting. It is, thereforevalues of the plate impedances, plate thicknesses, and the
desirable to discuss the diffraction characteristics of a parallgistance between the plates, through which the effect of these
plate waveguide with certain wall thickness and satisfyingarameters on the diffraction phenomenon are studied.
impedance boundary conditions. Note that the diffraction by A time factore=%** with w being the angular frequency is
an open-ended waveguide with infinitely thin impedance wallgsumed and suppressed throughout the paper.
were treated in [3] by formulating the problem in terms of four
coupled Wiener—Hopf equations.

In the present work, the diffraction dof.-polarized plane
waves by a parallel plate waveguide with thick impedance We consider the diffraction of a&’.-polarized plane wave
walls will be analyzed rigorously by using the Wiener—Hopby a waveguide formed by two thick semi-infinite impedance
technique in conjunction with the mode-matching method. Bylates defined bys; = {(x,y,2); = € (—0,0), v € (a,b),
using the classical Fourier transform technique, the relatede (—oco,o0)}, and Sy = {(z,9,2); * € (—x,0), y €
boundary value problem can generally be reduced into(ab,—a), » € (—oo, 00)}, respectively, as depicted in Fig. 1.
modified matrix Wiener—Hopf equation. Except for a veryThe surface impedances of the horizontal walls +b, z < 0
restricted class of matrices, no general method exists dady = +a, z < 0 are denoted by, =1, Zp andZ; = 1
accomplish the Wiener—Hopf factorization of an arbitrary,, respectively, while the impedance of the vertical walls
matrix including the one related to the present problem. This= 0, y € (a,b) andz = 0, y € (=b,—a) is Z3 = 13 Zo,
mixed method of formulation, which is based on expanding thvéith Z, being the characteristic impedance of the free-space.
diffracted field into a series of normal modes in the waveguide In order to determine the scattered field, one can proceed by

M _ _ o _ d(Ecomposing the incident wave into even and odd excitations
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Fig. 2. Equivalent problems. (a) Symmetric (even) excitation. (b) Asymmetric (odd) excitation. (c) Equivalence to (a). (d) Equivalence to (b).

A. Even Excitation ) (z,b) —u$ (x,b)
Let us consider first the configuration depicted in Fig. 2(c), __ 2771 sin ¢g emikbsingo p—ikzcosgn .5 (2e)
which is equivalent to the even excitation case. Since in this 1+ sin ¢ ’
case the field is symmetrical about the plane 0, the normal
derivative of the total electric field must vanish fgr= 0, 3 (e) _ 3 (e)
. up’ (,0) ug ' (x,0)
x € (—o0,00) (magnetic wall). g Ay
For analysis purposes, it is convenient to express the total _ 2iksin¢g p—ikbsingn —ikwcosdn S0 (2f)
field as follows: ~ 14msingo ’
wl i,y > (0 0
(e)(aj y) uée), O<y<a z<0 (1a) ( U)—u3 ( 7/) O<y<a (20)
ul), 0<y<b, z>0. 83 (0, 9) = 83 W0,y), O<y<a (2h)
X X
Here, v’ is the incident field given b
S g Y < ”3‘9><F>(ou)_o a<y<b. (2i)
E! = u'(z,y) = exp{—ik[zcosdo + ysingo]}  (Lb) ik 0
while «" denotes the field reflected from the plape= b, Sinceuge)(a:,y)_ satisfies the Helmholtz equation in the range
namely z € (—o0, 00), its Fourier transform with respect togives
2
u”(z,y) [% + (k* — a?)} F(a,y) =0 (3a)
nLsingg — 1 . . v
= —1 - -2 1 H
e ik eosgo — (y — 2)singol} (19)
with & being the free-space wave numbef, j = 1,2,3, F)a,y) = F{7(a,y) + FY () (3b)
which satisfy the Helmholtz equation, are to be determingghqre
with the aid of the following boundary and continuity relations: too
L0 (e) (e)( JY) = :I:/ uge)(x,y)cmw dzx. (3¢c)
+_ka_ (x,0)=0, x<0 (2a) 0
9 By taking into account the following asymptotic behaviors of
<1 - @a—)u§€>(gg,a) —0, 2<0 (2b) wui” for & — £oo
ik Jy 4
) O(e™k), & — —00
guge)(w,’o) =0, <0 (20) (.’L’ y) {O(e—ikxcosqbg)’ T — 00 (4)
dy
Eu:(;f)(x’()) -0, >0 (2d) one can show thatFJ(f)(a,y) and Ffe)(oc,y) are regular

dy functions ofa in the half-planeym(a) > Sm(k cos ¢o) and
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Sm(a) < Sm(k), respectively. The general solution of (3a)and B()(«) can be solved uniquely to give

satisfying the radiation condition foy — o, reads

F(a,9) + F(a,y) = A(@) 10 (5a)

with

K(a) k2 — a2, (5b)

The square-root function is defined in the compleglane cut
alonga =k tox = k +ioo anda = —k to o = —k — ¢o0,
such thatk(0) = k.

In the Fourier transform domain (2a) takes the form

(6)

where the dot specifies the derivative with respect tBy
using (5a) (its derivative with respect 19 and (6), we get

K(o)

Fa,b) + %F@(a, b) =0
1

(e) _ (e)
B (@) = 205 A @ (7)
where
R (@) = B () + T (o) (75)
and
E —1
x(@) = [m + m} : (7c)

In the region0 < y < &, u:(;')(x y) satisfies the Helmholtz
equation

o2 0?

<@ Tap T ’“2>U§:’><x,y> =0 ®)

in the ranger > 0. The half-range Fourier transform of (8)

yields

2
@] 6 = 10w i) 03
with

) = 2uf(0,0), ¢ 9w) = il (0.9). (@b, 0)

G (a,y), which is defined by

) = [ e do
0

(10)

is a function regular in the half-plan@m(a) > Sm(—k).

M@ (as,) =0,

MO ()BO(0) = BO(a) - / ) + ag )
y {w + 7—;: cos[K (b —t)]| dt
(13a)

with
M©)(a) = cos[Kb] — %Ksin[Kb]. (13b)
1

Replacing (13a) into (11) we get

G (o) = Mffiﬁj]) {Rif)(oo - [ 10w +ag )
y {%}?—0] + T cos[K (b - t)]} dt}

+ /Oy [F9(t) + ag ) ()] sin[ K (y — )] dt.
(14)

Although the left-hand side of (14) is regular in the upper
half-planeSm(a) > Sm(—k), the regularity of the right-hand

side is violated by the presence of simple poles occurring at
the zeros ofd/(®)(«), namely at = «f, satisfying

Sm(afn) >

Sm(k), m=1,2,---. (15)
These poles can be eliminated by imposing that their residues

are zero. This gives

€ [ Sin K:;lb 772 e \2 € [ e e
RE{—) (arn) = 2|:T;;l:| |:1 - If—]é (Krn) :| Vm [fnl + arngrn]
(16a)
where K¢, v¢,, f5,, and gt specify
K, = K (af,) (16b)
Ve = b4 7—; sin® [K¢, 0] (16¢)
w2 [0 .
|:g:;l:| = E/O |:g(€)(t):| COSs [Knlt] dt (16d)

The general solution of (9a) satisfying the Neumann boundary

condition aty = 0 reads

G (a,y) = BO(a) cos[Ky] +

[ o

K(a)
+ ag'(t)] sin[K (y — t)] dt. (11)
Combining (2e) and (2f), we get
R(a) = 6 (@, b) + 260 (a0) (12)

Consider now the waveguide regidh< y < a, z < 0
where the total field can be expressed in terms of Fourier
Cosine series as

us Mz, y) = > ¢ cos[€hy] e (17a)
n=1
with
cos[¢5.a) + ?—Zgg sin[¢ta] =0, n=1,2,--- (17b)
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and with »; being defined by

[32 — k2 — (5;)2 (17C) ]/[ =b+ kK[ sin [Kg b] (25b)

From the continuity relations (2g), (2h), and (9b), (9c), we get ] o ) . )
Consider the continuity relation (2f) which reads, in the

. 0 (e . : .
ulf )(0 v) =99 ), 7 ( 0,9) = f9%), 0<y<a. Fourier transform domain

(18a, b) 2ksingy e thbsindo

(e) _ “(e) = —
F+ (a, b) G+ (v, ) 141 singg a — k cos ¢

. (26)
Using (29g), (2h), and (2i) we may write
2\ (o Taking into account (5a), (7a), and (14) one obtains
(*‘w‘) ) Koo
e p L ©(a) - £©
0,

a<y<b - Usingy ¢ ikbsindo
Hence, we get © 14msingo a — kcos ¢g
5 () 1 b
() 1 i@y = J (L Fa)u”(0y), 0<y<a + 7/ FOW) + ag @) cos[Kt] dt.  (27)
210w +ig ) = {§ Dcu<a s [ OO + s @leosfi
(20)

Substituting (21) in (27) and evaluating the resultant integral,
Owing to (16d), /)(y) and ¢‘*)(y) can be expanded into One obtains the following modified Wiener—Hopf equation of

Fourier Cosine series as follows: the second kind valid in the St”%m(k COos (/)0) < Qm(a) <
BN Im(k)
[g(e)gz” = Z |:gzl:| cos [K:;ly] (21) x(@) ‘
m=1 L7m =22 ROq) — B, b)

NE(a)

Substituting (17a) and (21) into (18) and (20), we obtain Sksingy e~ sino

Z Je cos[Koy] = —i Z & Brcos[éy], 0<y<a 10;1— m Sem _d)o a - k cos ¢
m=1 n=1 —+ Z I(mSIH—Im( € =+ Oége ) (28a)
(22) — [a2 _ (afn)Q] m m
and with

[ m 7. '1, Cos K:;r, o

g_:l (9 k ) K] N©(a) = E@ A (q). (28b)
(1= Eps) cos[Ely], O<y<a (23)
10, a<y<b.

The formal solution of (28a) can easily be obtained through
Let us multiply both sides of (22) byos[¢fy] and integrate the classical Wiener—Hopf procedure. The result is

from y = 0 to ¥ = a to get

k X-l—(a) R(e)(a)

g€ e c +
CE = —;:52 sin [géea] Z Qenl m? L= 17 27 T (24&) N'(F)(a)
et m=1 "mt B 2k sin ¢ Nie)(k Cos ¢pg) e IRbsindo
with p¢, Qf,, andv¢ , being defined by ~ 1+msingg x_(kcospo) a— kcos o
e 2 . e KSLSI Krc;zb N(e) :h m ~ YmIm
i = a— 2 sin®[¢7a] (24b) _ Z 2116 ] VY (O: ) (£ +a i) ) (20a)
e ZT 2 e et
Q¢ = cos[Kpa] + %K:ﬁ sin[K;,al (24c)
1
(e) (o) -
€ 6 2 € 2 IN 1 1 N7 1 —
o= (K57 — (&)™ (24d) Here, N’ («), x+(«), and (o), x_(a) are the split

functions, regular and free of zeros in the half-planes
Similarly, the multiplication of both sides of (23) bys[Kgy] Sm() > Sm(—k) and Sm(a) < Im(k), respectively,
and its integration fromy = 0 to y = b yields resulting from the Wiener—Hopf factorization of the kernel
function x(a)/N(9(a) as

w200 S gsinfga](1- ) |
oi = li= o x(@) _ xala) x-(@) 29)
¢=1,2,---. (25a) NE() N (a) N(a)
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The explicit expression oﬂ\fj(E
ing the procedure outlined in [2]:
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“)(a) can be obtained by follow- follows:

thvg
2

m .

k“)[ /@(KG)}

(1+

r

|

1/2
Nf)(a) = |:COS[/€()] - ﬂ sin[kb]} _
Kb ¢ K % Slll[Kﬁb] X+(Oé:) + Ce fe + Z
X exp{—1n<a+L )} Kf N-(:)(Ohe) m=1
mzEr
X exp{ tab <1 —-C+ 1n<kb> + L—)} _ 2k sin ¢g Nf')(k cos ¢g) e~ ikbsingn (342)
T 1+msingo x_(kcospo) ot — kcos ¢g
tab with
A (r)e() e o
m=1 C’e( e) :( 3 @oﬁ) K, sm[Kf;lb] Ny (afn)
Nie)(oc) = Nf)(—a). (30b) m\%r kT 2afn(af; + afn) X+ (afn)
In (30a)C is the Euler’s constant given = 0.57721 - - -. As > (&5,)7 sin? [56 ] ( — B5e)

to the split functionsy+(«), they can be expressed explicitly

in terms of the Maluizhinets function [7] as follows:

x+(kcos ¢)
:23/2\/>sm?
X{ M(37/2 — ¢ — )M ﬂ(w/2—¢+9)}2
M2 (7/2)

e
3r/2—¢—0
2

{[14-\/5(:05(

X [1—1—\/5(:05(

I

with
. 1
sinf = — (31b)
m
and
M (2)
_ exp{—i / msinw — 2v/27 sin(u/2) + 2u du}.
81 Jo Cos U
(31c)

Substitutingee = af, a5, - - - in (29a) and using (16a), yields
the following equations forfs and g;:

ik1/7[ k2( )2} sin[Kgb] x4 ()

2 Ki N9 ()
2k sin d)O Nie)(k'COS ¢0) o—tkbsin g
L+ msingo x—(kcosgg) af —kcos o
B Z K¢, sin[KE,b] Nf)(afn) (frn = Xn85n)
m=1 20é€ X+(a$h) Oéi + Oéin
r=1,2-. (32

Replacing (24a) in (25ay: can be expressed in terms £ff as

K

[fS + argy]

?

e

)

[56 q (1 -

V5,

n

(33)

' M

B

,I’Ln rnn

Substituting (33) in (32) we get infinitely many equations in

infinite number of unknowns that yield the constarffs as

+Q >

n=1 /

y {Lk[ n ! (k) }

acQe sin[Keb] x4 (
5, KR

€
o)

N (o)

~ i 20¢ K¢ sin[Keb] NI (ag) (34b)
< veds, (ot ag)  xelag) [

B. Odd Excitation

The solution for odd excitation is similar to that of even
excitation. Indeed, by assuming a representation similar to
(1a) with the superscripfe) being replaced byo); it can be
seen that all the boundary and continuity relations in (2a)—(2i)
remain valid for the odd excitation case also, except (2c) and
(2d), which are to be changed as

wW$(2,00=0, z<0 (35a)
w(2,00=0, x>0, (35h)
In this case, the Wiener—Hopf equation reads
p-X) O 0y 4 ) (a,p)
N@ (o)™t -
_ 2ksin ¢ e~ tkbsindo
14 sin¢gg o — kcos ¢
> K2 cos[K%b
+> #( T agn,) (36a)
m=1 I:CM - (arn) ]
with
N©@(q) = ¢k [sm[Kb] n chos[Kb]} (36b)
Kf, = \[k2 = (ag,)” (36¢)
al_2 [ f<°>(t)} .
m| = sin | K t| dt,
] = [ [t | s
Vo = b+ % cos? [K,0] (36d)
(3
where «, are the roots of
sin[ Kb + LK cos[Kb 0, a=ay,
[K8]+ K cosl K] = D e
Sm(ag,) > Sm(k).
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The application of the Wiener—Hopf procedure to (36a) yields

_ 2ksingg Nio)(k cos ¢p) e ikbsingo
1+ msingo x_(kcospg) a— kcosepg

i i Kr(;l Cos [KZLb] N-(I—O) (Oé;)n) ( - anzgnl) (37)
m=1 206;7” X+ (Oé%l) a+ Oé?n
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N{?(a) and N («) are the split functions resulting from thed;. can be expressed in terms ff as

Wiener—Hopf factorization of (36b) as

N©(a) = N ()N (). (38a)

The explicit expressions CYW(O)( ) are [2]
1/2
N_E_O)(oc) — VaTTE k[sm]Ekb] [kb]}
{Kb <a + 'LK) }
X exp< — In
T k

X tad 1-C+In tin
P\ kb "2

X nnl < ) exp<£‘7lr’> (38b)
Na) = NS (—a). (38c)

By using the continuity relations at the aperture< y < b,

x = 0 we get infinitely many equations in infinite number of

unknowns which yield the constanfs§ as follows:

kl/ﬁ m o o
{_ 2 (H k< )[l_k_‘z(K) }
cos[K 28] x+(a?)
K N (o)

+C7(a

)+ > e
m=1
m#Er

2k sin ¢ NEO) (kcos ¢g) e~ikbsindo

T T+ msingo x_(kcosdo) af — kcosdo

(39a)

with
Cr(ap) = (1- 2a
nd " COS [5" ](
. 3 et
=1

—Q°
x{kl

. ) K¢, cos[KSb] N\ (a2,)
" 2a° Aag+ag) x+(ag,)
— )

rnn

} a2g cos [K2b] x4 (a?)

e K2 N(a)
+i ZQ: K¢ cos[K2b] Nio)(a;’) '
s=1 l/sﬁsn (Oé;) + a(s)) X+ (Oég)
(39b)
Here, 52, 12, Q2., v¢, andv?,,, stand for
B =k - (&) (39¢)
1o = a— 2 cos? [¢2a] (39d)

Q, = sin[K?,a] — ?—;Kgl cos[K?,a] (39)
v = b+ 2 cos® (K1) (39f)
P = (K5)" = (&) (399)
with &2 being the roots of
sin[¢2a] — ?—zgg cos[¢3] =0, n=1,2,---  (3%h)
fo + e Z fr(:z fn
m=1
o 0 13 o
XZ 5 COS [5 ](O k[n) (40)

rnn ’ITL

I1l. ANALYSIS OF THE DIFFRACTED FIELD

The scattered field in the regian > & for even and odd
excitations can be obtained by taking the inverse Fourier
transform of 7(*)(«, y) and F*)(«, ), respectively

e 1 e
) = 5 [ FO)

i

eiK(a)(y—b) e—iaac do (41a)

1 i K ‘
/ FO(a,b) KO0 ¢mi0% goy. - (41b)

z,y) = o

Here £ is a straight line parallel to the real axis lying in

the stripSm(kcos ¢o) < Sm(a) < Im(k). The asymptotic
evaluation of the integrals in (41a) and (41b) through the
saddle-point technique enables us to write for the diffracted
field

ui”(p, ¢) +ui”(p, 9)

5 (42a)

U/l(pv d)) =

with
u$(p, ¢)
~ {uoD@w,%) +

&/t sing N (k cos @)

V2r 1+ msing x_(kcos$)

ikp
m arngrn } €

K¢ sm Ke b] N_(:')(ocfn)

P

m=1 Ay X+ (Oéf'n) af, —kcoso | Vkp
(42Db)
u” (p, 9)
B /4 sing N (K cos ¢)

~ (o)
{UOD (¢a¢0)+ \/% 1+ msing x—(kcoso)

% Z KO COS KO b] N(O)( m) rn _ anlgnl Czkp
m=1 2060 X+( rn) rn - I{JCOSd) \/ﬁ
(42c)
up = e—ikb sin ¢g (42d)
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where(p, ¢) are the cylindrical polar coordinates defined by
T =pcos¢p, y—b=psing
anduq is the expression of the incident fieldat= b, x = 0.
For the special cas&; + Z» = 0 (Z; = iX,X € IR),
a = b, we get

o = I,

e _ e _
m> Krn_ m m_1727""

Therefore, after puttingg; = 0 anda = b at every step, (22)
and (23) are identically satisfied for

=i, B, and gl =

m m*
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This gives

e _ e _e
m T arngrn
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values of the interior surface impedange The diffracted field
decreases with the increasing values|gf|. No noticeable

variation of the diffracted field withys could be observed,

implying the series contribution to the total diffracted fiel
given in (42b) be zero. Similar considerations are also valid for
the odd excitation case. Hend®{®)-(*)(¢, ¢y) given in (42e)
and (42f) correspond to the “diffraction coefficients” related
to the edgey = b, = 0 for even and odd excitation cases, [1]
respectively. 2]
For the perfectly conducting cas€ = 0, (42e) and (42f)
reduces to

) 2 2cos 22 cos £
(e) _ —idw/4 [ 2 2 2 prle)
DO ) = oo/ [L 20 B 000 o N (keos o)

% Nk cos ¢)

(3]
[4]
(43a)
D (g, o) = i57/4 \ﬁ 2c0s 5 cos § N (ks cos o)

7 Cos ¢pg + cosp
X NEO)(k cos )

(5]
(6]

(43b) 7]

which are nothing but the well-known results related to a
perfectly conducting parallel-plate waveguide [1], [2]. Further-
more, in the case whem = b = 0, we get

NO@)=1, N9a)=0

andw; given in (42a) coincides with the perfectly conducting
half-plane solution [2].

In order to show the influence of the values of the wa
thickness and the surface impedances on the diffraction p
nomenon, some numerical results showing the variation of

ven for very small values of the incidence angle
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