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Plane Wave Diffraction by a Thick-Walled
Parallel-Plate Impedance Waveguide

Alinur Büyükaksoy and Burak Polat

Abstract—The diffraction of E-polarized plane waves by a
thick-walled parallel-plate impedance waveguide is investigated
rigorously by using the Fourier transform technique in conjunc-
tion with the mode-matching method. This mixed method of
formulation gives rise to a scalar Wiener-Hopf equation of the
second kind, the solution of which contains infinitely many con-
stants satisfying an infinite system of linear algebraic equations. A
numerical solution of this system is obtained for various values of
the plate impedances, plate thickness, and the distance between
the plates through which the effect of these parameters on the
diffraction phenomenon are studied.

Index Terms— Electromagnetic diffraction, parallel-plate
waveguides.

I. INTRODUCTION

T HE diffraction and radiation by open-ended parallel-plate
waveguides is a classical problem, which, up until now,

has been subjected to numerious investigations. Exact closed-
form solutions are available only in few cases and have been
obtained through the Wiener–Hopf technique (see, for exam-
ple, [1] and [2]). All these considerations were based upon
the basic assumptions of infinitely thin waveguide walls and
of perfect conductivity. In practice, walls of a waveguide are
neither infinitely thin nor perfectly conducting. It is, therefore,
desirable to discuss the diffraction characteristics of a parallel-
plate waveguide with certain wall thickness and satisfying
impedance boundary conditions. Note that the diffraction by
an open-ended waveguide with infinitely thin impedance walls
were treated in [3] by formulating the problem in terms of four
coupled Wiener–Hopf equations.

In the present work, the diffraction of -polarized plane
waves by a parallel plate waveguide with thick impedance
walls will be analyzed rigorously by using the Wiener–Hopf
technique in conjunction with the mode-matching method. By
using the classical Fourier transform technique, the related
boundary value problem can generally be reduced into a
modified matrix Wiener–Hopf equation. Except for a very
restricted class of matrices, no general method exists to
accomplish the Wiener–Hopf factorization of an arbitrary
matrix including the one related to the present problem. This
mixed method of formulation, which is based on expanding the
diffracted field into a series of normal modes in the waveguide
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Fig. 1. Parallel-plate waveguide with thick impedance.

region and using the Fourier transform technique elsewhere,
gives rise to ascalar modified Wiener–Hopf equation. Note
that a variant of this method was used by Matsiu [4] and then
by Ando [5] for the problem of diffraction of sound waves by
a semi-infinite cylindrical rigid tube of certain wall thickness,
and by Yoshidomi and Aoki [6] in treating the scattering of an

-polarized plane wave by two parallel rectangular impedance
cylinders. The solution contains infinitely many constants
satisfying an infinite system of linear algebraic equations.
A numerical solution of this system is obtained for various
values of the plate impedances, plate thicknesses, and the
distance between the plates, through which the effect of these
parameters on the diffraction phenomenon are studied.

A time factor with being the angular frequency is
assumed and suppressed throughout the paper.

II. A NALYSIS

We consider the diffraction of an -polarized plane wave
by a waveguide formed by two thick semi-infinite impedance
plates defined by ; ,

, and ;
, , respectively, as depicted in Fig. 1.

The surface impedances of the horizontal walls ,
and , are denoted by and

, respectively, while the impedance of the vertical walls
, and , is ,

with being the characteristic impedance of the free-space.
In order to determine the scattered field, one can proceed by

decomposing the incident wave into even and odd excitations
as indicated in Fig. 2(a) and (b). Relying upon the image
bisection principle, it can be shown that the configurations
shown in Fig. 2(a) and (b) are equivalent to those depicted in
Fig. 2(c) and (d), respectively. In what follows, the even and
odd excitations will be treated separately.
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(a) (b)

(c) (d)

Fig. 2. Equivalent problems. (a) Symmetric (even) excitation. (b) Asymmetric (odd) excitation. (c) Equivalence to (a). (d) Equivalence to (b).

A. Even Excitation

Let us consider first the configuration depicted in Fig. 2(c),
which is equivalent to the even excitation case. Since in this
case the field is symmetrical about the plane , the normal
derivative of the total electric field must vanish for ,

(magnetic wall).
For analysis purposes, it is convenient to express the total

field as follows:

(1a)

Here, is the incident field given by

(1b)

while denotes the field reflected from the plane ,
namely

(1c)

with being the free-space wave number. , ,
which satisfy the Helmholtz equation, are to be determined
with the aid of the following boundary and continuity relations:

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

(2h)

(2i)

Since satisfies the Helmholtz equation in the range
, its Fourier transform with respect togives

(3a)

with

(3b)

where

(3c)

By taking into account the following asymptotic behaviors of
for

(4)

one can show that and are regular
functions of in the half-planes and
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, respectively. The general solution of (3a),
satisfying the radiation condition for , reads

(5a)

with

(5b)

The square-root function is defined in the complexplane cut
along to and to ,
such that .

In the Fourier transform domain (2a) takes the form

(6)

where the dot specifies the derivative with respect to. By
using (5a) (its derivative with respect to) and (6), we get

(7a)

where

(7b)

and

(7c)

In the region , satisfies the Helmholtz
equation

(8)

in the range . The half-range Fourier transform of (8)
yields

(9a)

with

(9b, c)

, which is defined by

(10)

is a function regular in the half-plane .
The general solution of (9a) satisfying the Neumann boundary
condition at reads

(11)

Combining (2e) and (2f), we get

(12)

and can be solved uniquely to give

(13a)

with

(13b)

Replacing (13a) into (11) we get

(14)

Although the left-hand side of (14) is regular in the upper
half-plane , the regularity of the right-hand
side is violated by the presence of simple poles occurring at
the zeros of , namely at satisfying

(15)

These poles can be eliminated by imposing that their residues
are zero. This gives

(16a)

where , , and specify

(16b)

(16c)

(16d)

Consider now the waveguide region
where the total field can be expressed in terms of Fourier
Cosine series as

(17a)

with

(17b)
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and

(17c)

From the continuity relations (2g), (2h), and (9b), (9c), we get

(18a, b)

Using (2g), (2h), and (2i) we may write

(19)

Hence, we get

(20)

Owing to (16d), and can be expanded into
Fourier Cosine series as follows:

(21)

Substituting (17a) and (21) into (18) and (20), we obtain

(22)

and

(23)

Let us multiply both sides of (22) by and integrate
from to to get

(24a)

with , , and being defined by

(24b)

(24c)

(24d)

Similarly, the multiplication of both sides of (23) by
and its integration from to yields

(25a)

with being defined by

(25b)

Consider the continuity relation (2f) which reads, in the
Fourier transform domain

(26)

Taking into account (5a), (7a), and (14) one obtains

(27)

Substituting (21) in (27) and evaluating the resultant integral,
one obtains the following modified Wiener–Hopf equation of
the second kind valid in the strip

(28a)

with

(28b)

The formal solution of (28a) can easily be obtained through
the classical Wiener–Hopf procedure. The result is

(29a)

Here, , , and , are the split
functions, regular and free of zeros in the half-planes

and , respectively,
resulting from the Wiener–Hopf factorization of the kernel
function as

(29b)



1696 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 11, NOVEMBER 1998

The explicit expression of can be obtained by follow-
ing the procedure outlined in [2]:

(30a)

(30b)

In (30a) is the Euler’s constant given by . As
to the split functions , they can be expressed explicitly
in terms of the Maluizhinets function [7] as follows:

(31a)

with

(31b)

and

(31c)

Substituting in (29a) and using (16a), yields
the following equations for and :

(32)

Replacing (24a) in (25a), can be expressed in terms of as

(33)

Substituting (33) in (32) we get infinitely many equations in
infinite number of unknowns that yield the constants as

follows:

(34a)

with

(34b)

B. Odd Excitation

The solution for odd excitation is similar to that of even
excitation. Indeed, by assuming a representation similar to
(1a) with the superscript being replaced by ; it can be
seen that all the boundary and continuity relations in (2a)–(2i)
remain valid for the odd excitation case also, except (2c) and
(2d), which are to be changed as

(35a)

(35b)

In this case, the Wiener–Hopf equation reads

(36a)

with

(36b)

(36c)

(36d)

where are the roots of

(36e)
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The application of the Wiener–Hopf procedure to (36a) yields

(37)

and are the split functions resulting from the
Wiener–Hopf factorization of (36b) as

(38a)

The explicit expressions of are [2]

(38b)

(38c)

By using the continuity relations at the aperture
we get infinitely many equations in infinite number of

unknowns which yield the constants as follows:

(39a)

with

(39b)

Here, , , , , and stand for

(39c)

(39d)

(39e)

(39f)

(39g)

with being the roots of

(39h)

can be expressed in terms of as

(40)

III. A NALYSIS OF THE DIFFRACTED FIELD

The scattered field in the region for even and odd
excitations can be obtained by taking the inverse Fourier
transform of and , respectively

(41a)

(41b)

Here is a straight line parallel to the real axis lying in
the strip . The asymptotic
evaluation of the integrals in (41a) and (41b) through the
saddle-point technique enables us to write for the diffracted
field

(42a)

with

(42b)

(42c)

(42d)
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Fig. 3. The diffracted field versus the truncation numberN .

Fig. 4. The diffracted field versus the observation angle�, for different
values ofa=b.

(42e)

(42f)

Fig. 5. The diffracted field versus the observation angle�,for different
values of�1.

Fig. 6. The diffracted field versus the observation angle�, for different
values of�2.

where are the cylindrical polar coordinates defined by

and is the expression of the incident field at , .
For the special case ,

, we get

Therefore, after putting and at every step, (22)
and (23) are identically satisfied for

and
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This gives

implying the series contribution to the total diffracted field
given in (42b) be zero. Similar considerations are also valid for
the odd excitation case. Hence, given in (42e)
and (42f) correspond to the “diffraction coefficients” related
to the edge , for even and odd excitation cases,
respectively.

For the perfectly conducting case , (42e) and (42f)
reduces to

(43a)

(43b)

which are nothing but the well-known results related to a
perfectly conducting parallel-plate waveguide [1], [2]. Further-
more, in the case when , we get

and given in (42a) coincides with the perfectly conducting
half-plane solution [2].

In order to show the influence of the values of the wall
thickness and the surface impedances on the diffraction phe-
nomenon, some numerical results showing the variation of the
diffracted field with the observation angle
are presented. In all the graphical solutions that follow, we
take rad and . The surface impedances,

are taken as negative imaginary (inductive case).
In Fig. 3, we show the variation of the diffacted field with
the truncation number at a fixed point. It is seen that the
diffracted field becomes insensitive to the truncation number

for , , . We
require a smaller for increasing values of as expected.
For the numerical examples that follow, is chosen by taking
into account this criterion. Fig. 4 shows the variation of the
diffracted field with the observation angle, for different values
of the wall thickness. As expected, the diffracted field increases
with the increasing values of the wall thickness in the range

. Fig. 5 shows the variation of the diffracted
field with the observation angle, for different values of the
exterior surface impedance . The diffracted field increases
with the increasing values of . Fig. 6 shows the variation
of the diffracted field with the observation angle, for different

values of the interior surface impedance. The diffracted field
decreases with the increasing values of . No noticeable
variation of the diffracted field with could be observed,
even for very small values of the incidence angle.
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