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An FDTD Formulation for Dispersive
Media Using a Current Density

Qing Chen, Makoto Katsurai, and Paul H. Aoyagi

Abstract—A novel finite-difference time-domain (FDTD) for- greater accuracy (especially for lossy plasmas) but retains the
mulation for dispersive media called the JE convolution (JEC) same computational efficiency. In Section Il, we derive the JE
method is derived using the convolution relationship between the convolution (JEC) formulation for a nonmagnetized plasma.
current density J and the electric field E. The high accuracy In Section Ill ine th lati hip bet the JEC
of the JEC method is confirmed by computing the reflection n Section 1il, we examine _e relationship between the
and transmission coefficients for a nonmagnetized plasma slab and the RC methods. In Section 1V, we evaluate the accuracy
in one dimension. It is found that the new method has accuracy of the JEC, ADE, and RC methods by performing numerical
comparable to the auxiliary differential equation (ADE) while  simulations to compute the reflection and transmission coeffi-
having the same computational efficiency as the less accurate sjants of a nonmagnetized plasma slab in one dimension. The

recursive convolution (RC) method. Numerical simulations also - .
show that the JEC method exhibits significantly higher accuracy factors affecting the result accuracy of the RC method will be

than the RC method in modeling wave attenuation inside the @lso discussed in this section.

plasma.
Il. DERIVATION OF THE JEC METHOD

Index Terms—Dispersive media, FDTD methods. FOR A NONMAGNETIZED PLASMA

Consider the kinetic equations for an isotropic nonmag-

.- INTRODUCTION netized cold electron plasma driven by a small amplitude

HE finite-difference time-domain (FDTD) method [1]-{4]time-varying electric field [24]-[26], i.e.,

has been widely used to calculate the electromagnetic oH
fields associated with a variety of problems in electromagnet- VxE= - Ho~g1 (1)
ics such as antennas, waveguide propagation, and scattering. IJE
Recently, the FDTD method has also been extended to include VxH T +J (2)
computation of wave propagation in dispersive media. In J = — encoue 3)
the past, there have been numerous investigations of FDTD du, e
dispersive media formulations. These include the recursive ot mEE — Velle (4)

convolution (RC) methods [5]-{13], the auxiliary differentialyheren., is the density of the electron at steady stateis
equation (ADE) method [14]-[21], frequency-dependént the collision frequencyy. is the electron velocitym. is the
transform [22], and a full FDTD method COUpIing equati0n§|ectron mass, and is the electron Charge_

of Maxwell and Euler [23]. Although possessing the lowest For a time-harmonic dependence, the following frequency-

accuracy of all the methods mentioned, the original RC methg@main relationship betweghand E can be derived from (3)
(simply called the RC method in this paper) tends to be thgd (4), i.e.,

most computationally efficient [13]. w2
In this paper, a new finite-difference time-domain (FDTD) J(w) = g9~ _1:' E(w) = 0(w)E(w) (5)
Jw + v,

formulation, i.e., the JE convolution (JEC) method, to model
electromagnetic wave propagations in dispersive media ¥9€re

derived using a convolution relationship between the current e®nqo /2 | f

density of the medid and the electric fieldE. In particular, “pe = < comm ) = plasma frequency [rad/s]  (6)
the J at a future time step is computed from previous values 2

of J in conjunction with a convolution in time of previously o(w) =e0—== (7)

Jw+ve

computed values oE. J is, in turn, used with the FDTD _ . .
P Taking the inverse transform of (5) and (7), we obtain

algorithm to computé and the magnetic field at a future

time step. For computational efficiency, the convolution is t t

computed using a recursive update. Though closely related I§¢) = / ot —1)E(r)dr = sowiee—”ft / " "E(r) dr
0 0

the RC method [5], it is shown that the JEC method possesses 8)
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Equations (1), (2), and (8) are approximated in the JEBy approximating (14) and (15) using central finite differ-
method. If we defindE is at integer time steps, i.e&™, while encing of the space and time derivatives and a first-order
H andJ at half integer time steps, i.e§”+1/2 andJ”t1/2, rectangular rule approximation for the convolution integral the
(1) and (2) can be readily integrated into the FDTD algorithrdiormulations in the RC method become

in a one-dimensional case nt1/2 n+1/2
Hzi - Hzi_ Dn+1 - D
gorty2 g nel/2 At g I 10 _ TTRitl)/2 12 _ Py yi (18)
Zi41/2 — tzig12 T —MOAJC( Yitl vi ) (10) Az At
At n /
n4+l _ n_ n+1/2 - n+1/2 (m+1)At
Eyi —Eyi EOAQZ (Hzi+1/2 Hzi_l/Q) ng—l _ EOE;-I—I + €0 Z Ey?—m-i—l / N X(T) dr.
At n+1/2 m=0 me
- —J 11
€0 Yq ( ) (19)

In discrete form for (8), we note that it can be written as A characteristic equation for the RC method, as shown in (20)
(n+1/2)At at the bottom of the page, is derived by substituting (19) into
Jy?+l/2 = sowp e ve(ntl/2)At / e TEy(r)dr.  (18).
0 The JEC method can be related to the RC method by slightly
(12) modifying one of the fundamental equations used in the RC
By approximating the convolution integral in (12) using &nethod derivation. In particular, we can use the commutative
discrete rectangular rule summation (see Appendix A), tfoperty of the convolution to rewrite (15) as

following second-order approximation fdr at a future time t
step can be derived in explicit form D(t) =eoE(?) + €0 / x(t — 7)E(r)dr
0
Jn_+1/2 _ —ucmjl n—1/2 + 2 —VCAt/QE’n. At 13 2 t
" € vi CoWpe € v (13) =eoE(t) + Eofpe / (1-— e*”f(t*T))E(T) dr. (21)
1/2 Ve 0

With regard to computational requirements, becai$e
is needed to computd"+1/2 at every time step, the JECBY using (21) rather than (15) an expression foD(t)/0t)
method requires one more storage in addition to the nornf@n be readily obtained
FDTD storage of the electromagnetic field components. dD(t) OE(t) 0

Derivations of the JEC formulation for two other types —g; =0 g T c0g; X(®) = E(t)] (22)
of dispersive media, i.e., Debye relaxation and Lorentzian gp OE eow? 9 [
resonance, are given in Appendixes B and C. =cor +—2—| [ (1= T)E(r)dr
g pp ot ot v. Ot
2
ll. RELATIONSHIP BETWEEN THE JECAND RC METHODS — e %E + Eowpeaa
. . . . t . Ot
To investigate the relationship between the JEC and RC " l "
methods, we consider the formulation for a nonmagnetized . U E(r)dr — et / e’ "E(T) dv}
plasma. We begin by noting that the RC method is based on 0 , 0
ing: JE
the following: —eg— +50w2 e ”"t/ e "E(r)dr (23)
vxH=2 (14) o 0
T ot where the fundamental equation

D(t) =e(t) * E(t) = eoE(t) + eox(t) * E(¢)

— coE(t) + & /0 X(VE(t — 1) dr

:/gC f(t)dt, then ¢(z) = f(x) (24)

5 is used.

t
=eoE(t) +50w1’€' / (1— e ME(t—7)dr (15) By substituting (23) into (14) we obtain the same funda-
Ve Jo mental equations used in the derivation of the JEC method
where D = electric flux density and given earlier in Section Il
w2, oD __OE
e(t) =0 | 8(2) + ,j“'(l—e—”ﬂu(t)] (26) VxH= gy =g T (29)
w2 t
x(t) = (1 — e Hu(t). 17) J= sowgec Vet / e’ TE(T) dr. (26)
Ve 0

(m+1)At n—1 (m+1)At
g2 eoEyt + €0 Z E,” """1/ x(7)dr —eo By, — €0 Z E,mm / x(r)dr

2i—1/2 . m=0 mAt m=0 mAt

Ax At

n—|—1/2
Hzi+1/2
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0.00025 [ simulations is 75um and the time ste@\¢(= 0.5Az/c) is
Air Plasma Slab Air 0.125 ps. Simulations were carried out over 15 @00
0.0002 |- Figs. 2 and 3 compare the reflection and transmission co-
E | efficients computed using the JEC, ADE, and RC methods
< 000015 |- with those of the analytical solution for a plasma with =
- j 2010? rad/s. Fig. 2(a) and (c) shows that the JEC and ADE
% 0.0001 | methods are in agreement with the analytical solution for both
g § the reflection coefficient magnitude and phase. We note that
B oosqe0 — > both methods accurately model the oscillatory behavior in
[ the magnitudes at the high frequencies caused by the internal
ol J | SR | } reflections within the slab. Likewise, Fig. 3(a) and (b) shows
R e i that the JEC and ADE methods are also in excellent agreement

0 400 800 1200 1600 2000 2400 2800 3200 . . L .. .
Cell Index with the analytical transmission coefficient magnitude and

phase. In contrast, Fig. 2(b) and (d) shows that the RC method
is in good agreement with the analytical magnitude and
phase when the reflection coefficient has a large magnitude
but exhibits noticeable error for smaller magnitudes. With

By comparing the derivations given above, we note th@éspect to the transmission coefficient, Fig. 3(a) shows that
there are two reasons why we would expect the RC methgtt RC method computations suffers from a relatively large
to be less accurate than the JEC method. The first reasorgyr, i.e.,>2.5 dB, even for large values of the transmission
that the RC method contains an additional finite-differencgefficient (we note that because the transmission coefficient
approximation, i.e., that ofD/dt, which is not contained magnitude for frequencies less than about 28 GHz is100
in the JEC method. This difference can be traced to thg this range is not shown). An explanation for why the RC
fact that the convolution integral, i.e., (21), used in thgethod exhibits larger error in the transmission as opposed
derivation of the JEC method is in a form which allows thg, the reflection coefficient computations can be given using a
differentiation of D to be readily carried out analytically. my|tiple reflection model, e.g., [27]. In particular, we note that
The second reason is that the RC method contains a fifg{e reflection coefficient is dominated by the first reflection
order approximation to the convolution integral Bfin (19) off the plasma slab rather than the higher order reflections
caused by the rectangular-rule approximation. In contrast, itfich arise from waves inside the plasma slab. In contrast, the
shown in Appendix A that the rectangular rule approximatiogominant term for the transmission coefficient is a wave that
to the corresponding convoluti_on integr:_:ll conta_ined in theys propagated once across the plasma slab. Consequently,
JEC method is second-order iaf. Despite the increasedine RC modeling errors of the plasma affect the accuracy
accuracy of its approximations, we note that the computationgl the transmission coefficient computation more than that
requirements for the JEC method (shown in the Section Il) 8¢ the reflection coefficient. Despite large errors in modeling
the same as that of the RC method [5]. the transmission magnitudes, however, we note that Fig. 3(b)

shows that the RC method exhibits the same high accuracy
as the JEC and ADE methods in modeling the phase of the
IV. NUMERICAL RESULTS transmission coefficient.

To investigate the accuracy of the JEC and RC methods weFigs. 4 and 5 show the magnitude and phase of the reflection
compute the frequency dependent reflection and transmisséd transmission coefficients computed using the JEC, ADE,
coefficients of a nonmagnetized plasma slah.(= 27 « and RC methods and the analytical solution for a plasma
28.7 % 10° radls, v, = 20 = 10° rad/s) with a thickness with v, = 210° rad/s. The choice of, was made to reduce
of 9.00 cm (Fig. 1). This simulation is identical to thathe attenuation in the plasma. Unlike the previous example,
performed in [5] except the plasma slab is increased to betfégs. 4 and 5 show that the JEC, ADE, and RC methods are
illustrate the effects of plasma attenuation. In addition, wall in excellent agreement with the analytical reflection and
also consider a simulation for, = 2 * 10° rad/s. As a transmission coefficients. These results illustrate that the RC
further comparison of the accuracy of each method, we als®thod can have the same accuracy in practice as the JEC
compute the same coefficients using the ADE method. Thed ADE methods provided the losses associated with the
reflection and transmission coefficients were computed pyopagation through the plasma are small. We note that in
simulating the transient response of a normally incident plaaddition to decreasing,, the loss through the nonmagnetized
wave on the plasma slab. The incident wave used in th&sma can also be decreased by decreasjagand the slab
simulation is a Gaussian pulse whose frequency spectrtimckness. Of interest, we note that the highly accurate RC
peaks at 50 GHz and is 10 dB down from the peak at 1@@ethod simulation results given in [5] were likely achieved
GHz. Fourier transform is used to compute the reflection atittough the use of thin plasma slabs. We conclude that
transmission coefficients of the plasma slab from the reflectdge practical advantage of the JEC method over the RC
and transmitted pulses at the air-to-plasma and plasma-toragthod is that it provides a more accurate model for lossy
interfaces, respectively. The frequency range of computatiptasma environments for the same computational efficiency,
was 0-80 GHz. The spatial discretizatiofAz, used in the i.e., memory storage and operation count. Moreover, by noting

Fig. 1. Sample of electric field versus cell at the time stej)Aft,
dx = 75 pum, dt = 0.125ps.
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Fig. 2. Reflection coefficient magnitude bt = 20 x 10° rad/m computed using (a) JEC and ADE methods, (b) RC method, (c) the reflection coefficient
phase computed using the JEC and ADE methods, and (d) the RC method.

PR VT A U E N Ol D S SN R i B S S i

that the ADE method requires more computational memory APPENDIX A

than the RC method [13], [20], we can conclude that the JEC NUMERICAL DERIVATION EOR J
method requires less memory than the ADE method to achieve

the same high accuracy. Rewriting (8)

t
V. CONCLUSION J(t) = swl.e ”Ct/ e’ TE(T) dT. (A1)
0

In this paper, we introduced an FDTD formulation, i.e., the
JEC method, for modeling dispersive medium based on th¢ the » + 1/2 and » — 1/2 moment of theith point in a
relationship of current density inside the mediand electric ,4_gimensional case
field E in dispersive media. In particular, JEC formulations
for the cases of nonmagnetized plasmas, Debye relaxation, a!gffl/2

Lorentzian resonance were given. The JEC method allows the (n+1/2)At
differentiation dD/dt to be readily carried out analytically — = eqw ¢ (" T/2a / T Eyi(r) dr
instead of using the central difference approximation for 0

dD/dt in the RC method. This changes the upper time limit _ 2 ove(ntL DAL </(n1/2)m PRy
of the convolution term, and makes higher order accurate 0% pe 0 vt

formulations in the JEC method. The high accuracy of the

: . . (n+1/2)At
JEC method was confirmed by computing the reflection and +/ T Eyi(r)dr
transmission coefficients of a nonmagnetized plasma slab in (n—1/2)At
one dimension. It was found that the JEC method has the (A.2)

same accuracy as the auxiliary differential equation (ADE}n,l/Q
but possesses the same computational efficiency as the le§s LA
accurate RC method. Numerical simulations showed that the _ 2 —w.(n—1/2)At (n=t/2) veT g
R ) = gow; € e wilT) d
JEC method exhibits significantly higher accuracy than the RC P 0
method in modeling wave attenuation inside the plasma. (A.3)
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Fig. 3. (a) Transmission coefficient magnitude figr = 20 x 10° rad/s
computed using the JEC, RC, and ADE methods. (b) Transmission coefficient

phase computed using the JEC, RC, and ADE methods. Fig. 4.
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(a) Reflection coefficient magnitude fidr = 2 x 10° rad/s computed

using the JEC, RC, and ADE methods versus frequency. (b) Reflection

—v. At 7 n—1/2
e Jy;

(n—1/2)At
= Eowiee—l/c (n+1/2)At / GVCTEyZ‘(T) dT (A.4) Jn+1/2
0 Yi

coefficient phase computed using the JEC, RC, and ADE methods versus
frequency.

becomes a second-order accurate approximation, (A.5)

Jnt1/2 becomes
' yi — Ve L n— — Ve L mn
(n+1/2)At J;"'I/Q =e “AtJyz_ 1/2 —|—€ow§€c CAt/QEyZ_ At.  (A.8)
_ G_VCAtJZZ__l/Q +€0w266_yc(n+1/2)At/
(n—1/2)At
<" Eyi(r) dr. (A.5) APPENDIX B
. JEC FORMULATIONS FOR DEBYE RELAXATION
Assuming, . . .
According to the frequency-domain relations of the Debye
f@) = e E (). (A.6) relaxation
€5 — €00
The central approximation of integration expansion can be €(w) = ¢€o <€oo + 1—) = eo(eoo +x(w))  (B.1)
. + Jwto
written as
(n+1/2)At wheree, is the relative permittivity at dcs,, is the relative
/ e T Eyi(T)dr permittivity atw = oo, andt, is the Debye relaxation time
(n—1/2)at constant, then
(n+1/2)At
- / [f(nAt) + f(nAt) (T — nAt) o(w) = jweg> = (B.2)
(n—1/2)At 1+ jwtg
Ff(nAt) (T—nAt)? +O(At3) dr The time-domain relations can be
2 _
x(t) = e () (B3)
0

At? 4
= f(nAOAL+0 + f(nAt) 7 + O(AH)

f(nAY At + O(AL?)
= " EN AL+ O(At?). (A7)

and

o(t) =eg 2 <6(t) _ Ly

to to

). (B.4)
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APPENDIX C
JEC FORMULATIONS FOR LORENTZIAN RESONANCE

cira i

In the Lorentzian resonance medium, the frequency-domain
relation is

] e(w) = €0 <eoo + M) (C.1)

wg + 2jwé — w?

where wq is the resonant frequency, is the damping con-

Transmission coefficient magnitude (dB)

0 ] stant, e, is the relative permittivity at dcz. is the relative
35 ] permittivity at w = co. then
-40 71 YT N S H S SO SO SO B PR 1 ] (5 — e )w2
30 40 50 60 70 80 = jweg—m— /70 C.2
(o o(w) = jweo 2 1 2jwb — o (C.2)
(@) and
(65 — €co)wd
w =S 5 - C3
g 150 x(w) w3 + 2jwé — w? (C3)
$ w0 Set
£ 50 Exact
*g --------- JEC a=\Jwd—§, cosy=—, Sinfy:i
kol I AR R A AR R R R R RN R AR RS AR R R A S RC 0 «o
3 - —TAPE - and
5 (€5 — €00 )wd
£ 100 B= : 5 = 20 (C.4)
£ wg— 06
® -150 2
& ] (65 —2cc)wi _st . 2
cotbd bR LA L L L t) =t =70 Vwd - 82t Ut
30 10 50 60 70 80 x() wg — 62 °©o “0 ®)
f (GHz)
©) =B sin(at)U(t) (C.5)
t

o(t) = eoPwoe™? sin(y — at)U(¢). C.6
Fig. 5. (a) Transmission coefficient magnitude for = 2 x 10° rad/s ( ) 0/ (,y ) ( ) ( )
computed using the JEC, RC, and ADE methods versus frequency.

Transmission coefficient phase computed using the JEC, RC, and Ag)&cordmg to (B.5) in the Lorentzian resonance medium, the

methods versus frequency. current density in time can be derived as shown in (C.7), or
according to (8), the current density can be directly derived
From (21) and (22) form (C.6) as in (C.7) at the top of the next page and
5 J(t) =o(t) * E(?)
J(t)=eo— t—1)E(r)d B.5 t
(t) = o at Jy x(t=m)B(r)dr (85 = eofwo / e ) sin(y — a(t — 1) E(r) dr.
0
or (8) (C.8)
t For easy computation, we assume that
J(t) = / o(t—7)E(r)dr (8) )
0 J(t) =Im(J(¢))
. t
we can obtain :Iln<50[3w0/ e~ B=T)Hily—at+an) p(r) dT)
J(t) = eg "2 <E(t) _ L / /M E(T) d7>. (C.9)
to to 0 ’]‘n+1/2 = e—(é—ja)At’]‘n—l/Q —+ 60[30.)06_]"‘/
(BG) . 6—(6—ja)At/2En (ClO)
Using a similar approximation as the nonmagnetized plasma, REFERENCES
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I(8) = o (x(t) * E(1)

a 1
=eof— / e~ gin alt — ) E(r)dr
ot J,
a t t
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0 0
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