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An FDTD Formulation for Dispersive
Media Using a Current Density

Qing Chen, Makoto Katsurai, and Paul H. Aoyagi

Abstract—A novel finite-difference time-domain (FDTD) for-
mulation for dispersive media called the JE convolution (JEC)
method is derived using the convolution relationship between the
current density J and the electric field E. The high accuracy
of the JEC method is confirmed by computing the reflection
and transmission coefficients for a nonmagnetized plasma slab
in one dimension. It is found that the new method has accuracy
comparable to the auxiliary differential equation (ADE) while
having the same computational efficiency as the less accurate
recursive convolution (RC) method. Numerical simulations also
show that the JEC method exhibits significantly higher accuracy
than the RC method in modeling wave attenuation inside the
plasma.

Index Terms—Dispersive media, FDTD methods.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1]–[4]
has been widely used to calculate the electromagnetic

fields associated with a variety of problems in electromagnet-
ics such as antennas, waveguide propagation, and scattering.
Recently, the FDTD method has also been extended to include
computation of wave propagation in dispersive media. In
the past, there have been numerous investigations of FDTD
dispersive media formulations. These include the recursive
convolution (RC) methods [5]–[13], the auxiliary differential
equation (ADE) method [14]–[21], frequency-dependent
transform [22], and a full FDTD method coupling equations
of Maxwell and Euler [23]. Although possessing the lowest
accuracy of all the methods mentioned, the original RC method
(simply called the RC method in this paper) tends to be the
most computationally efficient [13].

In this paper, a new finite-difference time-domain (FDTD)
formulation, i.e., the JE convolution (JEC) method, to model
electromagnetic wave propagations in dispersive media is
derived using a convolution relationship between the current
density of the media and the electric field . In particular,
the at a future time step is computed from previous values
of in conjunction with a convolution in time of previously
computed values of . is, in turn, used with the FDTD
algorithm to compute and the magnetic field at a future
time step. For computational efficiency, the convolution is
computed using a recursive update. Though closely related to
the RC method [5], it is shown that the JEC method possesses
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greater accuracy (especially for lossy plasmas) but retains the
same computational efficiency. In Section II, we derive the JE
convolution (JEC) formulation for a nonmagnetized plasma.
In Section III, we examine the relationship between the JEC
and the RC methods. In Section IV, we evaluate the accuracy
of the JEC, ADE, and RC methods by performing numerical
simulations to compute the reflection and transmission coeffi-
cients of a nonmagnetized plasma slab in one dimension. The
factors affecting the result accuracy of the RC method will be
also discussed in this section.

II. DERIVATION OF THE JEC METHOD

FOR A NONMAGNETIZED PLASMA

Consider the kinetic equations for an isotropic nonmag-
netized cold electron plasma driven by a small amplitude
time-varying electric field [24]–[26], i.e.,

(1)

(2)

(3)

(4)

where is the density of the electron at steady state,is
the collision frequency, is the electron velocity, is the
electron mass, and is the electron charge.

For a time-harmonic dependence, the following frequency-
domain relationship betweenand can be derived from (3)
and (4), i.e.,

(5)

where

plasma frequency [rad/s] (6)

(7)

Taking the inverse transform of (5) and (7), we obtain

(8)
where

(9)

and is the unit step function.
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Equations (1), (2), and (8) are approximated in the JEC
method. If we define is at integer time steps, i.e., , while

and at half integer time steps, i.e., and ,
(1) and (2) can be readily integrated into the FDTD algorithm
in a one-dimensional case

(10)

(11)

In discrete form for (8), we note that it can be written as

(12)

By approximating the convolution integral in (12) using a
discrete rectangular rule summation (see Appendix A), the
following second-order approximation for at a future time
step can be derived in explicit form

(13)

With regard to computational requirements, because
is needed to compute at every time step, the JEC
method requires one more storage in addition to the normal
FDTD storage of the electromagnetic field components.

Derivations of the JEC formulation for two other types
of dispersive media, i.e., Debye relaxation and Lorentzian
resonance, are given in Appendixes B and C.

III. RELATIONSHIP BETWEEN THE JECAND RC METHODS

To investigate the relationship between the JEC and RC
methods, we consider the formulation for a nonmagnetized
plasma. We begin by noting that the RC method is based on
the following:

(14)

(15)

where electric flux density and

(16)

(17)

By approximating (14) and (15) using central finite differ-
encing of the space and time derivatives and a first-order
rectangular rule approximation for the convolution integral the
formulations in the RC method become

(18)

(19)

A characteristic equation for the RC method, as shown in (20)
at the bottom of the page, is derived by substituting (19) into
(18).

The JEC method can be related to the RC method by slightly
modifying one of the fundamental equations used in the RC
method derivation. In particular, we can use the commutative
property of the convolution to rewrite (15) as

(21)

By using (21) rather than (15) an expression for
can be readily obtained

(22)

(23)

where the fundamental equation

then (24)

is used.
By substituting (23) into (14) we obtain the same funda-

mental equations used in the derivation of the JEC method
given earlier in Section II:

(25)

(26)

(20)
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Fig. 1. Sample of electric field versus cell at the time step120�t;

dx = 75 �m; dt = 0:125ps.

By comparing the derivations given above, we note that
there are two reasons why we would expect the RC method
to be less accurate than the JEC method. The first reason is
that the RC method contains an additional finite-difference
approximation, i.e., that of , which is not contained
in the JEC method. This difference can be traced to the
fact that the convolution integral, i.e., (21), used in the
derivation of the JEC method is in a form which allows the
differentiation of to be readily carried out analytically.
The second reason is that the RC method contains a first-
order approximation to the convolution integral of in (19)
caused by the rectangular-rule approximation. In contrast, it is
shown in Appendix A that the rectangular rule approximation
to the corresponding convolution integral contained in the
JEC method is second-order in . Despite the increased
accuracy of its approximations, we note that the computational
requirements for the JEC method (shown in the Section II) are
the same as that of the RC method [5].

IV. NUMERICAL RESULTS

To investigate the accuracy of the JEC and RC methods we
compute the frequency dependent reflection and transmission
coefficients of a nonmagnetized plasma slab (

rad/s, rad/s) with a thickness
of 9.00 cm (Fig. 1). This simulation is identical to that
performed in [5] except the plasma slab is increased to better
illustrate the effects of plasma attenuation. In addition, we
also consider a simulation for rad/s. As a
further comparison of the accuracy of each method, we also
compute the same coefficients using the ADE method. The
reflection and transmission coefficients were computed by
simulating the transient response of a normally incident plane
wave on the plasma slab. The incident wave used in the
simulation is a Gaussian pulse whose frequency spectrum
peaks at 50 GHz and is 10 dB down from the peak at 100
GHz. Fourier transform is used to compute the reflection and
transmission coefficients of the plasma slab from the reflected
and transmitted pulses at the air-to-plasma and plasma-to-air
interfaces, respectively. The frequency range of computation
was 0–80 GHz. The spatial discretization, , used in the

simulations is 75 m and the time step is
0.125 ps. Simulations were carried out over 15 000.

Figs. 2 and 3 compare the reflection and transmission co-
efficients computed using the JEC, ADE, and RC methods
with those of the analytical solution for a plasma with

rad/s. Fig. 2(a) and (c) shows that the JEC and ADE
methods are in agreement with the analytical solution for both
the reflection coefficient magnitude and phase. We note that
both methods accurately model the oscillatory behavior in
the magnitudes at the high frequencies caused by the internal
reflections within the slab. Likewise, Fig. 3(a) and (b) shows
that the JEC and ADE methods are also in excellent agreement
with the analytical transmission coefficient magnitude and
phase. In contrast, Fig. 2(b) and (d) shows that the RC method
is in good agreement with the analytical magnitude and
phase when the reflection coefficient has a large magnitude
but exhibits noticeable error for smaller magnitudes. With
respect to the transmission coefficient, Fig. 3(a) shows that
the RC method computations suffers from a relatively large
error, i.e., 2.5 dB, even for large values of the transmission
coefficient (we note that because the transmission coefficient
magnitude for frequencies less than about 28 GHz is100
dB, this range is not shown). An explanation for why the RC
method exhibits larger error in the transmission as opposed
to the reflection coefficient computations can be given using a
multiple reflection model, e.g., [27]. In particular, we note that
the reflection coefficient is dominated by the first reflection
off the plasma slab rather than the higher order reflections
which arise from waves inside the plasma slab. In contrast, the
dominant term for the transmission coefficient is a wave that
has propagated once across the plasma slab. Consequently,
the RC modeling errors of the plasma affect the accuracy
of the transmission coefficient computation more than that
of the reflection coefficient. Despite large errors in modeling
the transmission magnitudes, however, we note that Fig. 3(b)
shows that the RC method exhibits the same high accuracy
as the JEC and ADE methods in modeling the phase of the
transmission coefficient.

Figs. 4 and 5 show the magnitude and phase of the reflection
and transmission coefficients computed using the JEC, ADE,
and RC methods and the analytical solution for a plasma
with rad/s. The choice of was made to reduce
the attenuation in the plasma. Unlike the previous example,
Figs. 4 and 5 show that the JEC, ADE, and RC methods are
all in excellent agreement with the analytical reflection and
transmission coefficients. These results illustrate that the RC
method can have the same accuracy in practice as the JEC
and ADE methods provided the losses associated with the
propagation through the plasma are small. We note that in
addition to decreasing , the loss through the nonmagnetized
plasma can also be decreased by decreasingand the slab
thickness. Of interest, we note that the highly accurate RC
method simulation results given in [5] were likely achieved
through the use of thin plasma slabs. We conclude that
the practical advantage of the JEC method over the RC
method is that it provides a more accurate model for lossy
plasma environments for the same computational efficiency,
i.e., memory storage and operation count. Moreover, by noting
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(a) (b)

(c) (d)

Fig. 2. Reflection coefficient magnitude forVc = 20� 10
9 rad/m computed using (a) JEC and ADE methods, (b) RC method, (c) the reflection coefficient

phase computed using the JEC and ADE methods, and (d) the RC method.

that the ADE method requires more computational memory
than the RC method [13], [20], we can conclude that the JEC
method requires less memory than the ADE method to achieve
the same high accuracy.

V. CONCLUSION

In this paper, we introduced an FDTD formulation, i.e., the
JEC method, for modeling dispersive medium based on the
relationship of current density inside the mediaand electric
field in dispersive media. In particular, JEC formulations
for the cases of nonmagnetized plasmas, Debye relaxation, and
Lorentzian resonance were given. The JEC method allows the
differentiation to be readily carried out analytically
instead of using the central difference approximation for

in the RC method. This changes the upper time limit
of the convolution term, and makes higher order accurate
formulations in the JEC method. The high accuracy of the
JEC method was confirmed by computing the reflection and
transmission coefficients of a nonmagnetized plasma slab in
one dimension. It was found that the JEC method has the
same accuracy as the auxiliary differential equation (ADE)
but possesses the same computational efficiency as the less
accurate RC method. Numerical simulations showed that the
JEC method exhibits significantly higher accuracy than the RC
method in modeling wave attenuation inside the plasma.

APPENDIX A

NUMERICAL DERIVATION FOR

Rewriting (8)

(A.1)

At the and moment of the th point in a

one-dimensional case

(A.2)

(A.3)
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(a)

(b)

Fig. 3. (a) Transmission coefficient magnitude forVc = 20 � 10
9 rad/s

computed using the JEC, RC, and ADE methods. (b) Transmission coefficient
phase computed using the JEC, RC, and ADE methods.

(A.4)

(A.5)

Assuming,

(A.6)

The central approximation of integration expansion can be
written as

(A.7)

(a)

(b)

Fig. 4. (a) Reflection coefficient magnitude forVc = 2�10
9 rad/s computed

using the JEC, RC, and ADE methods versus frequency. (b) Reflection
coefficient phase computed using the JEC, RC, and ADE methods versus
frequency.

becomes a second-order accurate approximation, (A.5)
becomes

(A.8)

APPENDIX B
JEC FORMULATIONS FOR DEBYE RELAXATION

According to the frequency-domain relations of the Debye
relaxation

(B.1)

where is the relative permittivity at dc, is the relative
permittivity at , and is the Debye relaxation time
constant, then

(B.2)

The time-domain relations can be

(B.3)

and

(B.4)
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(a)

(b)

Fig. 5. (a) Transmission coefficient magnitude forVc = 2 � 10
9 rad/s

computed using the JEC, RC, and ADE methods versus frequency. (b)
Transmission coefficient phase computed using the JEC, RC, and ADE
methods versus frequency.

From (21) and (22)

(B.5)

or (8)

(8)

we can obtain

(B.6)

Using a similar approximation as the nonmagnetized plasma,
can be approached as

(B.7)

APPENDIX C
JEC FORMULATIONS FOR LORENTZIAN RESONANCE

In the Lorentzian resonance medium, the frequency-domain
relation is

(C.1)

where is the resonant frequency, is the damping con-
stant, is the relative permittivity at dc, is the relative
permittivity at . then

(C.2)

and

(C.3)

Set

and

(C.4)

(C.5)

(C.6)

According to (B.5) in the Lorentzian resonance medium, the
current density in time can be derived as shown in (C.7), or
according to (8), the current density can be directly derived
form (C.6) as in (C.7) at the top of the next page and

(C.8)

For easy computation, we assume that

(C.9)

(C.10)
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