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Measured Backscatter from Conductive
Thin Films Deposited on Fibrous Substrates

Kristan P. Gurton, Charles W. Bruce, and J. B. Gillespie

Abstract—The functional dependence of the electromagnetic were relevant to the sponsors of this work. Such issues
backscatter by thin, straight, dielectric fibers with metallic coat- include, but are not limited to, the evaluation of predictive
ings was measured as a function of coating thickness and Conduc'electromagnetic calculations fathomogeneouthin cylinders

tivity at a wavelength of 0.86 cm (35 GHz). Cu and Ni coatings - ; . . .
were applied to fibrous glass substrates (having a nominal di- and possible enhanced mass-normalized scattering efficiencies

ameter of 5.50um) using an evaporative process. Thicknesses of for mettalically coated fibers. In lieu of these questions,
the thin films were directly measured by scanning electron mi- Waterman and Pedersen have extended their modified Galerkin

croscopy (SEM) and ranged from 0.02 to 0.7¢m. Measurements  technique to include electromagnetic interactions with inho-
were conducted using single fibers. Measured quantities agreed qqeneous cylinders. Although other theoretical approaches
well with calculations based on recently developed theory. . - . . L
. _ ~ were considered for evaluation, i.e., volume integral, principal-
_ Index Terms—Electromagnetic scattering, measurements, thin valued integral, moments methods, etc., the null-field approach
films. used by Waterman and Pedersen was chosen due to its general
applicability and modest computational requirements.
I. INTRODUCTION The metallig coatings chosen for this study were Ni and
ISTORICALLY, plane wave interaction with thin cylin- Cu (iron coatings were also produced,. but proveq too un-
o . s]IabIe and could not be well characterized). Coatings were
ders of finite length and conductivity represents one @ lied to al b : : Coati
pplied to glass su strates via an evaporative process. Coating

the more manageable problems appropriate for direct apélicknesses ranged from 0.02 to slightly above 0.

cation of classic electromagnetlg theqry [11-3]. S'm"arl}/Metthc films were characterized by direct dc conductance
fundamental antenna analysis typically involves the prediction ; )

; - measurements as well as scanning electron microscopy (SEM).
of induced surface currents on finite conductors such as thjn

) ) . ccause of several factors involving the deposition of thin
cylinders, wires, and/or rods. Although numerous numeric an o o
metallic films the dc values of the conductivity, in some cases,

analytic techniques have been developed to calculated thesé : .
L . . . efe less than their respective bulk values. As a result, a
currents for thin finite conducting cylinders, good expenmentgf . . . | .
; . ries of coatings was produced with both varying thicknesses
analogs necessary for comparison have been lacking [4]-[7]. S : :
i . o . d conductivities. A continuous conductance profile was
The few studies that do exist have been primarily restricted . ! ; }
. etermined for each metal film as a function of thickness and
homogeneous cylinders only [8], [9]. hen convolved with theory resulted in reasonable agreement
In this study, we directly measure the absolute backscatfer y 9 '
cross section at a microwave frequency of 35 GHz for a single
dielectric fiber coated with a thin metallic films of varying _ _ _
thicknesses and conductivities. The technique used here, whickach glass fiber substrate was coated with an evaporative
employs phase-sensitive detection of a modulated targetth# film of either Ni or Cu. Both metals were chosen pri-
similar to the approach originally taken by Scharfman arigarily for their relatively high conductivity values. Nickel
King [8]. was purposely chosen to contrast a conventional metal with
Previous studies involving the measurement of scatteradferrite. To reduce the likelihood of contamination, metals
and absorbed microwave radiation for moderate and hightere evaporated in a high vacuum at pressures never greater
conductive fibers was primarily restricted to homogeneodigan 1 x 10__6 Torr. The vacuum system used consisted of
materials [10]-[13]. These studies provided a comparis@n6-in diffusion pump coupled in series with a similar sized
with calculated features as described in a series of publisheiogenic trap. The system was thoroughly cleaned, baked,
papers by Waterman and Pedersen [14], [15]. Results shova#l pumped for a period of several days until a vacuum on the
agreement in form and magnitude with computed scatterigder of 107 Torr could be routinely reached during a typical

and absorption coefficients, but certain issues remained tRgmping cycle. Uniform cylindrical coatings were produced by
a “rotisserie-like” arrangement that could horizontally rotate
Manuscript received April 18, 1997; revised June 30, 1998. This work w. to five fiber substrates. Each glass fiber was thoroughly
supported by J. Hale of the U.S. Army Edgewood Research Development arjd . .
Engineering Center. Cleaned with an alcohol/acetone rinse, baked at a temperature
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Fibers were positioned horizontally on the rotisserie at 2107

different distances from the evaporative source in order tog 1x107 . T T T
take advantage of the inverse-square relationship betweer® j -
deposition rates and the fiber to source separation distances . 0
In order to produce a set of fibers with good variation in \5 | f,i’
thicknesses, fiber to source distances ranged from 15 to 4'@ 6 -
. .. o 1x10 >
cm. We found this arrangement sufficient to produce nearly.g //f f _
an order of magnitude of difference between the thinnest an(g e * Measured conductivity
thickest coated fibers. ~——- Curve fit used in calculation
Ultrapure wire (99.999% nickel or copper) was weighed andm 1x105 |
wound evenly to a 6-in tungsten helix evaporative filament. 0.01 0.1 1
Each “charge” was thoroughly cleaned and baked along with Ni Coating Thickness (um)

the rotisserie before insertion into the vacuum chamber (tpe 1 Measured nickel conductivity profile.
term “charge” is commonly used to describe the filament/wire’" P
combination). Typical wire masses ranged from 0.2 to 2.0

grams per charge. 1X1087

The vacuum system was sealed, and a pressure of
1 x 10~% Torr was maintained during the entire duration
of the rotisserie/evaporative process. Typical coating periods
ranged from several seconds for light runs to as long as 20
s for the heavier coatings. Deposition rates were on average
about 80 Als.

After deposition, each fiber was removed and cut from
the spit and the dc resistance per unit length was measuredU
(see coating analysis). Fibers were then trimmed to a length 1x106
sufficiently long to avoid resonant effects seen at smaller 0.01 01 1
lengths (for example, the primary scattering resonance at 35 Cu coating thickness (um)

GHz occurs at fiber lengths slightly less than 0.43 cm) [11#ig. 2. Measured copper conductivity profile.
Each fiber was then pinioned at each end using a very small

amount of cyanoacrylate adhesive across a thin nonconducting\fter the backscatter response for each fiber was measured,
Teflon mounting ring. Prior studies showed this adhesive {gin film surface integrity and thickness values were deter-
be electromagnetically inert at 35 GHz [12]. This ring serveghined directly using scanning electron microscopy (SEM)
as a convenient way of quickly interchanging fibers withianalysis. Each fiber was mounted in a polymer matrix and
the backscatter apparatus and reduced the amount of handiR@wved into several very short pieces. We examined pho-
required. tographs of these pieces to determine coating thickness, total
diameters, and granular composition.

Measurement of the dc resistivity for each coatings was
achieved by using a specially designed gold-plated circuit

It was recognized early on that evaporated thin metal filnard that was etched to allow simultaneous resistance mea-
have acquired a reputation of being poor specimens whsmements to be conducted at varying distances along the
their electrical properties are compared to those of bulk. ffber. Probes coated with gold-leaf were gently brought in
number of effects have contributed to this reputation [16]-[18ontact with each fiber and a controlled, highly reproducible,
Typical problems encountered may include one or more of theessure was applied using a clamping micrometer. A small
following: 1) the introduction of various contaminates, i.egurrent was applied across varying distances along the fiber
poor or dirty vacuum conditions; 2) the tendency of very thiand the drop in potential for each position was recorded.
films to lump or agglomerate due to poor surface mobilitfsrom these measurements, a resistance versus length curve
and 3) the formation of thin films with a high density ofwas generated. If correct, uniformly coated fibers should yield
crystal imperfections, usually caused by adverse condensatiotinear form (ohmic) with they-intercept corresponding to
conditions driven by large temperature gradients across tihe contact resistance of the circuit board. Coating thicknesses
substrate. Exact diagnosis of a particular problem is complesere converted to cross-sectional areas and combined with
and usually difficult to identify exactly. Nevertheless, it washe resistive measurements to produce a conductivity profile
not the authors intention to produce coatings that mirrorédor each metal (see Figs. 1 and 2). The dashed lines seen
their respective bulk properties, just as long as their behaviar each curve represents a functional curve-fit used in the
remained Drude-like [19]. Rather, the primary criteria for theorresponding backscatter calculation.
coatings used here were that they be well characterized, highlyt should be noted that the conductivity profiles were very
conductive, and span as wide a range of values as possibledensitive to small variations in coating thickness since the
both thickness and conductivity. Based on these criteria, tbenductance per unit length were inversely proportional to
sets of thin films generated were considered satisfactory. the thickness squared. This was especially troublesome in

T

1x107

———- Curve fit used in calculation

Conductivity (mhos/m)

+  Measured conductivity
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[ watt CW diode 20 cm and allowed for continuous recording of backscatter

4 fov foss ciruator response as a function of fiber distance from the horn. The
switch / . o millimeter-wave source used was a Hughes 1-W IMPATT

- /[41( diode operating continuously at 35 GHz. Total power output

Isolator , . 7) was monitored using a diode detector that was attached in
Jattenuator I le— fiber travel — the forward direction of a 20-dB directional coupler. The
E-H tuner \ remaining signal was fed through a low-leakage circulator

MW power detector and radiated to the spinning fiber through a specially flared

piece of WR-28 waveguide [12]. SeverAl-H tuners were
mounted at various locations about the circuit to minimize any
impedance mismatches and reduce the overall voltage standing
determining conductivity values for the thinnest of coatinggave ratio (VSWR). The resulting modulated backscatter was
in which the uncertainty in the measurement was greatest gaf| hack through the circulator and into a tuned detector where
was the primary source for the large error bars seen in thg corresponding voltage was amplified approximately 40 dB

Fig. 3. Schematic of the backscatter measurement.

profiles. through a lock-in amplifier tuned ta.2, i.e., the fiber aligns
twice with the F field per revolution.
IV. BACKSCATTER MEASUREMENT The motor-driven micrometer was started, and the modu-

We chose to measure backscatter because of its strd#igd backscatter signal for each fiber was recorded by a data
functional dependence with changes in certain parametersagfiuisition system as a function of fiber distance from the
interest, i.e., coating thickness and conductivity. Because figrn. This process was repeated several times in both the
the relatively small magnitude of the backscattered sign#rward and reverse directions with results averaged together.
the target was modulated and phase-sensitive amplificatibfis constituted one measurement.
was used. Individual fibers were rotated at a fixed frequencyThe fiber was then removed and the next fiber/ring assembly
of approximately 10 Hz in the plane perpendicular to th&#as snapped into place. Each fiber was measured at least
propagation vectok. Plane wave lumination was achievedix times over a period spanning several days. Output power
via a well characterized modified open-ended waveguide hdfam the IMPATT was continuously recorded to ensure that
used in many of our experiments_ A motor-driven micromet&ny fluctuations were identified and if necessary corrected for.
was used to vary the distance between the Spinning fitﬁq‘:tween trials a calibration fiber Consisting of either solid Ni
and horn. This allowed for continuous monitoring of th@’ Cu, with known backscatter response and diameter, was
far-field behavior and for detection and identification of anipserted and measured.
spurious reflected fields. The received backscatter signal wa&inally, backscatter as function of transverse distance was
recorded and integrated as a function of horn-to-fiber distariééegrated over a set interval with the resulting area taken to be
to determine a relative measure of the backscatter responsePf@portional to actual backscatter cross section. Values were
each fiber. Various solid metallic fibers with known backscattéfen made absolute by normalizing to the solid fiber data.
cross sections provided normalization and served as a conVBe reproducibility of backscatter measurements taken over
nient means for checking the system’s linearity. A schemafieultiple sessions was considered very good, but did worsen for
of the device used to measure the backscatter from a rotatfifne of the thinner coatings as the signal to noise diminished.
fiber can be seen in Fig. 3. Error analysis conducted on this portion of the study showed

The fiber rotation assembly consisted of a nonconductitgcertainties associated with the measurement to be less than
circular mounting bracket to which the Teflon fiber ringt=5%.
was attached. This mounting bracket was designed to rotate
a fiber in the E-H plane of the irradiating field at an
angular frequencyw,. Triggering for the lock-in amplifier
was achieved by using a LED/detector combination that wasFigs. 4 and 5 show the normalized measured backscatter
mounted to the outer diameter of the rotating assembly. dkoss sections as a function of film thickness for either a Ni
small Teflon flap was attached to the outer circumference of tbe Cu coated glass fiber, as well as the associated Waterman
spinning fiber ring that passed between the LED and detectoalculated values (dashed line). As seen in both graphs,
Great care was taken to ensure that all components remotstyen the corresponding conductivity profiles are used in the
illuminated were made of inert materials so as to minimize ampmputations, agreement is quite reasonable. Although these
unwanted reflections. Nevertheless, all mounting componengsults are not totally definitive, the agreement here and in prior
capable of producing such reflections were designed to exhigiitidies lend support to the modified Galerkin approach used
a high degree of rotational symmetry. This was done toy Waterman and Pedersen to calculated the induced surface
eliminate any time varying signal that could be misinterpretezirrents for composite and homogenous finite thin cylinders.
as the scattered field from the modulated fiber. ConformationAn important question that was raised during this study was,
of this was achieved by removing the test fiber from th#or a metal-coated dielectric fiber, what is the minimum
system and noting that the resulting signal fell well within théhickness necessary for the fiber to still appealid to an
ambient noise of the lock-in amplifier. The rotation assemblgcident electromagnetic wave?” The question is best answered
was designed to transverses a lateral distance of approximatslyconsidering the measured backscatter for the Cu-coated

V. RESULTS
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