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Electrostatic Solution for Three-Dimensional
Arbitrarily Shaped Conducting Bodies Using Finite
Element and Measured Equation of Invariance

John H. Henderson and Sadasiva M. Rao

Abstract—Differential equation techniques such as finite ele- gridding of the infinite space surrounding the conducting body.
ment (FE) and finite difference (FD) have the advantage of sparse Many methods have been proposed and used to truncate the

system matrices that have relatively small memory requirements ,551em space and involve either making an assumption on the
for storage and relatively short central processing unit (CPU)

time requirements for solving. However, these techniques do not f‘?”T‘ of the field at a distance [3] or using an mtggral method
lend themselves as readily for use in open-region problems asSimilar to MoM [4], [5], on the boundary. The disadvantage
the method of moments (MoM) because they require the dis- of the first technique is that it does not take the geometry
cretization of the space surrounding the object where MoM only of the object into account and typically requires truncating

requires discretization of the surface of the object. In this work, the problem space far from the object for good results, thus
a relatively new mesh truncation method known as the measured ’

equation of invariance (MEI) is investigated augmenting the FE leading to a Iarge systgm matrix: The disad\_/antage of the
method for the solution of electrostatic problems involving three- Second method is that it results in full rows in the system
dimensional (3-D) arbitrarily shaped conducting objects. This matrix for the boundary nodes, thereby destroying the sparsity

technique allows truncation of the mesh as close as two nodeof the matrix and, therefore, one of the main advantages of
layers from the object. MEI views sparse-matrix numerical tech- FE techniques

nigues as methods of determining weighting coefficients between | trast th d fi fi . MEI
neighboring nodes and finds those weights for nodes on the n contrast, the measured equation of invariance ( )

boundary of the mesh by assuming viable charge distributions on [6]—[16] is @ mesh truncation technique that takes the geometry
the surface of the object and using Green’s function to measure of the object into account and maintains the sparsity of the
the potentials at the nodes. Problems in the implementation of system matrix. Thus, this new method appears to retain the
FE/MEI are discussed and the method is compared against MoM advantages of both the MoM and FE techniques
for a cube and a sphere. . . . o
_ o In this paper, the open-region electrostatic conducting body
Index Terms—Electrostatic analysis, finite-element methods. problem is solved with the mesh truncated at a close distance
in fact, only two layers from the object. The node-based FE
|. INTRODUCTION method is augmented with the MEI which results in a relatively

small, sparse matrix. The application of the FE method along

T HERE exist a number of numerical methods that mayjsh ME| truncation condition is the subject matter of this
be used to solve for the fields surrounding or chargg,

induced upon a conducting body held at a fixed potential. Twopig paper is organized as follows. In the next section, a

of the most popular methods are, viz., the method of momenjsajled explanation of the MEI truncation method as applied
(MoM) [1], and the f'”'te'e'_emem method (FE) [2]._Each %o the electrostatic problem is provided. Since the application
these methods have associated advantages and disadvan{§g9es methods to electromagnetic field problems is well
for sol_ving the open-region ele_ctrostatic prqblem. _The MOMnown [2], the analysis of the FE method is excluded in
lends itself well to the open-region problem in that it involveg,is presentation. Section Il discusses the numerical results
the discretization of only the surface of the object. Howevelyi-ined for a conducting sphere and a cube which are

this technique leads to a full-system matrix, which requirgg,mnared with other methods. Furthermore, a detailed account

extensive computer resources to store and solve. On the ofiefhe required computer resources is provided in this section.

hand, the FE method leads to a very sparse system mafijxaly, in Section IV, some important conclusions drawn
that is quickly solved using iterative techniques and is Ieﬁ%m this study are presented.

demanding on computer storage. Without some method to
truncate the problem space, the FE technique would require

M it wved Feb 11 1998 iced Julv 17. 1998. Thi Il. |MPLEMENTATION OF THE
anuscript received February 11, ; revised July 17, . This
work was supported by the NASA Graduate Student Researchers Program, MEASURED EQUATION OF INVARIANCE
Electromagnetics Research Branch, Langley Research Center, Langley, VASparse system methods such as EE and finite difference (FD)
23665 USA. . .
J. H. Henderson is with the Harris Corporation, Melbourne, FL 32902 us&an be thought of as solving a system of equations of the form
S. M. Rao is with the Department of Electrical Engineering, Auburn
University, Auburn, AL 36849 USA.
Publisher Item Identifier S 0018-926X(98)08886-3. oo + a1 1 + asps + azds + agpy =0 Q)

0018-926X/98$10.001 1998 IEEE



HENDERSON AND RAO: ELECTROSTATIC SOLUTION FOR 3-D ARBITRARILY SHAPED CONDUCTING BODIES 1661

0 absorbing condition. Thus, MEI allows the truncation of the
T the mesh close to the object in open-region problems.

To apply FE and MEI to the electrostatic conducting body
problem, a narrow layer outside of the object is discretized
(l) o o into two layers of tetrahedrons. This results in three layers of

h, nodes. The first layer is on the object and their potential is fixed
i o by the potential of the body. The nodes on the second layer
¢ are connected via the tetrahedrons to other nodes on all three
(®) layers. The weights relating these nodes to their neighbors
Fig. 1. (a) Generic 2-D problem grid. (b) Two-dimensional FD grid. are determined using the FE method. Although one may use
MEI to obtain these weighting coefficients, it is numerically

whereg; is the potential at nodg as shown in Fig. 1(a) and more efficient to use FE methods. Nodes on the last layer are
] .

there is one such equation for each node. The potentials §p@nected only to nodes on the second layer and to other nodes
the unknowns and the’s are weighting coefficients, which ©" the same layer. The weighting coefficients for the nodes

may be known or unknown depending on the location of tH¥ the outer layer are determined by selecting the five nearest
given node. In the FE method, the weighting coefficients aR¢ighbors connected to each node and applying the MEI. Only

derived from Laplace’s equation five neighbors are chosen to reduce the time required to apply
) the MEI techniqgue and to maintain sparsity of the system
Vig=0 (2) matrix. We have determined that using more neighboring

through the minimization of a functional. For the FD methodques does not resuit in an appreciable increase in accuracy.
| ' The most challenging aspect to the MEI, as expressed by

these weights are determined by replacing the derivatives

with difference approximations. For example, for the two 2" researchers, is the selection of the metron functions.

dimensional (2-D) FD grid in Fig. 1(b), i, = &,, the result ~1though the theory of MEI allows any set of linearly in-
will be dependent functions as metrons, in practice, one must find a

set that does not result in a poorly conditioned matrix in (5)

—4dpo+P1+ P2+ P34+ Py = 0. (3) when trying to determine the weighting coefficients. So far,
in the application of the MEI method, the source functions

ere defined over entire range of the object (entire domain
nctions). At least, this was true for 2-D objects [6], [7],

Therefore, relating this to the generic difference equation (
ag=—4, ar =1, a0 =1, a3 = 1, anda4 =1.

f
Difficulty occurs when it is necessary to truncate the me o . i ;
and one of the nodes in the kernel in Fig. 1 is missing. Itﬁl]’ [12]. However, for three-dimensional (3-D) objects of

impossible to determine the weighting coefficients using F%_eneral shape it is quite difficult to define entire domain

or FD scheme alone. The MEI is a method to determine thténctlons unless some compllcated mapping to a spherical or
. o . rectangular surface is carried out. In this work, we overcome
weights for any node, which is explained as follows.

; . . Lo this difficulty by selecting subdomain pulse functions and solv-
First of all, by choosing one of the weights arbitrarily, e.g. ) N .

B . ihg an overdetermined system for the weighting coefficients.
ag = —1, (1) may be rewritten as . . : .

However, we did not experiment with other subdomain or

@101 + Qo + azdsz + gy = o (4) entire domain functions since the results are satisfactory in

. . ) . the present scheme as demonstrated later.
Now, referring to Fig. 1, assume that four linearly mdependentA drawing showing the MEI kernel and the 3-D configu-

solutions of Laplace’s equation (potential functions) are knov‘fﬂtion is shown in Fig. 2. As is depicted by the figure, the

for a gwen g_leometry. 'tl'hgsg mdepen_dent_ p(;)tentlzal fljtnCt'Ofé'Strahedral discretization of the space surrounding the object
may De €aslly generated by assuming independen .Souéﬁ?omatically leads to a triangularization of the surface of
distributions, known asnetrons on the structure and USiNGypq object. Each source function is assumed to be constant

Err?c?ir(]) 2sfil:1n€4:|)0r\]/vén§tt)rt];ﬂsé Eyst:umb itf'tgt'Egﬂg;;seivgﬁtim'&/er a given triangle and zero elsewhere. Using these source
' y q 9 y distributions, which are clearly linearly independent, and using

P11 P12 P13 P1a] [u $10 the free-space Green’s function, one can obtaininearly
P21 P22 P23 Paa| |2 | _ | P20 (5) independent potential functions whepé is the number of
P31 P32 P33 Paa | |as P30 triangular patches on the conductor surface.
a1 P12 Paz Paad Loy $10 Using these potential functions and evaluating them at the
whereg;; is the potential at nodg of solutioni. (5) may be boundary nodes anql the nodes co_nnecting them_, one can pbtain
solved to obtain the remaining weighting coefficients. the system of equations to determine the weighting coefficients
It may be easily seen that the weights are geometry depen- e, ¢1o  d1z3  d1a P15 ] [M b10

dent since the potential functions are obtained by integrating | ¢y, ¢y ¢oz  Pas  Pas | |2 $20
the source functions over the structure geometry. Furthermore, : : : : az | = | .
since the Green’s functions techniques automatically satisfy ' ' ' ' '

the radiation condition, the weights obtained by MEI, when PNt Pn2 Pns dna Onsd L Pno
applied to boundary nodes, adaptively generate a corregiere ¢;; is the potential due to surface triangjeat local

(6)



1662 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 11, NOVEMBER 1998

10000.0 T
——— MEI matrix fill
—=—— Conjugate gradients solution
1000.0 | —— — FE matrix fill
— — Total
g 100.0 |
= P
S -
Nt s
g 10.0 ¢ Pt
= T
1.0 -
0.1 +
10 100 1000 10000

Number of surface triangles

Fig. 3. Breakdown of execucution times for electrostatic cube and sphere
problems by major subtasks.

where T’ represents the source triangtejs the observation
point, 7%, is the centroid of the triangle, and is the area

of the source trianglel’. This approximation is reasonable
since the observation point is at least two edge lengths
(i.e., two tetrahedrons) away from the source triangle. This
approximation was incorporated into the program and the
results are presented in the following section.

I1l. NUMERICAL RESULTS

Fig. 2. Geometry used for applying FE and MEI to a 3-D electrostatic . . : :
conducting body problem. In this section, we present the numerical results obtained

from the FE/MEI scheme described so far. The geometries
nsidered are: 1) a conducting sphere of 1-m diameter and
} @ conducting cube of 1-m side, each held to a potential of
V. The sphere results are compared with the analytical
Rlution and the conducting cube results are compared to the
ll-known MoM solution [20]. For both geometries, in the
/IMEI scheme the thickness of each layer of tetrahedrons
ésdfixed at 0.1 m. In addition, the sphere was also run with
15-m layer thickness. It may be noted that this procedure
erates some what skewed tetrahedrons, particularly at large
§cretizations. Still, we retained this grid scheme because the
Qal unknown quantity (charge distribution) is obtained via

. S . umerical differentiation. The tetrahedra model for the cube
real and integer value to simplify indexing. Once all of thgroblem is generated by first dividing each side of the cube

ighti fficient found by either FE MEI, th ) .
weighting coetlicients are found Dy €ither or Qéo certain number of divisions to obtain subcubes and then

system is solved for the node potentials using the conjugé - ) )
gradient method [17]-[19]. c?lwdlng each subcube into five tetrahedrons. To create the

The main subtasks of the FE/MEI program are the FE matr%?here’ the discretization for the cube was “inflated.” This
fill, the MEI matrix fill, and the conjugate gradients solving.'s !‘mportt)ant :O Igeepdlln mtl.nd,t. as t”h?rhtgbles a:ﬂd pIotsb refefr
A plot of the breakdown of execution times by each subta§ numoer of edge discretizations. IS was the number o
for the method so far discussed for a sample geometry gcreﬂzatmn; per edge before the. cube was morphed into
shown in Fig. 3. It is shown that the majority of the centra sphere. This morphing also_ explains the same numl_)ers of

nknowns and the same run times for the two geometries.

processing unit (CPU) time is required by the MEI matrix fill
subtask. This demonstrates why it is not desirable to solveA”, programs were run on a SUN SPARC server 1.000
for the weights of all of the nodes using MEI and why pgunning 50 MHz SuperSPARC processors. Execution times

was used for nonboundary nodes. Furthermore, to improve re found using the execution profiling commands of the
operating system.

efficiency, the potential function is approximated as follows: _ . . L
~ The storage requirements for the various discretizations are
b= // ps(r) dT 2 py(7.) A PleT shown in Table I. Execution times are presented in Table II.
T Ame|F — 7' N e — 7| The capacitance for the sphere is given Fig. 4 and the potential
(7) outside the sphere is plotted in Fig. 5. The capacitance for the

nodei and local node zero is the center node of the kern
The weights are then obtained by using a least-squares sol
routine that minimizes the norm of the result. It is importa
that the norm of the result be minimized because certdi
possible symmetries in the geometry might generate linea

dependent columns in the matrix.

The weights are stored in the system matrix using a modifi
compressed sparse row technique [17]. This method is oneao?'
the most efficient and elegant sparse matrix storage sche
using only one real and one integer location for each diago
entry and each off-diagonal nonzero entry and one additio
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TABLE | 10, T T T T T
STORAGE REQUIREMENTS FOR3-D ELECTROSTATIC CUBE AND SPHERE
ProBLEMS COMPARING METHOD OF MOMENTS TO FINITE ELEMENT o5} Analytical ]
WITH MEASURED EQUATION OF INVARIANCE MESH TRUNCATION ©  0.10m Layers
. % 0.15m Layers
Method of Moments FE/MEI 90} i
Number of edge Number of Storage Number of Storage
discretization nnknowns requirements unknowns requirements sl 1
2 48 2301 real 316 2416 integer ]
2416 real %‘
4 192 36,864 real 604 4696  integer 'E 8o 4
1696  real E
6 432 186,624 real 988 7744 integer 75t i
7744 real
8 768 589,824 rcal 1468 11.560 integer
11,560 real 701 o 1
16 3072 9,437,184 real 4348 34,504 integer
34,504  real 651 ]
32 12,288 150,994,944 real 14,716 117,256 integer
117,256  real
60 L . L L .
0.5 0.55 0.6 0.65 0.7 0.75 0.8
r{m]
TABLE 1
ExecutioN TIMES FOR 3-D ELECTROSTATIC CUBE AND SPHERE Fig. 5. Potential outside 1-m-diameter PEC sphere held to 100 V.

ProBLEM COMPARING METHOD OF MOMENTS TO FINITE ELEMENT
WITH MEASURED EQUATION OF INVARIANCE MESH TRUNCATION

90 T T T T T T T
Number of edge

discretizations MoM FE/MEL
2 0.68 s 3.61s
4 15.46 s 11.20 s
6 128.78 s 28.56 s

-3
=]
T
1

Capacitance
[pf]
-
\
|

o FE/MEI

8 688.225  64.49s 6ok x MoM )
16 28,797.26s  685.83 s
32 © 7502055 50, s 6 8 10 12 14 16 18
Number of Discretizations
, . . . ] . . Along Edge
8 60 4 Fig. 6. Capacitance of 1-m PEC cube at various discretizations comparing
P e S —
c =" MoM to FE/MEI.
of - H q
5 = s Analytical
8= O 0.10m Layers As a first comparison, let us compare FE/MEI against
S o % 0.15m Lavers the analytical solution of the potential for the sphere. The
, . N .y . , results are shown in Fig. 5. The FE/MEI method gives good

02 4 © 8 v % 1 agreement to the analytical solution. In Fig. 4, the capacitance
for the same problem is presented and compared with the
analytical solution. It is quite evident from the figure that the
capacitance converged at around eight divisions along the edge
Fig. 4. Capacitance of 1-m PEC sphere at various discretizations comparigd further increase in the discretization did not alter the result.
analytical to FE/MEI. The error encountered in the present scheme is around 6% for

o o ] the 0.1-m layer thickness. Lastly, the results for the conducting
cube is given in Fig. 6. In the following, we present a shog,ne show a similar behavior.

discussion of the numerical results.

First of all, it should be noted that integral equation methods
such as MoM generate more accurate solutions than differ-
ential equation methods for a given discretization. Also, the This paper has demonstrated the use of the FE method
charge calculated from the FE/MEI method is actually th® solve open-region electrostatic problems involving 3-D,
charge on a surface removed from the surface of the objecbitrarily shaped conducting bodies. FE was augmented by a
introducing some error, where in MoM, charge is calculateglatively new technigue—the MEI—that allows the problem
by the method itself. Further, it should be noted that MoMpace mesh to be truncated as close as two node layers from
and FE/MEI have different quantities as unknowns. For MoMhe body. This method was compared to results of the well-
the unknowns are the surface charge densities. For FE, #stablished MoM by investigating a cube and against the
unknowns are potentials at the nodes. As discussed previoualyalytical solution for a sphere. Because FE/MEI maintains
finding the surface charge density from FE requires a Rbe sparsity of the system matrix, this method was shown to
approximation, which introduces error into the charge resulgreatly reduce memory requirements and computer execution
Further, the charge thus obtained using this procedure is tiates below that of MoM while returning good results. MoM
really residing on the body, but at a surface somewhere still seems to produce more accurate results at smaller dis-
the first layer of tetrahedra. This must be kept in mind whesretizations where the surface charge or capacitance is desired,
comparing the results from FE/MEI to those from MoM. so we do not propose replacing MoM by FE/MEI in all

Number of Discretizations
Along Edge

IV. CONCLUSION
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