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Electrostatic Solution for Three-Dimensional
Arbitrarily Shaped Conducting Bodies Using Finite

Element and Measured Equation of Invariance
John H. Henderson and Sadasiva M. Rao

Abstract—Differential equation techniques such as finite ele-
ment (FE) and finite difference (FD) have the advantage of sparse
system matrices that have relatively small memory requirements
for storage and relatively short central processing unit (CPU)
time requirements for solving. However, these techniques do not
lend themselves as readily for use in open-region problems as
the method of moments (MoM) because they require the dis-
cretization of the space surrounding the object where MoM only
requires discretization of the surface of the object. In this work,
a relatively new mesh truncation method known as the measured
equation of invariance (MEI) is investigated augmenting the FE
method for the solution of electrostatic problems involving three-
dimensional (3-D) arbitrarily shaped conducting objects. This
technique allows truncation of the mesh as close as two node
layers from the object. MEI views sparse-matrix numerical tech-
niques as methods of determining weighting coefficients between
neighboring nodes and finds those weights for nodes on the
boundary of the mesh by assuming viable charge distributions on
the surface of the object and using Green’s function to measure
the potentials at the nodes. Problems in the implementation of
FE/MEI are discussed and the method is compared against MoM
for a cube and a sphere.

Index Terms—Electrostatic analysis, finite-element methods.

I. INTRODUCTION

T HERE exist a number of numerical methods that may
be used to solve for the fields surrounding or charge

induced upon a conducting body held at a fixed potential. Two
of the most popular methods are, viz., the method of moments
(MoM) [1], and the finite-element method (FE) [2]. Each of
these methods have associated advantages and disadvantages
for solving the open-region electrostatic problem. The MoM
lends itself well to the open-region problem in that it involves
the discretization of only the surface of the object. However,
this technique leads to a full-system matrix, which requires
extensive computer resources to store and solve. On the other
hand, the FE method leads to a very sparse system matrix
that is quickly solved using iterative techniques and is less
demanding on computer storage. Without some method to
truncate the problem space, the FE technique would require
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gridding of the infinite space surrounding the conducting body.
Many methods have been proposed and used to truncate the
problem space and involve either making an assumption on the
form of the field at a distance [3] or using an integral method
similar to MoM [4], [5], on the boundary. The disadvantage
of the first technique is that it does not take the geometry
of the object into account and typically requires truncating
the problem space far from the object for good results, thus
leading to a large system matrix. The disadvantage of the
second method is that it results in full rows in the system
matrix for the boundary nodes, thereby destroying the sparsity
of the matrix and, therefore, one of the main advantages of
FE techniques.

In contrast, the measured equation of invariance (MEI)
[6]–[16] is a mesh truncation technique that takes the geometry
of the object into account and maintains the sparsity of the
system matrix. Thus, this new method appears to retain the
advantages of both the MoM and FE techniques.

In this paper, the open-region electrostatic conducting body
problem is solved with the mesh truncated at a close distance,
in fact, only two layers from the object. The node-based FE
method is augmented with the MEI which results in a relatively
small, sparse matrix. The application of the FE method along
with MEI truncation condition is the subject matter of this
work.

This paper is organized as follows. In the next section, a
detailed explanation of the MEI truncation method as applied
to the electrostatic problem is provided. Since the application
of FE methods to electromagnetic field problems is well
known [2], the analysis of the FE method is excluded in
this presentation. Section III discusses the numerical results
obtained for a conducting sphere and a cube which are
compared with other methods. Furthermore, a detailed account
of the required computer resources is provided in this section.
Finally, in Section IV, some important conclusions drawn
from this study are presented.

II. I MPLEMENTATION OF THE

MEASURED EQUATION OF INVARIANCE

Sparse system methods such as FE and finite difference (FD)
can be thought of as solving a system of equations of the form

(1)
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(a) (b)

Fig. 1. (a) Generic 2-D problem grid. (b) Two-dimensional FD grid.

where is the potential at node as shown in Fig. 1(a) and
there is one such equation for each node. The potentials are
the unknowns and the’s are weighting coefficients, which
may be known or unknown depending on the location of the
given node. In the FE method, the weighting coefficients are
derived from Laplace’s equation

(2)

through the minimization of a functional. For the FD method,
these weights are determined by replacing the derivatives
with difference approximations. For example, for the two-
dimensional (2-D) FD grid in Fig. 1(b), if , the result
will be

(3)

Therefore, relating this to the generic difference equation (1),
, , , , and .

Difficulty occurs when it is necessary to truncate the mesh
and one of the nodes in the kernel in Fig. 1 is missing. It is
impossible to determine the weighting coefficients using FE
or FD scheme alone. The MEI is a method to determine the
weights for any node, which is explained as follows.

First of all, by choosing one of the weights arbitrarily, e.g.,
, (1) may be rewritten as

(4)

Now, referring to Fig. 1, assume that four linearly independent
solutions of Laplace’s equation (potential functions) are known
for a given geometry. These independent potential functions
may be easily generated by assuming independent source
distributions, known asmetrons, on the structure and using
Green’s function methods. By substituting these potential
functions in (4), we obtain a system of equations given by

(5)

where is the potential at node of solution . (5) may be
solved to obtain the remaining weighting coefficients.

It may be easily seen that the weights are geometry depen-
dent since the potential functions are obtained by integrating
the source functions over the structure geometry. Furthermore,
since the Green’s functions techniques automatically satisfy
the radiation condition, the weights obtained by MEI, when
applied to boundary nodes, adaptively generate a correct

absorbing condition. Thus, MEI allows the truncation of the
the mesh close to the object in open-region problems.

To apply FE and MEI to the electrostatic conducting body
problem, a narrow layer outside of the object is discretized
into two layers of tetrahedrons. This results in three layers of
nodes. The first layer is on the object and their potential is fixed
by the potential of the body. The nodes on the second layer
are connected via the tetrahedrons to other nodes on all three
layers. The weights relating these nodes to their neighbors
are determined using the FE method. Although one may use
MEI to obtain these weighting coefficients, it is numerically
more efficient to use FE methods. Nodes on the last layer are
connected only to nodes on the second layer and to other nodes
on the same layer. The weighting coefficients for the nodes
on the outer layer are determined by selecting the five nearest
neighbors connected to each node and applying the MEI. Only
five neighbors are chosen to reduce the time required to apply
the MEI technique and to maintain sparsity of the system
matrix. We have determined that using more neighboring
nodes does not result in an appreciable increase in accuracy.

The most challenging aspect to the MEI, as expressed by
many researchers, is the selection of the metron functions.
Although the theory of MEI allows any set of linearly in-
dependent functions as metrons, in practice, one must find a
set that does not result in a poorly conditioned matrix in (5)
when trying to determine the weighting coefficients. So far,
in the application of the MEI method, the source functions
were defined over entire range of the object (entire domain
functions). At least, this was true for 2-D objects [6], [7],
[11], [12]. However, for three-dimensional (3-D) objects of
general shape it is quite difficult to define entire domain
functions unless some complicated mapping to a spherical or
rectangular surface is carried out. In this work, we overcome
this difficulty by selecting subdomain pulse functions and solv-
ing an overdetermined system for the weighting coefficients.
However, we did not experiment with other subdomain or
entire domain functions since the results are satisfactory in
the present scheme as demonstrated later.

A drawing showing the MEI kernel and the 3-D configu-
ration is shown in Fig. 2. As is depicted by the figure, the
tetrahedral discretization of the space surrounding the object
automatically leads to a triangularization of the surface of
the object. Each source function is assumed to be constant
over a given triangle and zero elsewhere. Using these source
distributions, which are clearly linearly independent, and using
the free-space Green’s function, one can obtainlinearly
independent potential functions where is the number of
triangular patches on the conductor surface.

Using these potential functions and evaluating them at the
boundary nodes and the nodes connecting them, one can obtain
the system of equations to determine the weighting coefficients

...
...

...
...

...
...

(6)

where is the potential due to surface triangleat local
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Fig. 2. Geometry used for applying FE and MEI to a 3-D electrostatic
conducting body problem.

node and local node zero is the center node of the kernel.
The weights are then obtained by using a least-squares solving
routine that minimizes the norm of the result. It is important
that the norm of the result be minimized because certain
possible symmetries in the geometry might generate linearly
dependent columns in the matrix.

The weights are stored in the system matrix using a modified
compressed sparse row technique [17]. This method is one of
the most efficient and elegant sparse matrix storage schemes
using only one real and one integer location for each diagonal
entry and each off-diagonal nonzero entry and one additional
real and integer value to simplify indexing. Once all of the
weighting coefficients are found by either FE or MEI, the
system is solved for the node potentials using the conjugate
gradient method [17]–[19].

The main subtasks of the FE/MEI program are the FE matrix
fill, the MEI matrix fill, and the conjugate gradients solving.
A plot of the breakdown of execution times by each subtask
for the method so far discussed for a sample geometry are
shown in Fig. 3. It is shown that the majority of the central
processing unit (CPU) time is required by the MEI matrix fill
subtask. This demonstrates why it is not desirable to solve
for the weights of all of the nodes using MEI and why FE
was used for nonboundary nodes. Furthermore, to improve the
efficiency, the potential function is approximated as follows:

(7)

Fig. 3. Breakdown of execucution times for electrostatic cube and sphere
problems by major subtasks.

where represents the source triangle,is the observation
point, is the centroid of the triangle, and is the area
of the source triangle . This approximation is reasonable
since the observation point is at least two edge lengths
(i.e., two tetrahedrons) away from the source triangle. This
approximation was incorporated into the program and the
results are presented in the following section.

III. N UMERICAL RESULTS

In this section, we present the numerical results obtained
from the FE/MEI scheme described so far. The geometries
considered are: 1) a conducting sphere of 1-m diameter and
2) a conducting cube of 1-m side, each held to a potential of
100 V. The sphere results are compared with the analytical
solution and the conducting cube results are compared to the
well-known MoM solution [20]. For both geometries, in the
FE/MEI scheme the thickness of each layer of tetrahedrons
is fixed at 0.1 m. In addition, the sphere was also run with
a 0.15-m layer thickness. It may be noted that this procedure
generates some what skewed tetrahedrons, particularly at large
discretizations. Still, we retained this grid scheme because the
final unknown quantity (charge distribution) is obtained via
numerical differentiation. The tetrahedra model for the cube
problem is generated by first dividing each side of the cube
into certain number of divisions to obtain subcubes and then
dividing each subcube into five tetrahedrons. To create the
sphere, the discretization for the cube was “inflated.” This
is important to keep in mind, as the tables and plots refer
to “number of edge discretizations.” This was the number of
discretizations per edge before the cube was morphed into
a sphere. This morphing also explains the same numbers of
unknowns and the same run times for the two geometries.

All programs were run on a SUN SPARC server 1000
running 50 MHz SuperSPARC processors. Execution times
were found using the execution profiling commands of the
operating system.

The storage requirements for the various discretizations are
shown in Table I. Execution times are presented in Table II.
The capacitance for the sphere is given Fig. 4 and the potential
outside the sphere is plotted in Fig. 5. The capacitance for the
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TABLE I
STORAGE REQUIREMENTS FOR3-D ELECTROSTATIC CUBE AND SPHERE

PROBLEMS COMPARING METHOD OF MOMENTS TO FINITE ELEMENT

WITH MEASURED EQUATION OF INVARIANCE MESH TRUNCATION

TABLE II
EXECUTION TIMES FOR 3-D ELECTROSTATIC CUBE AND SPHERE

PROBLEM COMPARING METHOD OF MOMENTS TO FINITE ELEMENT

WITH MEASURED EQUATION OF INVARIANCE MESH TRUNCATION

Fig. 4. Capacitance of 1-m PEC sphere at various discretizations comparing
analytical to FE/MEI.

cube is given in Fig. 6. In the following, we present a short
discussion of the numerical results.

First of all, it should be noted that integral equation methods
such as MoM generate more accurate solutions than differ-
ential equation methods for a given discretization. Also, the
charge calculated from the FE/MEI method is actually the
charge on a surface removed from the surface of the object
introducing some error, where in MoM, charge is calculated
by the method itself. Further, it should be noted that MoM
and FE/MEI have different quantities as unknowns. For MoM,
the unknowns are the surface charge densities. For FE, the
unknowns are potentials at the nodes. As discussed previously,
finding the surface charge density from FE requires a FD
approximation, which introduces error into the charge results.
Further, the charge thus obtained using this procedure is not
really residing on the body, but at a surface somewhere in
the first layer of tetrahedra. This must be kept in mind when
comparing the results from FE/MEI to those from MoM.

Fig. 5. Potential outside 1-m-diameter PEC sphere held to 100 V.

Fig. 6. Capacitance of 1-m PEC cube at various discretizations comparing
MoM to FE/MEI.

As a first comparison, let us compare FE/MEI against
the analytical solution of the potential for the sphere. The
results are shown in Fig. 5. The FE/MEI method gives good
agreement to the analytical solution. In Fig. 4, the capacitance
for the same problem is presented and compared with the
analytical solution. It is quite evident from the figure that the
capacitance converged at around eight divisions along the edge
and further increase in the discretization did not alter the result.
The error encountered in the present scheme is around 6% for
the 0.1-m layer thickness. Lastly, the results for the conducting
cube show a similar behavior.

IV. CONCLUSION

This paper has demonstrated the use of the FE method
to solve open-region electrostatic problems involving 3-D,
arbitrarily shaped conducting bodies. FE was augmented by a
relatively new technique—the MEI—that allows the problem
space mesh to be truncated as close as two node layers from
the body. This method was compared to results of the well-
established MoM by investigating a cube and against the
analytical solution for a sphere. Because FE/MEI maintains
the sparsity of the system matrix, this method was shown to
greatly reduce memory requirements and computer execution
times below that of MoM while returning good results. MoM
still seems to produce more accurate results at smaller dis-
cretizations where the surface charge or capacitance is desired,
so we do not propose replacing MoM by FE/MEI in all



1664 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 11, NOVEMBER 1998

applications, but rather offer an alternative method to solving
static problems.

Presently, work is being done to extend these techniques
to the dynamic electromagnetic scattering problem and we
hope that this new method offers distinct advantages involving
objects involving objects so large that the initial discretization
would preclude the use of MoM due to limitations in computer
resources.
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