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Linear Dependence of Steering Vectors
Associated with Tripole Arrays

Kwok-Chiang Ho, Kah-Chye Targenior Member, IEEEand B. T. G. Tan

Abstract—We are concerned with the linear independence of DOA estimates can be obtained with EM vector sensors.
steering vectors associated with tripoles, each of which provides Moreover, Taret al. [2] (see also [3]-[5]) have established that
measurements of the three components of electric field induced with just one EM vector sensor, one can determine uniquely

by electromagnetic signals. We first establish that for a single , . .
tripole, any steering vector is linearly dependent on at least one the DOA’s of two uncorrelated EM signals, in general, or

other steering vector corresponding to a different direction-of- three uncorrelated signals if they are skywaves. In comparison,
arrival (DOA) for a general problem where signals may arrive one would need four appropriately spaced scalar sensors to
from anywhere in a three-dimensional (3-D) space, but every two determine uniquely the DOA of even one signal.

steering vectors with distinct DOA’s are linearly independent it A g4coming of EM vector sensor is its high implementa-
the signals are nonlinearly polarized and arrive from a strictly . . . . . .
hemispherical space. We then obtain a series of upper bounds for tion cost and complexity. Indeed, it requires appreciable design
the number of linearly independent steering vectors associated effort to ensure that the measurements of the electric field
with a tripole array with general sensor configurations. We also and those of magnetic field are effectively independent of
show that for applications where signals are known to be linearly gne another. In addition, it is a nontrivial task to develop

polarized in the same direction, the ability to estimate DOA’s . . .
using a tripole array is identical to that using a scalar-sensor EM vector sensors with adequate sensitivity for sufficient

array if both of them have identical sensor configurations. long-range applicati(_)ns.
A good compromise between scalar sensor and EM vec-

tor sensor is one which provides measurements of only the
three components of electric field, commonly referred to as
tripole. As a matter of fact, tripole measurements provide
I. INTRODUCTION some polarization information that scalar sensor measurements
NE main objective of array signal processing is estlack. In addition, considerable reduction in implementation

mating the directions-of-arrival (DOA’s) of narrow-bandcost/complexity can be expected because the complications
electromagnetic (EM) waves. As a matter of fact, man§ue to simultaneously measuring the electric and magnetic
existing DOA-estimation systems are developed based onfigids are absent. Therefore, it is of both theoretical interest
array of scalar sensors, each of which provides measuremeditd practical importance to investigate DOA estimation using
of only one component of the electric field induced at thigipoles. In this connection, we are aware of the work carried
sensor. For such systems, it is the phase delays of sigre#é by Compton [11] on the use of tripoles for interference
received at the sensors that provide the necessary informatigjection, a subject related to DOA estimation. We shall discuss
for DOA estimation. his findings in relation to ours in more detail.

In recent years, researchers have proposed the use of sensdfsthis work, we focus on the linear independence of steering
that provide measurements of more than one compon&gttors associated with a tripole array, an issue very closely
of electric/magnetic field, for example, EM vector sensorglated to that of the number of signals whose DOA’s are
[1]-[8], for DOA estimation. An EM vector sensor provideginiquely determinable. We shall not discuss the relationship
measurements of the three components of electric field dnere, but refer interested readers to [4],[5], [9], and [10]. We
three components of magnetic field. The measurements kst establish that for a single tripole, any steering vector
tained with such sensors contain polarization information &f linearly dependent on at least one other steering vector
the signals impinging on the array in addition to phase delaprresponding to a different DOA in the general case where
information. Since the DOA and polarization of an EM signadignals may arrive from anywhere in a three-dimensional (3-
(assuming a planewave) are closely related, one can exgegtspace, but every two steering vectors with distinct DOA’s
a better DOA estimation performance with the use of su@re linearly independent if the signals are nonlinearly polarized
sensors. Indeed, Nehorai and Paldi [1] have demonstrated, afial arrive from a strictly hemispherical space. We then obtain
an explicit evaluation of the Craen~Rao bound, that superiora series of upper bounds for the number of linearly independent

_ _ steering vectors associated with a tripole array with general
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, DOA of 2n ngl)(t) are, respectively, the three-component measurements
incoming signal of the electric field and the corresponding noise components
at thelth sensor at time. The symbolr ; is the differential
delay of thekth signal at thelth sensor with respect to the
reference sensor; is the velocity of wave propagation, and
the kth entry of the vectors(¢) is the complex envelope
of the kth signal at timet. The vectora(f;) is commonly
referred to as thesteering vector (corresponding to théth
signal with DOA-cum-polarization paramet@y) of thetripole
array. It is beneficial to note that if one replaces each of
Fig. 1. The azimuthp and the elevation) of the DOA of a signal in the the tripoles with a scalar sensor, thety, ) will be the
Cartesian coordinate system. steering vector of the scalar-sensor array. The two columns
of B(¢y, ¥1) are orthogonal vectors that span the same plane
paper has been presented in [12] and the detailed derivati@gsthe electric and magnetic field vectors of #th signal
are provided here.) and the vectom (¢, ) is the unit vector pointing toward
the DOA (¢4, 1 ). Here, we shall consides,, falling within
(—m, w] andyy, within [—7/2, /2], meaning that the signals
can come from any direction in a 3-D space. The ranges

Considern narrow-band plane EM waves impinging on ary the polarization parameters ate. € (—7/2,7/2], B €
array ofm tripoles and assume that the waves are completely, /4 /4],

polarized and travel in a nonconductive, homogeneous, and

isotropic medium. We set up a Cartesian coordinate system

with the origin colocated with the reference sensor and each lll. LINEAR INDEPENDENCE OFSTEERING
of the axes coinciding with a component of the electric field VECTORS OF ASINGLE TRIPOLE

being measurable by the tripoles. Let = (z1,ui,%1) for A relevant result has been obtained by Compton [11], who

! =2,.--m, be the coordinate of thh sensor (the coordinatejyyestigated the performance of a single tripole in rejecting an
of the first sensor 0, 0, 0)), w the frequency of the signals, interference in the presence of a desired signal. He showed
¢k, andyy, respectively, the azimuth and elevation of 818  that the performance is dependent on a measure called signal-
signal (see Fig. 1), and;. and /3 the polarization parametersyq_interference-plus-noise ratio (SINR):

commonly referred to as the orientation and ellipticity angles

(see [1] for a more detailed description). Then the phasor laf (6)a(6;)]?

measurement of the array ef tripoles is given by SINR= &4 |1 — S—IT (1)

Y(t) = AS(t) + n(t) c ¢3mx1

II. DATA MODEL AND PRELIMINARY DISCUSSION

_ o where “I” is the Hermitian operato, = /02, & =
Wherey(t) isad3nx1 Complex vector containing measure-cg/o-?, cq, and ¢; are some nonnegative Constan&s% is
ments recorded with the tripole array at timandn(t) is the the strength of noise®,, and 6; denote the DOA-cum-
corresponding noise in the measurement polarization parameters of the desired and interference signals,

1 2 m T 3l respectively, anch(6) = B(¢,7)Q(a)w(j3) is the steering
y#t) = [0 y2 ), yM@) €0 vector (of a single( t?ipole) (corre)spE)n)dirgg ?@o The ability to
n(t) = P ), n? (1), - ,nf™H)]" e c¥t reject interference is poorest when the value of SINR is at its
A =[a(6), - alh) € " nteresting| h, the value SfNRis closely dependent
3mxl nterestingly enough, the value is closely dependen
a(fr) = e(dr, 1) @ Blow, v) Qlan)w(fh) € € on the linear dependence afé,), the steering vector associ-
Or = [Pn; tu, o, Bi] ated with the desired signal, and¥; ), that of the interference.
e(¢r, Pr) = [eI0k eIk ]T Indeed, the following lemma yields one of these relationships.
Tix = —u(bp, tr) o T1/cC ' Lemma 1 The value of_SINR (as .defined in (1)) is at
Wb ) = [c0s b cos e sin e cos i sin )" its minimum if and only if the steering vectors(f;) =
’ : ; B(¢a, a)Q(aa)w(fa) and a(;) = B(¢i, i) Q(ci)w(/;)
—sin ¢y —cos Pk st Vi associated with a single tripole are linearly dependent.
B(fr, o) = | cosgp  —sin gy sin gy, Proof: See Appendix A. O
0 cos Py, Remark: For ease of comparison with our results, we shall

Q) = coscay,  sinoy w(Bh) = cos B state Compton’s results in terms of linear dependenee &f)
K —sinqy cosay /)’ K jsin B anda(6;) instead of his original statement of SINR attaining
s(t) = [s1(2), -+ - Sn(t)]T its minimum valu_e.
Before discussing Compton’s results, we shall state three
®, ¢, and ‘I are, respectively, the Kronecker product operrelevant definitions.
ator, the dot product operator, and the transpose operator anDefinition 1 (R. T. Compton [11]):.Let («y,31) and (az,
v, ngl)(t) e C**3forl =1,---,m. Note thatygl)(t) and /) be the polarization parameters of two signals. Then the
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two signals are said to haveonjugate polarizationsf the
following two conditions are satisfied:

1) A= =P

2) p = —2 if /31,/32 ¢ {—W/4,7T/4}.

Definition 2: Let ((/)1,1/)1, Oél,/}l) and ((7)2,1/)2, 062,/32) be

dependent om(6;). If there are many more, then the appli-
cability of a single tripole will be limited. In this connection,
we establish the following theorem.

Theorem 2: Consider a desired signal with steering vector
a(64) = B(¢a, vqa)Q(aq)w(34) and an interference signal

the DOA-cum-polarization parameters of two signals. Thefith stgerling \_/ecltoa(eé) = B(f/)m/)F‘])Q(%)‘jV(ﬁ;) meinginglg
the two signals are said to Hieearly polarized with parallel On @ Single tripole and suppose the DOA’s of the signals are

electric fieldif the following two conditions are satisfied:
2) B(¢1,91)Q(a1)w(0) = £B(¢2, 12) Q(cr2)w(0).

Remark: Physically, the first condition indicates that the 2)

two signals are linearly polarized (see [1] for a detailed
description of ellipticity angle). Note that it can be shown
that for a linearly polarized signal with DOA-cum-polarization
parametef, ¢, v, 0), the vectorB(¢, ) Q(a)w(0) is point-

distinct. Thena(6,) and a(f,) are linearly dependerif and
only if any one of the following conditions is satisfied:

1) the two signals are of opposite DOA’s with conjugate

polarizations;
the two signals are linearly polarized with parallel
electric field.

Proof: See Appendix B. O
Remarks:

ing in the same direction as the electric field vector of the 1) Theorem 2 means that the sufficient conditions estab-

signal. Thus, the second condition means that the electric fields

induced by the two linearly polarized signals at the tripole
array are parallel.

Definition 3: Let (¢1,11) and (¢2,12) be the DOA’s of
two signals. Then the two signals are said to beopposite
DOA's if 11((7)1,1/)1) = —u((f)g,i/)g).

Remark: Note thatu(¢1, 1) = —u(¢2,92) if and only if
the following two conditions are satisfied:

1) Y1 = =

2) ¢1 = Qo+ mif 1, o & {—7/2,7/2}.

Theorem 1 (Compton [11]):Consider a desired signal with
steering vecton(8y) = B(¢4, ¥a)Q(ag)w(S34) and an inter-
ference signal with steering vectaf8;) = B(¢;,1:)Q(«;)
w(/3;), impinging on a single tripole and suppose the DOA’s
of the signals are distinct (i.eu(¢q, ¥a) 7 u(d:, ;). Then
a(6,) and a(§;) are linearly dependent if any one of the
following conditions is satisfied

1) the two signals are of opposite DOA’s with conjugate

polarizations;

2) the two signals are linearly polarized with parallel

electric field.

Remarks:

lished in [11] are, in fact, necessary. This implies that
it is generally rare to encounter situations wha(é,)

and a(6;) are linearly dependent.

Consider estimating the DOA’s of skywaves with a
ground-based tripole. Since the signals strictly arrive
from the upper hemisphere of the ground plane con-
taining the tripole, the allowable range of the DOA’s
are ¢, € (—w,n] and ¢y, € (0,7/2]. This implies
that Condition 1) of Theorem 2 will not be satisfied.
Moreover, skywave is unlikely to be linearly polarized
since each reflection from the ionosphere will cause a
change in polarization. Consequently, Condition 2) is
satisfied only for some sets of DOA-cum-polarization
parameters with measure zero. Effectively, the above
two arguments imply that every two steering vectors are
linearly independent, except for some sets of DOA-cum-
polarization parameters with measure zero and, thus, one
can determine uniquely the DOA of one skywave for
virtually all cases in practice.

IV. UPPERBOUNDS FOR THENUMBER OF LINEARLY
INDEPENDENT STEERING VECTORS OFTRIPOLE ARRAYS

Here we shall establish some upper bounds for the number

1) An interpretation of Theorem 1 is that if there is n®f linearly independent steering vectors of tripole arrays with

constraint on the DOA'’s of signals (i.ep, € (—, 7]

general sensor configurations. We first establish a theorem

and vy € [-7/2,7/2]), then with a single tripole, a which relates linear dependence of steering vectors of a tripole
steering vector with any DOA-cum-polarization paramarray to those of a scalar-sensor array having the same sensor
eter is linearly dependent on at least one other steeriagnfiguration as that of the tripole array.

vector corresponding to a different DOA. This implies Theorem 3: Consider anm-tripole array (m > 1) and

that one cannot determine uniquely the DOA of even distinct DOA’S (¢1, 1), (¢2,%2), -+, (¢n,tn). If the n

one signal with a single tripole, regardless of the DOAignals are all linearly polarized with parallel electric field,

and polarization of the signal. then
2) Since the earth is approximately a conductor, ground-

waves are practically linearly polarized with electric

fields perpendicular to the earth surface. Consequently,

an implication of Theorem 1 is that it is never possible
to determine uniquely the DOA of a groundwave.

rank[a(61),a(62), -, a(b,)]
= rank[e(¢1, 1), e(Pa, ¥2), - - -, e(Pn, )]

Proof: See Appendix C. O
Remarks:

Conditions 1) and 2) of Theorem 1 are sufficient conditions 1) a(6;) is the steering vector of the tripole array for the

for two steering vectors (with distinct DOA’s) to be linearly

dependent. The immediate question of concern is whether

there are other conditions that can leach{é,) being linearly

signal arriving from(¢y, %) and by replacing each of
the tripoles with a scalar sensor, the steering vector will
becomee(¢y, 11.).
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2) Since groundwaves are all linearly polarized in the Before we end this section, we shall highlight the main
direction normal to the ground plane, Theorem 3 mean#ferences among the four upper bounds that we have estab-
that the identifiability of a tripole array for groundwavedished in this section. The two bounds given by Corollaries
is identical to that of a scalar-sensor array if both of theth and 2 of Theorem 3 are applicable to cases where the
have identical sensor configurations. On the other harfd@A’s of the signals are all linearly polarized with parallel
since skywaves are unlikely to be linearly polarized, thiglectric fields. One practical application is estimating the
problem does not exist for scenarios involving skywaveBOA’s of groundwaves with ground-based tripole array. On

Corollary 1: Consider anm-tripole array, wheren > 2. the other hand, the bound given by Theorem 4 is applicable for

Then anym -+ 1 steering vectors corresponding to + 1  Signals with arbitrary DOA’s and polarizations, whereas that
signals, which are linearly polarized with parallel electric field?y Theorem 5 is applicable for signals with arbitrary DOA’s

are linearly dependent. but specific polarizations.
Corollary 2: Consider anmn-tripole array, wheren > 2.
Then anym steering vectors, corresponding te linearly V. CONCLUDING REMARKS

polarized signals with electric fields all parallel to the line

Do . We have shown that the sufficient conditions established by
joining two of the sensors, are linearly dependent.

. Compton [11] for two steering vectors of a single tripole to be
Proof of Corollary 2: Seg Appendix D. linearly dependent are, in fact, necessary. We have also shown
Remarks of the Corollaries: that any steering vector is linearly dependent on at least one
1) Itis immediate from Corollary 1 that one cannot depther steering vector corresponding to a different DOA for
termine uniquely the DOA’s ofn uncorrelated ground- 5 general problem where signals may arrive from anywhere
waves with anm-tripole array, regardless of the sensoj, a 3-D space, but every two steering vectors with distinct
configuration, although the array actually provides- DOA'’s are linearly independent if the signals are nonlinearly
dimensional measurements. polarized and arrive from a strictly hemispherical space. This
2) Corollary 2 suggests that on estimating the DOA’s Gfnplies that for a single tripole, the DOA of a signal can be
groundwaves, one should not arrange the sensors suéfiquely determined if the signals are nonlinearly polarized
that there exist two sensors with the line joining themand arrive from a strictly hemispherical space, but not from

being perpendicular to the ground plane. anywhere in a 3-D space. In addition, we have shown that it
Next, we shall establish a theorem that yields a hint as i@impossible to determine uniquely the DOA’s of two signals
the identifiability limit of a tripole array. with a single tripole.
Theorem 4: Given any(3m — 1) steering vectors of am- We have also obtained four upper bounds for the number of

tripole array, then for any DOA there exists a steering vecttinearly independent steering vectors associated with a tripole
which is linearly dependent on th8m — 1) steering vectors. array with general sensor configurations. These bounds are
Proof: See Appendix E. O potentially useful for determining the maximum number of
Remark: It follows from Theorem 4 that when there aresignals whose DOA'’s can be uniquely identified with such an
(3m — 1) signals impinging on an-tripole array, there exists array. Moreover, for scenarios involving the estimation of the
a steering vector corresponding to an arbitrary DOA that il?OA’s of linearly polarized signals with parallel electric field,
tersects the signal subspace (the space spanned by the steéfhfave established that the ability to identify DOA’s using a
vectors of the(3m — 1) signals). Thus, estimating the DOA’stripole array is identical to that using a scalar-sensor array if
of (3m — 1) signals with anm-tripole array, using subspaceboth of them have identical sensor configurations. This then

methods such as MUSIC [13], is impossible. In particulagnables one to obtain more insight into the identifiability of
for a single tripole (i.e.;n = 1), it is always impossible to tripole arrays using the results that have been established for
estimate the DOA'’s of two signals using subspace method§alar-sensor arrays (see [14]-[17]).
(It is interesting to note that it has been established in [2] that
with a single EM vector sensor, one can determine uniquely APPENDIX A
the DOA’s of three uncorrelated skywaves.) PROOF OF LEMMA 1

Next, we shall establish a theorem which provides an insight
into estimation ofl 3/ /2| signals withm-tripole arrays, where
|| denotes the integer part of

It is easy to see from (1) that SINR reaches its minimum if
and only if |a®(6,)a(8,)|* reaches its maximum. Therefore,
) . X B what we need to show here is that? (6,)a(6;)|? reaches its
Theorem 5: Consider anm-tripole array andv = [3m/2] o imum if and only ifa(6;) = e/®a(6,) for some constant.

+1 signals with arbitrary DOA'S (gy,91), (d2,%2), | g g1 andg, be two orthonormal vectors lying in the null
(¢n, ) that are distinct. Then, there is a set of polarlzauorgspace oh(8,). Then the vectora(6, ), g: andg, are mutually

(al’hﬁl%’ (OQH P2), (s ) ass;)ciateg with thz SI9nalS g thonormal vectors that span the 3-D space for whiffh)
such that then steering vectorsa(61),a(fs), --.a(f,) are g i, Consequently, we can write

linearly dependent.
Proof: See Appendix F. O a(f;) = 181 + cogo + cza(by) (A1)
Remark: It follows from Theorem 5 that with am-tripole
array, it is not always possible to estimate uniquely the DOAfsr some complex constants, ¢z, andcs. Sincea(fy), g1,
of |3m/2] signals. andg» are mutually orthogonal vectors, we obtain from (A.1)
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that right-hand side (RHS) of (B.2), which can be expressed as
Jv jed s T i
(0 = eaf + oo + eon(B)F = fe P+ heal kol (o5 L eat number (e eithed or 2.
(A.2)  Now, sinceje’Y sin - and e’ are both real numbersin 3>
must be zero, implying tha?; = 0. Therefore, we have shown
Using the same strategy, one can show that= 0 if
a (ba)a(6;) = cs. (A3) f2=0. O
_ ) Proof of Theorem 2:Although a proof for the sufficiency
Since |c3|_2 < 1, it follows from (A.3) that |aH(9d)a(9i)|2_ part is available in [11], we shall provide another version.
reaches its maximum if and only itz = 1. I_:rom (A1), it Sufficiency part:Let 6, and 6, be the DOA-cum-
can be easily shown thats|” = 1 if and only if ey = c2 =0 pojarization parameters of two signals with distinct DOA's
andcs = ¢/° for some constané. Thus, we conclude from and consider a single tripole.

(A.1) that|a™ (64)a(6;)|* reaches its maximum (i.e., one) if  First supposed, and 6, correspond to two signals with

Since|a(6;)|? = 1, we obtain from (A.2) thajcs|? < 1. Now,
premultiplying (A.1) bya(6,), we have

and only ifa(6;) = ¢’*a(6a) for some constant. L' opposite DOA’s and conjugate polarizations. Then, we have
02 = (¢p1+7, —1p1, —ay, —F1). It can be verified thaa(6,) =
APPENDIX B —a(#,) and this establishes Condition 1 of the sufficiency part.
PROOF OF THEOREM 2 Next, supposel; and f; correspond to two linearly po-
We shall first state a lemma derived in [1] and then establi§}ized signals (i.e.f; = f» = 0) whose electric fields
another lemma. are parallel, then, by Definition 2, we immediately obtain
Lemma 2 (Nehorai & Paldi [1]): Every vectorv = (v;, B(¢1,91)Q(a1)w(0) = £B(¢2,92)Q(a2)w(0). Therefore,
v2)T € C2*! has the representation we havea(f,) = +a(6). This establishes Condition 2 of the
, sufficiency part.
v = |lv][e"Q(a)w (/) Necessity part:Let a(6;) and a(6,) be linearly depen-

dent steering vectors of one tripole that correspond to distinct
DOA's. It follows from Lemma 3 that the ellipticity angles of
the signals satisfy either: 1J; = 5. =0 or 2) 3,32 # 0.

t Case 1: (1 = 32 = 0). We have established in the proof of
Femma 3 that if3;1 = 0, thena(f;) = +a(6,). By Definition

2, the electric fields of the two linearly polarized signals are
parallel, which leads to Theorem 2, Condition 2.
Case 2: (1, 52 # 0). We have established in the proof of

wherey € (—m, 7], @ € (—7/2,7/2], and 3 € [ /4, 7/4].
Moreover, the parametexs v, «, andg in the above equation
are uniquely determined if and only if + v3 # 0.

Remark: It is further established by Nehorai and Paldi th
if [|v]] # 0, thenv? +v3 = 0 if and only if 8 = +7/4.
Furthermore, ifv? +v3 = 0 and||v|| # 0, then||v]||, 3 but
not v, « are unique.

Lemma 3:Let a(61) = B(¢1,%1)Q(a)w(H1) and
a(62) = B(¢a,12)Q(2)w(f2) be two linearly dependent Lemma 3 that
steering vectors of a single tripole with distinct DOA’s a(91)=6”a(92) (B.3)
¢1,11) and (¢2,12). Then B, equals zero if and only if
Eigleqt)als ze(ro.2 2) . where v € (—w,n]. Premultiplying both sides of (B.3) by

Remark: Note that a signal is linearly polarized if and only?t” (¢1,%1) = [cos ¢ cosyn sin gy, cosepy, sinti], we ob-
if its ellipticity angle 3 is equal to zero. Therefore, Lemmal@in
3 implies fchat two sfceering vectors with dis_tinct DOA’s ofy _ .os Ba(pcos s — gsin ) + j sin Ba(psin e + g cos a)
a single tripole are linearly dependent only if they are both
linearly polarized or both nonlinearly polarized. where[p q] = u(¢1,11)B(¢2,12). Equating the real and
Proof of Lemma 3:Sincea(f;) = B(¢1,11)Q(a1)w(3;) imaginary parts of the above equation and using the fact that
and a(62) = B(pa,12)Q(c2)w(52) are linearly dependentcosfs # 0 andsinf. # 0 (since 3y € [—n/4,7/4] and
steering vectors of a single tripole with distinct DOA’s, wg3, # 0), we obtain

have . .
pcosas —gsinas =0 and psinas + gecosag = 0.
a(01) = ca(f) B.1) Solving the above two equations, we obtain= ¢ = 0.
for some complex numbet. Since the norm ofa(6;) and Therefore, we haven” (¢1,91)B(¢2,12) = [0 0]. This,
a(f,) are the same, we have= ¢/7 for somey € (—n,x].  together with the fact thati” (¢2,12)B(¢2,2) = [0 0],
Now, supposed; = 0 and we shall show thaB, = 0. imply thatu(¢,+1) andu(e¢s, ) both lie in the orthogonal
Premultiplying (B.1) byQ* (a2)B# (¢9,), we obtain complement of the column space ®(¢2,2), which is

H H v of dimension one. Sinc&(¢1,v1) and u(¢s, 1) are both
Q" (a2)B™ (¢2,92)B(¢1, 1) Qar)w(Hr) = "W (f2). real unit vectors and¢:,71) and (¢2,%») correspond to
(B.2) distinct DOA’s,u(¢1, 1) must be equal te-u(¢s, 12). Thus,
(¢1,%1) and (¢2,2) correspond to opposite DOA’s and,

Since 51 = 0, w(f) is real. This, together with the facthence

that Q(az), B(¢2,92), B(¢1,91), and Q(a) are real, en-
sure that the left-hand side of (B.2) is real. Therefore, the (P2, 102) = (Pp1 +m, —91). (B.4)
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Now, substituting(¢z, %2) = (¢1 + 7, —t1) into (B.3) and signal at the second sensor with respect to the first sensor is

then premultiplying it byB# (¢;,1), we obtain zero fork = 1,---,m. This leads to
7 -1 0 ank ’ ’ ’ [ msy ¥Ym
Qe )w(py) = w( 5 1)Q(a2)w(/32). renkle(fs, 1), (2 a), - elfmo )]
The RHS of the above equation can be simplified to . . ;
_ —jwTs,1 —JjwTs,2 —JwTs,m
—eIQ(—ao)W(—/3). It then follows immediately from = rank | ¢ . ¢ ¢ < m-
Lemma 2 and its remark tha#; = —pg,. Moreover, we oy i jur
havea; = —ay if B1, B2 # £n/4. Therefore,(ay,5,) and e T e T e
(a2, B2) correspond to conjugate polarizations. This, together (D.2)
with (B".l)’. lead to Theorem 2, Condition 1. . Thus, it follows from (D.1) and (D.2) that rapk(6,),
Combining the results for both cases, we obtain the necessity, Yoo alf)] < m 0
part of Theorem 2. O 2571 ETm '
APPENDIX E
APPENDIX C

PROOF OF THEOREM 4
PROOF OF THEOREM 3 ) )
Consider (3m — 1) steering vectorsa(6,),a(fs),---,

Let a(6y), a(fy),---,a(d,), where a(f) = a( ) _

s 5 - 3m—1 and a DOA ((7)37717"‘/)3771)- Let [pvq] — e(¢3"l'
e(¢n, ¥n) @ Bldw, v¥i)Qan)w(py), be the steering , Ny, . 5 Then the (3m + 1) vectorsa(é:),
vectors (of a multl'trlpole array) .a_ssouated with a(fs),---,a(fs, 1), p and q are linearly dependent since
linearly polarized signals with distinct DOA's a”dthey are3mx 1 complex vectors. Therefore, there exigts,

parallel electric fields. By Conditon 2 of Theorem, 7 . T ¢ ¢Gmtx1\ [ 1 that satisfies
2, B(b1, p)Qe)w(h), Blon o) Qlagiw(fs), -y 2 WOty
B(¢,, ) Qo)W (3,), the steering vectors associated cra(by) + cealba) + - - - + czm—1a(03m—1)

with a single tripole (notice thate{¢y,,)®@" has been
removed) are pairwise linearly dependent. Thus, each row of
I' = [B(¢1,%1)Q(ar)W(B1), -, B(dn, ¥n)Q(an)W(5,)] By Lemma 2, we can write

is linearly dependent on one other row df. Since T T\ v
B(¢1,v1)Q(a1)w(B) is a nonzero vector, at least one (Cams Cam+1)" = [[(cam Cam41)" || Qaxzm )W (Bam)
of the entries of B{¢1,41)Q(c1)w(31) is nonzero. Now
assuming that thdth entry of B(¢1,v1)Q(ar)w(By) is

= C3mP + Cam+19- (El)

for some~y € (—m, 7|, azgm € (—7/2,7/2] and B3, €
[ /4,7 /4]. Therefore, we have

nonzero wherel € {1,2,3}. Since a(fx) = e(¢n,¥r)

®B(¢kﬂ/)k)Q(ak)W(ﬁk) and that thelth entry of B(d)l' CamP + C3m+4+14 = ||(c3nlac3rn,—|—1)T||ej’ye(¢3rnaz/}3nl)

¥1)Q(a)w(1) is nonzero, the(3k — p)th row of A is ©B 3

linearly dependent on th@k — I)th row for p € {1,2,3}\{I} (P, wg"’T)Q(ﬁgm)W(/ o)

andk = 1,---,m where = [|(cam, cam+1)" [le’ a(f3m,). (E2)
A =[a(61),a(6s), -, a(6,)]. It follows from (E.1) and (E.2) that

Consequently, we havenk(A) = rank[e(¢1, 1), e(p2,12), cra(fu) + caalt) + - + com—a(fam-1)

R e((/)n7 z/}n)] O = ||(c3rnv c3rn+l)T||ej’ya(93rn)'
Therefore, the steering vectoegd;), a(62),---,a(f3,,) are
APPENDIX D linearly dependent. O
PROOF OF COROLLARY 2 OF THEOREM 3
Consider ann-tripole array andn steering vectora(6 ), APPENDIX F
a(62),---,a(f,,) that correspond ton linearly polarized PROOF OF THEOREM 5
signals with electric fields all parallel to the line joining two Consider ann-tripole array. Let(¢y,91), - -, (¢n, 1) be

sensors. Since the electric fields of all signals are parallel, Riinct DOA’s associated with, signals and
Theorem 3 we have

I'=le(¢1,91) @ B(¢1,91), e(p2,12)
rank[a(f;),a(6s), - -, a(6,,)] 32
Q B(¢2,12), -, e(pn,1n) @ B(p,, )] € C
= rank[e(¢1,11),e(P2,%2), -, e(Pm, Pm)].-  (D.1) (p2,12) (Pnsbn) (bnsbn)]

wheren = [3m/2] 4+ 1. Then the columns of are linearly
We shall show that ranKa(6:),a(62),---,a(6»)] < m. dependent since the number of columnsIofs more than

Without loss of generality, let the electric fields of all thehe number of rows. Therefore, there exigtd', - --,zZ)T e
signals be parallel to the line joining the first two sensors. Theme»x1\fg, 1 (with eachz; € ¢2*!) such that

the DOA’s of the signals are all normal to the line joining the .
first two sensors. Consequently, the phase delay ofkthe F(z’f,--- zT) = O3y x1- (F.1)

1 n
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By Lemma 2, we may write fork = 1,--.-,n, zx = [14] K.-C. Tan, G.-L. Oh, and M. H. Er, “A study of the uniqueness of
|1Zk]|e Qo )w(fi) for somevy, € (=, 7], oy, € (—/2, SleeTng v eClorS e Processinginal Processingvol. 34, no. 3
7/2], and By € [—7/4,7/4]. Hence, we may write (F.1) [15] K.-C. Tan and Z. Goh, “A detailed derivation of arrays free of higher

rank ambiguities,”IEEE Trans. Signal Processingol. 44, no. 2, pp.
n n 351-359, Feb. 1996.
Z cre(dr, Yr) @ Bog, Y1) Qo )W(5) = Z cra(fy) [16] K.-C. Tan, S.-S. Goh, and E.-C. Tan, “A study of the rank ambiguity
P issues in direction-of-arrival estimationEEE Trans. Signal Processing

k=1 -0 vol. 44, no. 4, pp. 880-887, Apr. 1996.
— Y3mx1 [17] K.-C. Tan, E.-C. Tan, and S.-S. Goh, “Counter-examples to a conjec-
) ture for characterizing higher rank ambiguitie$EE Trans. Signal
where¢, = ||zk||e”k and a(ﬁk) = e(d)kﬂ/)k) ® B(d)k,?/)k) Processingvol. 44, no. 4, pp. 1028-1029, Apr. 1996.
Q(o)w(B). Since (z,---,25)T # 0s,%1, We have
(c1, -+, cn)T'# 0pxi. This implies thata(6,),---,a(6,)
are Ilqearly d.ependent.' [Notg that the polarization parameter Kwok-Chiang Ho was born in Singapore in 1968,
associated with théth signal is(«y, 8] O He received the B.Sc. (honors) degree in mathemat-
ics from the National University of Singapore, in
1993.
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