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Integral Equations and Discretizations
for Waveguide Apertures

John J. Ottusch, George C. Valley, and Stephen Wandzura

Abstract—We present integral equations and their discretiza-
tions for calculating the fields radiated from arbitrarily shaped
antennas fed by cylindrical waveguides of arbitrary cross sec-
tions. We give results for scalar fields in two dimensions with
Dirichlet and Neumann boundary conditions and for (vector)
electric and magnetic fields in three dimensions. The discretized
forms of the equations are cast in identical format for all four
cases. Feed modes can be TM, TE, or transverse electromagnetic
(TEM). A method for numerically computing the modes of an
arbitrarily shaped, cylindrical waveguide aperture is also given.

Index Terms—Aperture antennas, integral equations.

I. INTRODUCTION

NUMERICAL simulation of the electromagnetic perfor-
mance of antennas using integral equations requires a

mathematical model of the driving sources. In contrast to
scattering cross-section computations where a distant source
creates a plane wave in the vicinity of the scatterer, construc-
tion of an accurate source model for an antenna is nontrivial.
If a simple approach, such as a “delta-gap” excitation [1]
is used, the accuracy of some important antenna parameters,
such as input impedance, gain, and reflection can be seriously
compromised, even for cases in which the far-field pattern is
obtained accurately.

The purpose of this paper is twofold. First, we develop
integral equations representing exact specification of the field
emanating from an aperture of arbitrary shape with the field
entering the aperture left unconstrained and to be determined.
The exact definition of the “emanating” field is accomplished
by analysis of a translationally invariant waveguide that has
the cross section of the given aperture. In the context of
a generalized scattering problem such as a waveguide-fed
antenna, such an integral equation may serve as a boundary
condition that must be obeyed inside the waveguide on any
plane normal to its axis. Second, we derive discretized forms
of the integral equations1 (using the method of moments)
that are suitable for numerical computation. As part of this
development, we give a useful interpretation of the kernel that
appears in the “waveguide integral equation.”
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1An equivalent formulation of the feed model for the electromagnetic case

has been used previously by McGrath and Pyati [2] We, however, try to
clarify the intent, development, and use of this formulation in the context of
a generalized method of moments discretization.

Our development is based on the assumption that the
waveguide is:

• translationally invariant in the half-space behind the aper-
ture along the axis normal to the aperture;

• terminated by a perfect absorber or is so long as to be
practically nonreflecting;

• filled with a linear, isotropic, homogeneous medium;
• enclosed by walls that are infinitely hard or infinitely soft

in the scalar scattering case or perfectly conducting in the
electromagnetic scattering case.

The first section is devoted to finding continuous and
discretized forms of the waveguide integral equations for
scalar waves and then applying them to more general scattering
problems. These equations apply to acoustic scattering in two
or three dimensions as well as the two-dimensional (2-D)
analogues of three-dimensional (3-D) electromagnetic scat-
tering (which apply to scatterers with translational symmetry
in a direction orthogonal to the axis of the waveguide). In
the second section, we do the same for 3-D electromagnetic
scattering. The two treatments are entirely analogous. Formu-
las for the power flow out of (due to the given excitation)
and into (due to back scattering) the waveguide are also
given in each section. In the third section, we show how the
waveguide integral equations can be extended to more general
circumstances. Prescriptions for numerically computing the
modes of cylindrical waveguides with arbitrary cross sections
may be found in the Appendix.

II. SCALAR WAVEGUIDE EQUATIONS

A. Modes

An arbitrary field that satisfies the scalar Helmholtz
equation

(1)

inside a waveguide aligned with the axis, can be written
as a sum of modal components2 traveling in the and
directions [3]

(2)

2For simplicity, we will assume that no cutoff modes (i.e., those with
� = 0) are present. It is straightforward to amend the development to handle
such modes.
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Likewise, the longitudinal derivative of the field may be
written as

(3)

where

(4)

is the modal impedance. In these equations, an implicit
time dependence is assumed for the fields, is
the free-space propagation constant andand are,
respectively, the propagation constant and transverse field
distribution of the th mode inside the guide. The modes are
eigensolutions to the scalar wave equation

(5)

for inside the waveguide aperture and the
are constrained to satisfy the boundary conditions of the
waveguide walls when is on the boundary of the aperture

. With proper normalization, the modes form a complete
and orthonormal set of functions over , i.e.,

Completeness (6)

and

Orthonormality (7)

B. Waveguide Integral Equation

Let denote a specified outgoing wave,
correspond to the plane of the waveguide aperture, and the
rest of the waveguide be located in the half-space with .
Using the modal expansions and the completeness relation
for the modes, we can write the following expression for

in terms of the field and its longitudinal derivative
on :

(8)

where

(9)

For any point on a general surface, we may define an
independent surface field quantity

on (10)

where is the outward unit normal to at . In the case
of a waveguide aperture, simplifies to

on (11)

Inserting this into (8) and dropping the spatial coordinate,
we obtain the following integral equation on the waveguide
aperture that relates the field, its longitudinal derivative, and
the specified waveguide excitation on:

(12)

is the kernel of the “square root” of the trans-
verse wave operator in the sense that

(13)

where obeys

(14)

inside the waveguide and satisfies the boundary conditions on
the waveguide walls.

A different relation between , , and the outgoing
wave is obtained if we specify instead of

to write

(15)

where3

(16)

Dropping the spatial coordinateand defining as before, we
get an alternative form for the waveguide integral equation

(17)

or

(18)

and are “inverse operators” in the
sense that

(19)

3Note that ~H(x?;x
0

?
) is not a function since the sum over alln does

not converge. Rather, like the Dirac delta “function”�(x?;x0?), it is a
distribution, which, when convolved with a suitably smooth function, produces
a well-defined value.
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Fig. 1. Antenna system composed of waveguide apertureW and antenna
surfaceS.

Using (12) and (18) on the waveguide aperture, we
can derive boundary integral equations that apply to more
general scattering cases. For example, we can write coupled
boundary integral equations for the case of a waveguide
aperture connected to a general scatterer. This is demonstrated
in the next subsection for the special cases in which the
scattering surface obeys either Dirichlet or Neumann boundary
conditions. In both cases, it is assumed that the union of the
scatterer and waveguide aperture forms a closed surface,
as indicated in Fig. 1.

C. Coupled Integral Equations

In this section, we derive integral equations relating the
known field emanating from the waveguide aperture to an
unknown surface field (either or ) for the generic closed
antenna system shown in Fig. 1. For Dirichlet (Neumann)
boundary conditions on , the unknown surface field on both

and is chosen to be .
1) Dirichlet Boundary Conditions on : The integral equa-

tion for the field (in the absence of an explicit incident wave)
is [4]

(20)

for on . The Helmholtz kernel is given by

in

in
(21)

where is the zeroth-order Hankel function of the
first kind. For Dirichlet boundary conditions on (i.e.,

on ) we have

(22)

for on and

(23)

for on . Equations (22) and (23) along with either (12)
or (18) form a set of coupled integral equations to be solved
for on and on . Using (12) we can

eliminate , putting the known field on the left and
the unknown quantity on the right

(24)

for on and

(25)

for on .
2) Neumann Boundary Conditions on: The integral

equation for (i.e. the normal derivative of the field) may
be written as [4]

(26)

or

(27)

for on . The first form is more compact (and for that
reason is employed below), the second more convenient for
numerical computation. For Neumann boundary conditions on

(i.e., on ), we have

(28)

for on and

(29)

for on . Combining (28) and (29) with (18), we can
eliminate and write the following integral equations for
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in terms of the known quantity :

(30)

for on and

(31)

for on .

D. Discretization

While analytical solutions for waveguide modes are known
for a few special cross sections, in general, modes must be
computed numerically. Even when analytical solutions exist,
it is more convenient (from a computational perspective) to
use numerical solutions because then all interacting surfaces,
whether physical or intangible (e.g. waveguide apertures), can
be treated equivalently.

Assume the waveguide aperture has been discretized into
a set of patches that support basis functions .
Following the procedure given in the Appendix, we can write
approximate expressions for the lowest waveguide modes
in terms of basis functions defined on the aperture

(32)

In the usual method of moments fashion, we approximate
the field and its normal derivative on the aperture as
linear combinations of the basis functions with unknowns
coefficients and

(33)

(34)

We also approximate as a truncated sum over the
computed modes

(35)

Then, by substituting (32)–(35) into (12), and applying the
testing operator to both sides of the resultant
equation, we arrive at the discretized form of (12)

(36)

where

(37a)

(37b)

(37c)

and

(38)

A similar procedure produces the discretized form of (18),
namely

(39)

where

(40a)

(40b)

and

(41)

Equations (12) and (18) and their discretized equivalents
(36) and (39) may be viewed as nonlocal inhomogeneous
boundary conditions that must be obeyed on the waveguide
aperture. They are nonlocal because the “surface impedance”
terms and relate the field at one point on the aperture
to its derivative not just at the same point, but everywhere on
the aperture, and vice versa. The equations are inhomogeneous
if excitations and are nonzero.

The discretized forms of the coupled integral equations
for Dirichlet boundary conditions on are obtained by first
approximating the source on in terms of basis functions as

(42)

then substituting this approximation and the approximate ex-
pressions for , , and on into (22)
and (23) and finally applying the testing function operator

to both sides. The result in block matrix form
is

(43)
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where

(44)

(45)

with or replacing and .
An analogous result is obtained for the case of Neumann

boundary conditions on . We approximate the source on
as

(46)

substitute this expression and the approximate expressions for
, , and on into (28) and (29) and then

apply the testing operator. The result is

(47)

where

(48)

(49)

with or replacing and .

E. Modal Decomposition

In preparation for computing the power flowing across the
waveguide aperture in either direction, it is useful to write
and in terms of modes propagating in either direction.

By employing the completeness relation for the modes we
can decompose the field on into a sum over modes as

(50)

where

(51)

is the amplitude of theth mode contained in . It is useful
to further decompose into its incoming and outgoing
components

(52)

Since the discretized representation of is given by
, we may write the discretized form of as

(53)

Using (12) to eliminate , we arrive at the discretized form
of

(54)

Similarly, we may decompose the longitudinal derivative of
the field as

(55)

where

(56)

Then, using

(57)

and (18), we can write and in discretized form as

(58)

and

(59)

F. Power

The time-averaged power-flow density vector (the scalar
equivalent to the Poynting vector) is [5]

(60)

where is a constant.
The total power flowing across the waveguide aperture in

the direction is made up of an incoming part associated
with the incoming parts of and and an outgoing part
associated with the outgoing parts ofand . The total
power exiting (entering) the waveguide aperture is given by

(61)

for out (in). This integral is most conveniently evaluated
by decomposing and into their modal compo-
nents. The reason is that since the modes are orthogonal, the
power in the sum over modes is equal to the sum of the powers
in each mode.

The amplitude of the th outgoing (incoming) mode con-
tained in is . Therefore, the time-averaged
power exiting (entering) the waveguide aperture is

(62)

for out (in), where is the largest value of for which
is real. We exclude modes with imaginary propagation



1732 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 11, NOVEMBER 1998

constants since such modes do not transport any power into
or out of the guide on average.

The amplitude of the th outgoing (incoming) mode con-
tained in is . Therefore, the time-averaged
power exiting (entering) the waveguide aperture is

(63)

for out (in).
1) Acoustic Waves:If is the velocity potential, i.e.,
, and is the mass density, then the constantin (60) is

given by

(64)

Furthermore, the acoustic impedance [5] is related to our
modal impedance by

(65)

2) Electromagnetic Waves in Two Dimensions:Suppose a
waveguide whose axis is parallel tois also translationally
invariant in the direction, i.e., the waveguide consists of
a pair of half-infinite plates parallel to the plane. When
a geometry is translationally invariant in one direction, the
electromagnetic scattering problem can be decoupled into
two independent problems, each of which is isomorphic to
a 2-D scalar scattering problem with a different boundary
condition. If the 3-D surfaces are perfectly conducting, the
boundary conditions for the corresponding scalar fields on
the corresponding 2-D surfaces become either Dirichlet or
Neumann.

Solutions to the scalar waveguide problem with Dirich-
let boundary conditions inside the waveguide correspond to
solutions to the electromagnetic waveguide problem with
exclusively TE modes inside the waveguide according to

Dirichlet/TE (66)

and solutions to the scalar waveguide problem with Neu-
mann boundary conditions inside the waveguide correspond
to solutions to the electromagnetic waveguide problem with
exclusively TM modes inside the waveguide according to

Neumann/TM (67)

Note how the correspondence between TM or TE polar-
ization and Dirichlet or Neumann boundary conditions in the
waveguide mode case differs from the correspondence between
TM or TE polarization and Dirichlet or Neumann boundary
conditions in the case of scattering from perfect conductors.
On a perfect conductor we associate TM-polarized electromag-
netic scattering with solutions to the scalar scattering problem
with Dirichlet boundary conditions according to

Dirichlet/TM (68)

and we associate TE-polarized electromagnetic scattering with
solutions to the scalar scattering problem with Neumann
boundary conditions according to

Neumann/TE (69)

where is the direction of translational invariance andis
the outward surface normal. Therefore, the waveguide-excited
electromagnetic scattering problem with TM (TE) polarization
in which all the scattering surfaces are perfect conductors, is
equivalent to the waveguide-excited scalar problem, in which
Neumann (Dirichlet) boundary conditions hold on the inner
walls of the waveguide and Dirichlet (Neumann) boundary
conditions hold on all the surfaces of all the scatterers.

For electromagnetic waves in two dimensions, the constant
in (60) is given by

Dirichlet/TE
Neumann/TM

(70)

where and are appropriate to the material inside the guide.

III. ELECTROMAGNETIC WAVEGUIDE EQUATIONS

A. Modes

The electric and magnetic fields inside a waveguide with
perfectly conducting walls can be decomposed into modal
components just as the field and its normal derivative were in
the scalar case. The essential difference is that now there are
three distinct categories of modal fields, namely TM, TE, and
transverse electromagnetic (TEM); each is a vector function
rather than scalar function. For our purposes, it is sufficient
to consider only the transverse components of the electric
and magnetic fields. Assuming the guide is uniformly filled
with a nondissipative medium having dielectric constantand
magnetic permeability , we may write4 [6]

(71)

(72)

where the modal impedance is given by

for modes
for modes
for modes

(73)

The modes are the eigensolutions to the transverse Helmholtz
equation

(74)

for inside the waveguide aperture and con-
strained by the perfect electrical conductor boundary condition
on . With proper normalization, the modes form a complete

4As in the scalar case, cutoff modes are neglected.

5
$

� (x� x
0) is a tensor distribution, which, for any vector-valued surface

functionsf(x) andg(x) on W obeys

W

ds
0f (x)�

$

� (x� x0) � g(x0) = f(x) � g(x):
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and orthonormal set of functions over , i.e.,

Completeness5 (75)

and

Orthonormality (76)

B. Computation of Vector Modes from Scalar Functions

The TM and TE modes can be deduced from the solutions
to the scalar Helmholtz equation on with Dirichlet and
Neumann boundary conditions, respectively, on [6]. The
TM mode corresponding to theth scalar waveguide mode

obeying Dirichlet boundary conditions on is

(77)

and the TE mode corresponding to theth scalar waveguide
mode obeying Neumann boundary conditions on
is

(78)

TEM modes are possible if and only if is multiply
connected, in which case they are related to solutions to the
electrostatic potential problem on . The TEM mode corre-
sponding to the solution to the electrostatic potential
problem on with all except the th boundary at zero
potential is given by

(79)

The scale factor should be chosen to enforce orthonormality
for the TEM modes. This amounts to assigning a particular
value to the otherwise arbitrary potential on theth boundary.
For all TEM modes, .

C. Waveguide Integral Equation

Let be the transverse component of electric
field for a specified outgoing wave. Using the modal expan-
sions and the first completeness relation for the modes, we can
write the following expression for in terms of the
transverse components of the electric and magnetic fields on

:

(80)

where the dyad

(81)

is the analogue of the scalar function . Dropping
the spatial coordinate, we get the following expression for
the waveguide integral equation on , which relates the
transverse components of the electric field, the magnetic field,
and the specified electric field waveguide excitation on:

(82)

Defining equivalent electric and magnetic currents onby

(83)

(84)

allows us to write the waveguide integral equation in terms of
equivalent currents as

(85)
If is specified instead of , we may
write

(86)

where the dyad

(87)

is the analogue of the scalar distribution . Dropping
the spatial coordinate, we get an alternative form of the
waveguide integral equation

(88)

or in terms of equivalent currents

(89)

Equations (85) and (89) are the electromagnetic counterparts
of the scalar waveguide integral equations given in (12) and
(18).
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D. Discretization

As stated above, the TM and TE vector modes onare
derivable from the scalar modes on with Dirichlet and
Neumann boundary conditions on , respectively, and the
TEM vector modes (if any) are derivable from the solutions to
the electrostatic potential problem on. One can compute ap-
proximate solutions for the scalar modes and the electrostatic
potential by putting scalar basis functions onand following
the procedure given in the Appendix. Once this has been
accomplished, one has to choose between keeping the repre-
sentation of the modes in terms of the scalar discretization or
converting it to an equivalent vector discretization. If the scalar
discretization is kept on the aperture, specialized code must
be written to handle interactions with the waveguide aperture.
On the other hand, if the waveguide modes are converted to
a vector discretization early on, then the interactions between
the various scattering surfaces, whether physical or waveguide
aperture, can be handled in a consistent fashion, i.e., entirely
in terms of vector basis functions. For computations involving
more than just the waveguide alone, we find the later choice
to be the simplest and cleanest to implement.

If we discretize the electric current and magnetic
current on in terms of vector basis functions

using

(90)

(91)

we may write the first waveguide integral equation (85) in its
discretized form as

(92)

where

(93a)

(93b)

(93c)

and

(94)

(95)

We get the elements of by computing inner products of
the vector basis functions with gradients of the scalar basis
functions. For example, if corresponds to a TM mode, it
is clear from (32), (77), and (94) and the definition of
that the entries in the th row of are given by

(96)

Similarly, the discretized form of the second waveguide inte-
gral equation (89) becomes

(97)

where

(98a)

(98b)

and

(99)

E. Coupled Integral Equations in the Perfect Conductor Case

Suppose the waveguide is the primary source of radiation
for a general antenna problem in which all other scattering
surfaces may be treated as perfect conductors. If there are
no other sources, the electric field integral equation (EFIE) for

on is [7]

(100)

The tangential component of the electric field vanishes on a
perfect conductor; hence, on . At this point, we could
rewrite the above equation in the separate forms appropriate
to on and on and eliminate on by means
of (85), thereby obtaining a set of coupled integral equations
for the fields on and , just as we did in the scalar case.
Then we could convert them to discretized form. Alternatively,
we could discretize (100) as it stands, eliminate the unknown
equivalent magnetic current amplitudes on using (92) and
achieve the discretized form directly. For brevity, we follow
the latter approach.

A discretized version of (100) in block matrix form is

(101)

where

(102)

(103)

with or replacing and and representing the block
of unknown current amplitudes on, which is related to the
electric current on by

(104)

Rewriting (92) as

(105)
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we can eliminate the block of unknowns in favor of
to obtain the discretized version of (100) in its simplest block
form

(106)

F. Modal Decomposition

By employing the first completeness relation for the modes,
we can decompose the transverse part of the electric field into
a sum over modes as

(107)

where

(108)

is the amplitude of the th mode contained in . It is
useful to further decompose into its incoming and
outgoing components

(109)

Since the discretization of is given by , we may
write the discretized form of as

(110)

Using (85) to eliminate , we arrive at the discretized
form of

(111)

Similarly, by employing the second completeness relation
for the modes, we may decompose the transverse part of the
magnetic field as

(112)

where

(113)

Then, using

(114)

and (89), we can write and in discretized form as

(115)

and

(116)

G. Power

The time-averaged power-flow-density vector (Poynting
vector) is [6]

(117)

The total power flowing across the waveguide aperture in the
direction is made up of an incoming part associated with the

incoming parts of and and an outgoing part associated
with the outgoing parts of and . The total power exiting
(entering) the waveguide aperture is given by

(118)

for out (in). This integral is most conveniently evaluated
by decomposing and into their modal components,
since the modes are orthogonal and the power in the sum over
modes is equal to the sum of the powers in each mode.

The amplitude of the th outgoing (incoming) mode con-
tained in is . Therefore, the time-averaged
power exiting (entering) the waveguide aperture is

(119)

for out (in) where is the largest value of for which
is real. We exclude modes with imaginary propagation

constants since such modes do not transport any power into
or out of the guide on average.

The amplitude of the th outgoing (incoming) mode con-
tained in is . Therefore, the time-averaged power
exiting (entering) the waveguide aperture is

(120)

for out (in).

IV. EXTENSIONS

Up to this point, we have assumed that all energy coupled
into incoming traveling modes is completely absorbed. It is
possible (at the cost of some extra complication) to relax this
assumption, as we now demonstrate for scalar scattering.

Suppose a uniform waveguide is terminated after length
by a wall (oriented perpendicular to the axis of the guide)
whose reflectivity for the th waveguide mode is . For the
time being, assume no independent sources are located inside
the guide. Every mode that enters with amplitude, exits with
amplitude , i.e., if
comes in, then goes out.
This expression for can be rewritten as

(121)

where

(122)
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After discretization, (121) becomes

(123)

where is a diagonal reflectivity matrix whose elements are

(124)

A boundary condition relating and on can be obtained
by applying the operator to both
sides of (12) and using (52). The result is

(125)

or in discretized form

(126)

The discretized relation takes a particularly simple and
appealing form if: 1) the basis functions used on are
orthonormal in which case and 2) if as many modes
are computed as there are basis functions onin which case

. Then (126) is equivalent to

(127)

where

(128)

and

(129)

is the diagonal transmission matrix giving the amplitude
transmission of each mode at the waveguide aperture.

It is easy to modify these relations to allow for a specified
outgoing wave. Suppose the field is specified as being
emitted from the aperture in addition to the reflected wave, i.e.,

. We use here to refer
to the quantity on the left side of (121). The result is

(130)

Its discretized form

(131)

is the obvious analog to (36) and reduces to it for .
Even more generally, one can imagine the situation in

which each incoming mode can be scattered into one or more
outgoing modes. Any number of practical effects (such as
nonuniformities in the cross section or imperfect termination)
could cause this to happen. In such a case, the reflectivity
matrix contains the amplitude for every mode to scatter
into every other mode and is no longer diagonal.

Analogous results obtain for the alternative form of the
scalar waveguide boundary condition and for the vector cases.

V. SUMMARY

As the previous discussion illustrates, the equations that
describe scattering interactions with waveguides can be put
into simple forms that are common to scalar scattering and
vector scattering. For example, the boundary condition on a
waveguide aperture may be written in both cases as

(132)

or

(133)

In the scalar case, the unknown amplitudes and
are related to the field and its longitudinal derivative
according to (33) and (34); the matrices , , and
and the vectors and are given by (37) and (40).
In the vector case, the unknown amplitudes and
are related to the equivalent electric and magnetic currents

and , according to (90) and (91); the matrices , ,
and and the vectors and are given by (93)
and (98). The discretized equations for scalar scattering when

obeys the waveguide boundary condition andobeys
Dirichlet boundary conditions [see (43)] are also identical
to the equations for vector scattering when obeys the
waveguide boundary condition andis perfectly conducting
[see (106)]. The commonality extends to the expressions for
power transport into and out of the waveguide as well.

APPENDIX

Construction of the and matrices that appear in the
discretized expressions for the waveguide boundary condition
requires an approximate representation of the eigenmodes in
terms of basis functions on patches covering the waveguide
aperture as well as the eigenvalues associated with these eigen-
modes. For a few geometries such as rectangular waveguide
and coaxial waveguide, complete analytical solutions for the
eigenmodes are known. In such cases, it is a simple matter
to calculate the projection of a given eigenmode onto the set
of basis functions. In the general case, an eigenvalue equation
must be constructed for computing the modes.

In this Appendix we describe a means for computing the
modes of cylindrical waveguides of arbitrary cross section.
There are three subsections. The first and second subsections
describe methods for numerically solving the scalar Helmholtz
equation for the waveguide modes when the waveguide walls
obey either Dirichlet or Neumann boundary conditions, respec-
tively. The third subsection describes a method for numerically
solving the scalar Laplace equation for the electrostatic poten-
tial of a multiply-connected cylindrical waveguide, all but one
of whose surfaces is held at zero potential.

The Helmholtz modes are directly applicable to scalar prob-
lems such as acoustic radiation and scattering. The Helmholtz
and Laplace modes are applicable to electromagnetic radiation
and scattering problems in that the TM and TE modes can
be deduced from the scalar Helmholtz modes with Dirichlet
and Neumann boundary conditions, respectively, and the TEM
modes are derivable from the scalar Laplace modes. The



OTTUSCH et al.: INTEGRAL EQUATIONS AND DISCRETIZATIONS FOR WAVEGUIDE APERTURES 1737

correspondence is described further in Section III-B of the
main text.

We will assume the availability of scalar basis functions that
are continuous across patch boundaries. A simple example of
such a basis function is a function that spans two triangular
patches sharing a common edge and whose value goes linearly
from unity on the common edge to zero at the opposing
vertices. The extension of continuous scalar basis functions
to higher order polynomials in the surface parameterization
results in three types of basis functions that may be classified
according to whether they span two patches that share a
common edge, span multiple patches that share a common
vertex, or have single patch support. Basis functions of the first
variety go to zero at the opposing vertices and are nonzero on
the common edge; basis functions of the second variety go to
zero on all edges not touching the central vertex (where they
are nonzero); basis functions of the third variety are zero on
the boundary of a patch and nonzero in its interior.

A. Scalar Helmholtz Modes

1) Dirichlet Boundary Conditions on : Operating on
both sides of (5) by turns it into an integral
equation, which may be written as

(134)

Integrating the left-hand side by parts and applying Gauss’
theorem to convert one of the resulting surface integrals into
a boundary integral, we get

(135)

where is the unit edge normal to at . The
unit edge normal is in the plane of and points into the
waveguide wall.

The Dirichlet boundary condition demands that
. If we expand the modes in a set of basis

functions that are continuous and vanish on the boundary
of , i.e.,

(136)

then the boundary integral term vanishes and (135) becomes
a generalized eigenvalue equation for the mode coefficients

(137)

where

(138)

(139)

2) Neumann Boundary Conditions on : The Neumann
boundary condition demands that
. If we had basis functions whose values were nonzero on

the boundary but whose edge derivatives vanished on the
boundary, we could construct the modes directly from them,
just as we did in the Dirichlet case. Since we do not, we need
to augment our usual set of basis functions on the interior of

with extra basis functions associated with the boundary of
. Edge-based basis functions supported on the patch pairs

(one each from and ) that share a common edge on
comprise this set.

The generalized eigenvalue equation again derives from
(135) and (136). In this case, however, the unknown coeffi-
cients also need to obey the added constraint that the edge
derivative of each eigenmode must vanish on the boundary. We
may write this constraint in integral form as

(140)

which, after substituting the discretized approximation for,
becomes

(141)

where

(142)

Thus, we seek solutions to the eigenvalue equation

(143)
where

(144)

and the matrices and are defined as in the Dirichlet case,
subject to the constraint given by (141).

We can subsume the constraint information directly into
the eigenvalue equation by use of the projection operator
defined by

(145)

where is given above and represents the identity matrix of
the proper dimensionality. has the property that it reproduces
vectors that obey and it annihilates vectors that
do not. also has the property that the vectors that
simultaneously obey the eigenvalue equation and
the constraint equation , are the same vectors that
obey the eigenvalue equation

(146)

Applying this to (143), we obtain the following the generalized
eigenvalue equation for Neumann boundary conditions:

(147)

Rows of (i.e., eigenvectors) corresponding to eigenmodes
that do not obey the constraint will vanish (to numerical
precision) when left multiplied by . All such eigenmodes
and eigenvectors should be discarded.
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B. Scalar Laplace Modes

We seek solutions that obey the Laplace equation

(148)

inside and vanish on all boundaries of except one
(call it ), where we may arbitrarily set it to unity. Since
our basis functions vanish on the boundary, we need to
construct a special function that is continuous and
evaluates to unity on . For example, given triangular
patches parameterized by the three (nonindependent) triangle
coordinates , , and , we could take on all
patches that are not in contact with the boundary,
on all patches that have the vertex on the boundary,
and on all patches that have edge on the
boundary. Then we want to approximately solve

(149)

Applying the operator to both sides and inte-
grating the resulting equation by parts produces the following
linear equation for the basis function coefficients for the
potential function associated with theth boundary:

(150)

where is as defined in (139).
To make normalized TEM modes out of these Laplace

modes, we need them to obey

(151)

which means the coefficients of the discretized representation
of must be scaled to make

(152)
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