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Integral Equations and Discretizations
for Waveguide Apertures

John J. Ottusch, George C. Valley, and Stephen Wandzura

Abstract—We present integral equations and their discretiza- Our development is based on the assumption that the
tions for calculating the fields radiated from arbitrarily shaped  waveguide is:
antennas fed by cylindrical waveguides of arbitrary cross sec-

tions. We give results for scalar fields in two dimensions with ~ ° translationally invariant in the half-space behind the aper-

Dirichlet and Neumann boundary conditions and for (vector) ture along the axis normal to the aperture;
electric and magnetic fields in three dimensions. The discretized < terminated by a perfect absorber or is so long as to be
forms of the equations are cast in identical format for all four practically nonreflecting;

cases. Feed modes can be TM, TE, or transverse electromagnetic
(TEM). A method for numerically computing the modes of an
arbitrarily shaped, cylindrical waveguide aperture is also given.

« filled with a linear, isotropic, homogeneous medium;

¢ enclosed by walls that are infinitely hard or infinitely soft
in the scalar scattering case or perfectly conducting in the
electromagnetic scattering case.

The first section is devoted to finding continuous and
|. INTRODUCTION discretized forms of the waveguide integral equations for

UMERICAL simulation of the electromagnetic perfor_scalar waves and then a_lpplying them to more general_sca_ttering
N mance of antennas using integral equations required@Plems. These equations apply to acoustic scattering in two
mathematical model of the driving sources. In contrast §J hree dimensions as well as the two-dimensional (2-D)
scattering cross-section computations where a distant soufgglogues of three-dimensional (3-D) electromagnetic scat-
creates a plane wave in the vicinity of the scatterer, constrd€/ind (which apply to scatterers with translational symmetry
tion of an accurate source model for an antenna is nontrivid], @ diréction orthogonal to the axis of the waveguide). In
If a simple approach, such as a “delta-gap” excitation [ﬂm se(_:ond section, we do the same for 3-D electromagnetic
is used, the accuracy of some important antenna parameté??,tte”ng' The two treatments are entirely al_"nalogous_. Fgrmu-
such as input impedance, gain, and reflection can be seriod&f for the power flow out of (due to the given excitation)

compromised, even for cases in which the far-field patternd§d into (due to back scattering) the waveguide are also
obtained accurately. given in each section. In the third section, we show how the

The purpose of this paper is twofold. First, we devebwaveguide integral eqqat!ons can be extgnded to more general
integral equations representing exact specification of the fidifjcumstances. Prescriptions for numerically computing the
emanating from an aperture of arbitrary shape with the fiefgodes of cyhndrlcal wavegwqes with arbitrary cross sections
entering the aperture left unconstrained and to be determinBy e found in the Appendix.

The exact definition of the “emanating” field is accomplished

by analysis of a translationally invariant waveguide that has I
the cross section of the given aperture. In the context of

a generalized scattering problem such as a waveguide-fed
antenna, such an integral equation may serve as a boundarModes
condition that must be obeyed inside the waveguide on anyAn arbitrary field(x) that satisfies the scalar Helmholtz
plane normal to its axis. Second, we derive discretized formaguation

of the integral equatiofs(using the method of moments)

Index Terms—Aperture antennas, integral equations.

. SCALAR WAVEGUIDE EQUATIONS

that are suitable for numerical computation. As part of this (V2 +k2)p(x) =0 1)
development, we give a useful interpretation of the kernel that
appears in the “waveguide integral equation.” inside a waveguide aligned with the axis, can be written
as a sum of modal componeftsaveling in the+z and —z
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Likewise, the longitudinal derivative of the field may bewvheren(x) is the outward unit normal t¢' at x. In the case

written as
Op(x1,2) 8 —ig WK
—, = zn:(ane —bpe )Z—nun(XJ_) 3)
where
k

is the modal impedance. In these equations, an implicit*
time dependence is assumed for the fieldls,= w/c is
the free-space propagation constant ahdandw,(x, ) are,

of a waveguide aperture; simplifies to

Ip(x|, #')

a9z (11)

O’(XJ_,O)E— ;XL onW.

z2’=0

Inserting this into (8) and dropping the spatial coordinate
we obtain the following integral equation on the waveguide
aperture that relates the field, its longitudinal derivative, and
the specified waveguide excitation &#:

207 (1) = wix) = [ dHExLxL)ol). (12)

respectively, the propagation constant and transverse fieldd(x,,x’ ) is the kernel of the “square root” of the trans-
distribution of thenth mode inside the guide. The modes areerse wave operator in the sense that

eigensolutions to the scalar wave equation
(V3 +E = B2 un(x1) =0 (5)

for x, inside the waveguide apertusd and thew,(x )

are constrained to satisfy the boundary conditions of the
waveguide walls whex is on the boundary of the aperture

[ G XL = Gateax) (13)

where G, obeys

(V3 +I€2)GJ_(XJ_,X/J/_) = —6(x1—x) (14)

JdW. With proper normalization, the modes form a complet@side the waveguide and satisfies the boundary conditions on

and orthonormal set of functions ovér, i.e.,

Zun(xJ_)un(x’J_) =§(x, —x’) Completeness

n

and

/ dx | U (X1 )up (X)) = 6y Orthonormality  (7)
W

B. Waveguide Integral Equation

Let 4°¥*(x,#) denote a specified outgoing wave = 0
correspond to the plane of the waveguide aperture, and
rest of the waveguide be located in the half-space with 0.

Using the modal expansions and the completeness relation
for the modes, we can write the following expression for 2
$°"(x,0) in terms of the field and its longitudinal derivative

on W:

out
XJ_ )

Z AUy, XJ_
3 Z(an + b )un(x1)
1 Zn,

+ 3 zﬂ: E(a

1 1
3000+ g [ A AL

o p(x’|, )
az'

n n)Z_nU'n(XJ_)

(8)

z'=0
where
Zn

Hixex)) = 3 i), )

For any pointx on a general surfacé, we may define an
independent surface field quantity

o(x) = — xl/iglxﬁ(x) -V'y(x'); xonS (10)

(6)

the waveguide walls.

A different relation betweerny, o, and the outgoing
wave is obtained if we specif@p°t(x,2)/0~» instead of
PO (x ], ) to write

a¢out (1,0 Zan—un X )
=5 Z an 4 bp) ——un(x1)
the #3327 (o = bualxs)

_ 1 a”(/}(XJ_, - )

+ 5/{/{ dx’lf:f(xl,x’l)

azl z'=0
X Z/)(XJ_, 0) (15)
wheré
H(x,,x|)= ;—un(xL)un (x)). (16)

Dropping the spatial coordinateand definingr as before, we
get an alternative form for the waveguide integral equation

a out a .
2 Y a/SXJ_) _ 1/};?:_) +/de’LH(xJ_,x’J_)z/)(x/J_) (17)
or
a jout -
_ZVTV(XL) =o(x1)— /w dx'| H(x, ,x' )¥(x'). (18)

H(x,,x') and H(x,,x,) are “inverse operators” in the
sense that

/ dX/J_H(XJ_,X/J_)I:I(XJ_,XJ_) 8(x1—x). (29)
W

SNote thatH(xl,x’L) is not afunction since the sum over alk does
not converge. Rather, like the Dirac delta “functioi(x, ,x’ ), it is a
distribution, which, when convolved with a suitably smooth function, produces
a well-defined value.
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eliminate+, putting the known field)°"*(x) on the left and
the unknown quantity(x) on the right

.
waveguide | w

_9 jé dS/(fl/ ) V/G(X, X/))Z/)OUt(X/)
w

Fig. 1. Antenna system composed of waveguide apefflirand antenna = jé ds' G(x, x" o (x') —1—74 ds'G(x, x" o (x')
surfaceS. 5 w

—1—74 ds’(ﬁ’-V’G(x,x’))/ ds" H(x',x" o (x")

Using (12) and (18) on the waveguide apertdfg we W W
. ) . (24)

can derive boundary integral equations that apply to more

general scattering cases. For example, we can write coupigfl . on S and

boundary integral equations for the case of a waveguide

aperture connected to a general scatterer. This is demonstrategout (x) — 2 j{ ds' (' - V'G(x, %))y (x)

in the next subsection for the special cases in which the w

scattering surface obeys either Dirichlet or Neumann boundary — _ j{ ds' G(x, ¥ )o (x)

conditions. In both cases, it is assumed that the union of the s

scatteretrS and waveguide apertuf®” forms a closed surface,

/ / / 1 / /
as indicated in Fig. 1. - j’i ds'[G(x, x')o(x) — S H(x,x)o(x')]

linl ! ! 1 ! 1 1

C. Coupled Integral Equations + jé ds'(i’ - V' G(x, x ))/W ds"H(x', x")o (x")

In this section, we derive integral equations relating the (25)
known field emanating from the waveguide aperture to %Qr - on W
unknown surface field (eithep or o) for the generic closed '
antenna system shown in Fig. 1. For Dirichlet (Neumann
boundary conditions o, the unknown surface field on both
S and W is chosen to ber(7)).

1) Dirichlet Boundary Conditions o1§: The integral equa- 1 . S , , ,
tion for the field (in the absence of an explicit incident wave)ﬁa(x) =—(Ax) V)j{ ds'{{a(x") - VIG(x, )] (x)

2) Neumann Boundary Conditions o$: The integral
guation fors (i.e. the normal derivative of the field) may
be written as [4]

) sew
s [4] +G(x,x)o(x')} (26)
1
S0 = s () - VG ) or
+ G(x, x o (x")} (20) %a(x) = j{ ds'{{f(x) x VG(x,x')] - [a(x) x V'h(x')]
sew
for x on S @ W. The Helmholtz kernelZ(x, x’) is given by — K (A(x) - 1(x)G(x, x" W (x')
i sy = 4 1Ho (Bx—x']) i 2d ” —(x)VG(x,x)o(x)} (27)
(%) = el;‘f—:,‘ll‘ in 3d (21) for x on S @ W. The first form is more compact (and for that

reason is employed below), the second more convenient for
where Hél) is the zeroth-order Hankel function of thenhumerical computation. For Neumann boundary conditions on

first kind. For Dirichlet boundary conditions o (i.e., S (i.e., o(xons) = 0), we have

h(x S) = h
y(x onS) = 0) we have 0= —(n(x) -V)/Sds’[ﬁ(X') -V'G(x, x| (x)
0= ]4 ds'G(x,x')o ()
SoOwW

~ (809 V) | df () VO X))
+ /ﬂ s () - VG X)) (22) + G K)o () (28)
for x on S and for x on S and
1 / / / 1ax:—f1x~ s'(x’) - V' G(x, x|y (x!
5w(x):ﬁ@vvdsG(x,x)o—(x) 50 (%) = —(a(x) V)/Sd [A(x’) - VIG(x, x)]¢(x')
+ /w (s R(x) - VGO XD (23) - (A(x) - V) /w ds{[(x) - VG, Xy (x)
+ G(x,x)o(x)} (29)

for x on W. Equations (22) and (23) along with either (12)
or (18) form a set of coupled integral equations to be solvédr x on W. Combining (28) and (29) with (18), we can
for ¢»(x) on W and o(x) on S & W. Using (12) we can eliminates and write the following integral equations fg(x)
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in terms of the known quantitg«°"(x)/dz: Then, by substituting (32)—(35) into (12), and applying the
out testing operatorf,. dsf;(x)- to both sides of the resultant
o - W . :
2/ ds'(f - VG(x,x)) 3 (x) equation, we arrive at the discretized form of (12)
w ® ) R I
) ) 2V = NS — XY (36)
=(f- V)/ ds'(n’' - V'G(x,x")y(x)
s where
+ﬁ-V/d’ﬁ’-V’Gx,x’ x .
( ) W S ( ( ))r(/)( ) ViVI :/ dS’(/)OUt(X)fZ‘(X) (378.)
w
+ [ ds'(h-VG(x, % / ds" H(x',x"y(x") (30) '
/W ( (e, %) w ( Jox) Ny = / dsfi(x) f;(x) (37b)
for x on S and v g g , ,
az/}out (x) N 2/ p /(ﬁ VG(X X/))az/}out (X/) i / S/ $ fZ X X )fj(X )
S .
Iz w ’ Iz [(ANYTA(AN™)];; (37¢)
:(ﬁ-V)/ ds' (i - V'G(x,x))p(x) and
S
Zn,
=+ (ﬁ . V)/ ds/(ﬁ/ . V/G'(X7 X/))z/)(xl) A = ﬁémn- (38)
w
1 . A similar procedure produces the discretized form of (18),
+ 5 /VV dS/H(X, X/)z/}(xl) name|y
+ / ds' (i - VG(x, x')) / ds” H(x',x"y(x") (31) 2V = NI - XV (39)
w w
where
for z on W.
- VV az/}out
V= [ s o) (402)
D. Discretization w
While analytical solutions for waveguide modes are known / ds/ ds' fi(x)H (x,x") f;(x)
for a few special cross sections, in general, modes must be WyTR -
computed numerically. Even when analytical solutions exist, = [(AN" )" A(ANT)]i; (40b)
it is more convenient (from a computational perspective)
use numerical solutions because then all interacting surfaces, .
whether physical or intangible (e.g. waveguide apertures), can A = ﬁgmn =AY (41)
be treated equivalently. Zn

Assume the waveguide aperture has been discretized intgquations (12) and (18) and their discretized equivalents
a set of patches that suppoft/ basis functionsf,.(x). (36) and (39) may be viewed as nonlocal inhomogeneous
Following the procedure given in the Appendix, we can writgoundary conditions that must be obeyed on the waveguide
approximate expressions for thé lowest waveguide modes aperture. They are nonlocal because the “surface impedance”

in terms of basis functions defined on the aperture termsX " and X" relate the field at one point on the aperture
to its derivative not just at the same point, but everywhere on
Z Ay frn (X (32) the aperture, and vice versa. The equations are inhomogeneous

if excitationsV" and V" are nonzero.
The discretized forms of the coupled integral equations
In the usual method of moments fashion, we approxmattor Dirichlet boundary conditions o% are obtained by first

the field ¢» and its normal derivativer on the aperture as roximating the source ofl in terms of basis functions as
linear combinations of the basis functions with unknownspp g
Z 5 Fm(x (42)

coefficients S} and 1}V
Z fn, (33) m=1

then substituting this approximation and the approximate ex-
pressions fory(x), o(x), and H(x,,x’,) on W into (22)

m=1

m=1

Z Y f(x (34) and (23) and finally applying the testing function operator
me1 Jsew dsfi(x)- to both sides. The result in block matrix form
We also approximaté! (x, x’) as a truncated sum over thé WA
computed modes {—QY (A;, )V }
el

Zn 55 sW SW AW =1 v W s
H(x,x') =~ Z Eun(x)un(x’). (35) = [ZZWS z }‘}/"‘ —(]XX‘)“ X } [}Tw} (43)
2
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where Using (12) to eliminate)(x), we arrive at the discretized form
of nin
v = / ds / ds' f;(x)(A" - V'G(x, X)) f;(x))  (44) , o
g s Jw ! =3 A (VY XTIV, (54)
Zy = / ds / ds' f;(x)GQ(x, %) f;(x) (45) m
@ s Similarly, we may decompose the longitudinal derivative of
with S or W replacinga and 3. the field as
An analogous result is obtained for the case of Neumann I (x) -
boundary conditions oi$. We approximate the source gh G D intin (%) (55)
as "
where
215 (% (46) i = / dst, (x) ‘Wé(x). (56)
m= w 4

substitute this expression and the approximate expressionsTaen, using
P(x), o(x), andH (x,,x', ) on W into (28) and (29) and then

apply the testing operator. The result is W{;(j) _ 3#};(?() 4 3¢2‘;(X) (57)
FYSW (_Ayw) —1‘7‘4/} and (18), we can writge"* and7* in discretized form as
=[Gvs T A S ] e = = A (58)
where and
v s [ asnoom et nK) @9 2 A (VYA XIS (59)
750 = / ds / ds' [, ()[A(x) x VG(x, x)] - [A(x) F. Power
X V' f(x)] kg(ﬁ( ) - B fi(X)G(x, ) f;(x)] The time-averaged power-flow density vector (the scalar

(49) equivalent to the Poynting vector) is [5]

(3(0) = 5 Relicw(x)V(x)’] (60)

where ¢ is a constant.

E. Modal Decomposition The total power flowing across the waveguide aperture in

In preparation for computing the power flowing across thi&e z direction is made up of an incoming part associated
waveguide aperture in either direction, it is useful to wiite With the incoming parts of andd+ /0~ and an outgoing part
and 8+ /8= in terms of modes propagating in either directior@ssociated with the outgoing partsfandd/9z. The total

By employing the completeness relation for the modes viR@wer exiting (entering) the waveguide aperture is given by
can decompose the field & into a sum over modes as

P = / ds{8%(x) - 2)
w

= Ntin(x) (50)
dPp*(x)*

with S or W replacinga and 3.

where
for & = out (in). This integral is most conveniently evaluated
=/ dsu, (x)(x) (51) by decomposing)* and 9y /8= into their modal compo-
w nents. The reason is that since the modes are orthogonal, the
is the amplitude of theth mode contained igh(x). Itis useful POwer in the sum over modes is equal to the sum of the powers
to further decomposes(x) into its incoming and outgoing iN €ach mode.

components The amplitude of the:th outgoing (incoming) mode con-
_ tained in(x) is n°* (ni*). Therefore, the time-averaged
P(x) = P™(x) + PO (x). (52) power exiting (entering) the waveguide aperture is
Since the discretized representation & (x) is given by (62)
VW, we may write the discretized form ef"* as 27,
nowt Z Ay VY (53) for o = out (in), wheren,,.« is the largest value of for which

S, is real. We exclude modes with imaginary propagation
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constants since such modes do not transport any power iatal we associate TE-polarized electromagnetic scattering with
or out of the guide on average. solutions to the scalar scattering problem with Neumann
The amplitude of thenth outgoing (incoming) mode con- boundary conditions according to

tained indy /9~ is 712 (7). Therefore, the time-averaged . olz) . .
power exiting (entering) the waveguide aperture is H(x) = ¢(z)y, E(z)=-—""nxy Neumann/TE (69)
Fmax 1y | o] wherey is the direction of translational invariance andis
P =¥ Zn || (63) the outward surface normal. Therefore, the waveguide-excited
k - 2 electromagnetic scattering problem with TM (TE) polarization
_ in which all the scattering surfaces are perfect conductors, is
for « = out (in). _ _ o equivalent to the waveguide-excited scalar problem, in which
1) Acoustic Waveslf 4 is the velocity potential, i.ey =  Neumann (Dirichlet) boundary conditions hold on the inner
V4, andp is the mass density, then the constamin (60) is  walls of the waveguide and Dirichlet (Neumann) boundary
given by conditions hold on all the surfaces of all the scatterers.
For electromagnetic waves in two dimensions, the constant
c=p 64) . in (60) is given by
Furthermore, the acoustic impedance [5] is related to our o= {ui@ Dirichlet/TE (70)
modal impedance by -1 Neumann/TM
ot W wherey ande are appropriate to the material inside the guide.
Ziete = 22, (65)

2) Electromagnetic Waves in Two Dimensior8uppose a lll. ELECTROMAGNETIC WAVEGUIDE EQUATIONS

waveguide whose axis is parallel fois also translationally , ;-4
IR L ) . . Modes
invariant in they direction, i.e., the waveguide consists ofA . o o _ .
a pair of half-infinite plates parallel to thgz plane. When  The electric aqd magnetic fields inside a wavegwde with
a geometry is translationally invariant in one direction, thBeérfectly conducting walls can be decomposed into modal
electromagnetic scattering problem can be decoupled iff@mponents just as the field and its normal derivative were in
two independent problems, each of which is isomorphic € scalar case. The essential difference is that now there are
a 2-D scalar scattering problem with a different boundaffree distinct categories of modal fields, namely TM, TE, and
condition. If the 3-D surfaces are perfectly conducting, tHgansverse electromagnetic (TEM); each is a vector function
boundary conditions for the corresponding scalar fields &@ther than scalar function. For our purposes, it is sufficient
the corresponding 2-D surfaces become either Dirichlet & consider only the transverse components of the electric
Neumann. and magnetic fields. Assuming the guide is uniformly filled
Solutions to the scalar waveguide problem with DirichWith @ n_ondissipati\_/g medium having dielectric constaahd
let boundary conditions inside the waveguide correspond RRNetic permeability:, we may writé [6]

solutions to the electromagnetic waveguide problem with g, (x,,z) :Z(anei,ﬁnz_i_bne—i,ﬁnz)un(xl) (71)
exclusively TE modes inside the waveguide according to ”
4 4 1
H A " WO8nz bn —i8nzy_~ 5 X uy,
E(x) = ¢(0)% H) = ZP% x5 DirichletTE  (66) 1(x1,2) =) (ane ) g A x un(x)
W n
(72)
and solutions to the _s_calar_ vv_avegwde problgm with NeWgere the modal impedand, is given by
mann boundary conditions inside the waveguide correspon 5,
to solutions to the electromagnetic waveguide problem with n %> forn € TM modes
exclusively TM modes inside the waveguide according to Zn =4[ X L for n € TEM modes  (73)

5, forn € TE modes

H(x) = ()%, E(x) = ff(x)i x % Neumann/TM (67) The rpodes are the eigensolutions to the transverse Helmholtz
We equation

_ N_ote how t_h_e correspondence between TM or TE _polar- (Vi 4R /3721)11”()(” -0 (74)
ization and Dirichlet or Neumann boundary conditions in the
waveguide mode case differs from the correspondence betwémnx inside the waveguide apertui¢ and u,,(x, ) con-
TM or TE polarization and Dirichlet or Neumann boundargtrained by the perfect electrical conductor boundary condition
conditions in the case of scattering from perfect conductormn W . With proper normalization, the modes form a complete
On a perfect conductor we associate TM-polarized electromag; , .

. . . . . As in the scalar case, cutoff modes are neglected.
netic scattering with solutions to the scalar scattering problernf

with Dirichlet boundary conditions according to § (x —x') is a tensor distribution, which, for any vector-valued surface
functionsf(x) andg(x) on 1 obeys

E(x) =¢(2)y, H(z)= —(;(2 §x A DirichletTM (68) 700 5 () ) =100 g0
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and orthonormal set of functions ovér, i.e., where the dyad
/ _H — PN
zn:lln(XJ_)un(XJ_) =6 (xL—x)) H(x,,%|) = ZZnun(xJ_)un(X/J_) (81)

3@ X un(x1))(# X un(x))) =6 (x1 —x))

n

is the analogue of the scalar functiégh(x, ,x’, ). Dropping

the spatial coordinate, we get the following expression for
the waveguide integral equation di’, which relates the
and transverse components of the electric field, the magnetic field,

/ dx W, (x1) - u,(x1) = 8m, Orthonormality (76) and the specified electric field waveguide excitationl@n
w

Completeness (75)

B. Computation of Vector Modes from Scalar Functions 2ET (x1) =E1(x1) - / dx, H (x1,x/)
W
The TM and TE modes can be deduced from the solutions (7 x Hy(x')). (82)

to the scalar Helmholtz equation div with Dirichlet and
Neumann boundary conditions, respectively,@ [6]. The Defining equivalent electric and magnetic currentsigrby
TM mode corresponding to theth scalar waveguide mode

©n(x_1) obeying Dirichlet boundary conditions @V is J(x1) =2 xHi(x1) (83)
(L) = Viga(x1) 7 M(xy) = -2z x EL(x1) (84)
vk =B allows us to write the waveguide integral equation in terms of
and the TE mode corresponding to th#h scalar waveguide equivalent currents as
mode1),,(x ) obeying Neumann boundary conditions &W -
is 2ET"(x1) =2 x M(x,) — / dx'| H (x1,x) - J(x'|).
A " (85)
_ 2x Via(xy) 7g) f H"(x.,2) is specified instead oE"*(x,2), we may

u,(x,)= . .
(L) VK2 — 32 write

1,
H‘J)_m‘(XJ_v 0) = Zanz_z X un(XJ_)

TEM modes are possible if and only 7 is multiply — n
connected, in which case they are related to solutions to the 1 1
electrostatic potential problem di. The TEM mode corre- =5 2 (a0 +ba) 2 X up(x1)
sponding to the solutio,,(x) to the electrostatic potential n "
problem onW with all except thenth boundary at zero _,_1 L(an —bp)z X uy(x,)
potential is given by 246~ Zn

un(xl) X VLCn(XL)- (79) _ 1HJ_(XJ_,O) + 1/ dX/J_ E (XJ_,X/J_)

The scale factor should be chosen to enforce orthonormality 2 2 Jw
for the TEM modes. This amounts to assigning a particular (z2x EL(X],0)) (86)

value to the otherwise arbitrary potential on tith boundary. h he dvad
For all TEM modes,3, = k. where the dya
C. Waveguide Integral Equation H (x1,%|)= Z Zi(ﬁ X W (x))(2 x u, (X)) (87)

Let E9**(x,,z) be the transverse component of electric "

field for a specified outgoing wave. Using the modal expags o analogue of the scalardistributiéﬁxbxl). Dropping

sions and the first completeness relation for the modes, we ¢gg spatial coordinate, we get an alternative form of the
write the following expression faES“*(x , 0) in terms of the waveguide integral eqhation

transverse components of the electric and magnetic fields on

«—

w: 2H™ (x, ) = H (x1) + / dx', H (x,x)
w
E7*(x1,0) = ) anun(x1) (B X BuG) (69)
1" or in terms of equivalent currents
1" . 2H(i“t(xl)=—i><JL(xl)—/ dx'| H (x1,%x))
W
2 Z Inlln = In) g () - ML(x)). (89)
_ EEJ_(XJ_a 0) — 1/ dx/, ﬁ (x1,%,) Equations (85) and.(89). are the electrpmagn_etic c;ounterparts
2 2 Jw of the scalar waveguide integral equations given in (12) and

(&% H, (¥,,0)) (80) (18).
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D. Discretization Similarly, the discretized form of the second waveguide inte-
As stated above, the TM and TE vector modesignare 9ral equation (89) becomes i
derivable from the scalar modes d# with Dirichlet and VW = NIV _ XW W (97)

Neumann boundary conditions @V, respectively, and the \,ere
TEM vector modes (if any) are derivable from the solutions to

the electrostatic potential problem &h. One can compute ap- v = / dx  H™ (x1) - (fi(x1) x 2) (98a)
proximate solutions for the scalar modes and the electrostatic W -

potential by putting scalar basis functionsdhand following XZV; = / de/ dx'| (fi(x1) x 2)- H (x1,%))

the procedure given in the Appendix. Once this has been w w

accomplished, one has to choose between keeping the repre- (£(xL) x 2)

sentation of the modes in terms of the scalar discretization or = [(BN"YTABN"),; (98b)

converting it to an equivalent vector discretization. If the scal
discretization is kept on the aperture, specialized code must

be written to handle interactions with the waveguide aperture. A = iénln = (A Y. (99)

On the other hand, if the waveguide modes are converted to Zin

a vector discretization early on, then the interactions between coupled Integral Equations in the Perfect Conductor Case
the various scattering surfaces, whether physical or waveguide
aperture, can be handled in a consistent fashion, i.e., entirflf
in terms of vector basis functions. For computations involvin
more than just the waveguide alone, we find the later choi

uppose the waveguid& is the primary source of radiation

a general antenna problem in which all other scattering
grfacesS‘ may be treated as perfect conductors. If there are
to be the simplest and cleanest to implement. no other sources, the electric field integral equation (EFIE) for

If we discretize the electric currer(x,) and magnetic ™ on S & Wis [7]

currentM(x. ) on W in terms of M vector basis functions ¢ _ —lﬁ(x) x M(x) +7§ ds’ [iwu(T +ivlvl>
f,.(x1) using 2 Sow k2

M / / ! ! !
. X G(x,x)-J(x)—i—VG(x,x)XM(X)} . (100)
Ixi)m Y I En(x1) (90)
m=1 The tangential component of the electric field vanishes on a
M w X perfect conductor; hencdI = 0 on S. At this point, we could
M(xy) ~ Y S (fn(x1) X 2) (91)  rewrite the above equation in the separate forms appropriate
m=1 to x on S andx on W and eliminateM on W by means
we may write the first waveguide integral equation (85) in itsf (85), thereby obtaining a set of coupled integral equations
discretized form as for the fields onS and W, just as we did in the scalar case.
W _ AaWeW | W W Then we could convert them to discretized form. Alternatively,
VT =NTS X0 (92) we could discretize (100) as it stands, eliminate the unknown
where equivalent magnetic current amplitudes Bn using (92) and
- ot achieve the discretized form directly. For brevity, we follow
Vit = /deLEL (x1) fi(x1) (933) the latter approach.
w v A discretized version of (100) in block matrix form is
Nv‘,j = /VV dXLfi,(XL) . fj (Xl) (93b) 0 ZSS ZSVV YSVV IS
W
w / i / ’ |:0:| - |:ZWS AL —lNW:| I , (101)
XY = [ e [ B Gkl £00) N ] g
— [(BNW/’)TA(BNW/’)]ij (93C) where .
and Z%’B ziwu/(xds/ﬁds’ff(x)- <1 —i—ﬁV’V’)G(x, x')
W (X) = Bunfa(x) (94) £7(x') (102)
A, = Z 6o @5 Y37= / ds / ds'f2(x) - (V/G(x,x) x (£](x) x 7))
«@ 8
We get the elements d8,,,,, by computing inner products of (103)

the vector basis functions with gradients of the scalar bagisy s or 17 replacinga and 8 and I’ representing the block

functions. For example, ift,,, corresponds to a_T!\/_I modq, it of unknown current amplitudes afi, which is related to the
is clear from (32), (77), and (94) and the definition 5" electric current] on S by

that the entries in thenth row of B,,,,, are given by
I(x) = Y It (x). (104)

1
Boin = ———— Arn"/ de_VJ—f"(XJ-)
VK2 =32, %: T w ! Rewriting (92) as

B (xO) (N Yk (96) SW = 2NV (NI XV Y (105)



OTTUSCHet al: INTEGRAL EQUATIONS AND DISCRETIZATIONS FOR WAVEGUIDE APERTURES 1735

we can eliminate the block of unknowis” in favor of I G. Power
to obtain the discretized version of (100) in its simplest block 1o time-averaged power-flow-density vector (Poynting
form vector) is [6]

_2YsVV(NVV)71VvV 1
[ VW } (S(x)) = 5 Re[E, (x) x H] (x)*]. (117)

_ Zsf Z5W + E(SW(N“f)_l IS) (106) The total power flowing across the waveguide aperture in the
zvs ZWW _ 1xW - z direction is made up of an incoming part associated with the
incoming parts o2, andH; and an outgoing part associated

F. Modal Decomposition with the outgoing parts dt; andH . The total power exiting
By employing the first completeness relation for the mode€ntering) the waveguide aperture is given by
we can decompose the transverse part of the electric field into P — / ds(S*(x) - 2)
a sum over modes as w
1 @ o *
E,(x)= Znnun(x) (107) =3 /w ds Re[ET (x) x Hf (x)] (118)
" for a = out (in). This integral is most conveniently evaluated
where by decomposingt$ and Hf into their modal components,
since the modes are orthogonal and the power in the sum over
N = / dsu,(x) - E | (x) (108) modes is equal to the sum of the powers in each mode.
W

The amplitude of thesth outgoing (incoming) mode con-
is the amplitude of therth mode contained ifE (x). It is tained inE, (x) is 75" (ni®). Therefore, the time-averaged
useful to further decomposE, (x) into its incoming and power exiting (entering) the waveguide aperture is
outgoing components Tomax 772“|2

P = 1770

E.(x) = Ef(x) + ET"(x). (109) zn: 22n (9
for a = out (in) wheren,,,, is the largest value of for which
Sy, is real. We exclude modes with imaginary propagation
constants since such modes do not transport any power into
or out of the guide on average.

The amplitude of the:th outgoing (incoming) mode con-
tained inH_is 72" (). Therefore, the time-averaged power
Using (85) to eliminatelZ, (x), we arrive at the discretized exiting (entering) the waveguide aperture is

Since the discretization d&5"*(x) is given by V"Y', we may
write the discretized form ofi2* as

19 =" Apm Vi (110)

form of » N o
n N max Z'n|77$f|
m_NT 4 (W W pr= (120)
M= A (VY + XV, (111) .
m for o = out (in).

Similarly, by employing the second completeness relation

for the modes, we may decompose the transverse part of the
magnetic field as Up to this point, we have assumed that all energy coupled

into incoming traveling modes is completely absorbed. It is
H, (x)= Z M(Z X up(x)) (112) possible (at the cost of some extra complication) to relax this
n assumption, as we now demonstrate for scalar scattering.
Suppose a uniform waveguide is terminated after lerdgth
by a wall (oriented perpendicular to the axis of the guide)
i = / ds(2 X wn(x)) - H (x). (113) v_vhose r_eflectivity for thqnth waveguide mode i8,,. For the_ _
w time being, assume no independent sources are located inside
the guide. Every mode that enters with amplitégeexits with
amplitude a, = r,¢?2Lb,, ie., if p(x) = 3, bpun(x)
H, (x) = H"(x) + H"(x) (114) comes in, theny*"'(x) = 3 r.e’™? b, u,(x) goes out.
This expression for)°**(x) can be rewritten as

IV. EXTENSIONS

where

Then, using

and (89), we can writg°"* andi" in discretized form as

A= =3 A VY (115) ) = /w ds' R(x, x )i (x') (121)

and where

== Apm(VV + XWSW),. (116) R(x,x) =Y rpe® o, (x)u, (x'). (122)

m
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After discretization, (121) becomes V. SUMMARY

NWgout — (ANW)T R(ANY) 5™ (123) As the previous discussion illustrates, the equations that
describe scattering interactions with waveguides can be put
where I is a diagonal reflectivity matrix whose elements argnto simple forms that are common to scalar scattering and
R — p.oiBi2Lg vector scattering. For example, the boundary condition on a
i = TiC i (124) 8 ; .
waveguide aperture may be written in both cases as
A boundary condition relatingg ando on W can be obtained
by applying the operatof,,, ds'(6(x,x") + R(x,x’))- to both
sides of (12) and using (52). The result is

2V = NWSW _ XW I (132)

or
/W ds'(6(x — x') + R(x,x)) /w ds"H(x',x")o(x") oUW — NW W _ §W W (133)

:/ ds'(§(x,x") — R(x,x"))p(x") (125) In the scalar case, the unknown amplitud8¥ and S%

w are related to the field) and its longitudinal derivativer

or in discretized form according to (33) and (34); the matricag8’, X", and XV
w Wl » W W W W and the vectors’" and V" are given by (37) and (40).

(NT+ RV TXTIT = (N - R)ST. (126) 1 ihe vector case, the unknown amplitude¥ and s%

The discretized relation takes a particularly simple ar@fe related to the equivalent electric and magnetic currents
appealing form if: 1) the basis functions used & are J andM, according to (90) and (91); the matricas”, X,
orthonormal in which cas&"” = 1 and 2) if as many modes and X" and the vectors’" and V' are given by (93)
are computed as there are basis function$toim which case and (98). The discretized equations for scalar scattering when

ATA = 1. Then (126) is equivalent to W obeys the waveguide boundary condition afidobeys
S W Dirichlet boundary conditions [see (43)] are also identical

TX"IT =5 (127) 1o the equations for vector scattering whéW obeys the

where waveguide boundary condition arftlis perfectly conducting
[see (106)]. The commonality extends to the expressions for

T;; = [ATtA); (128) power transport into and out of the waveguide as well.

and
147, APPENDIX
fn = 1—7,, Smn (129) Construction of theX and X matrices that appear in the

is the diagonal transmission matrix giving the amp"tudglscretlzed expressions for the waveguide boundary condition

transmission of each mode at the waveguide aperture. requires an approximate representation of the eigenmodes in

X . ) ... terms of basis functions on patches covering the waveguide
It is easy to modify these relations to allow for a specifie . . : .
) el N - . “aperture as well as the eigenvalues associated with these eigen-
outgoing wave. Suppose the figldP°°(x) is specified as being

emitted from the aperture in addition to the reflected wave, i_é}?odes. For a few geometries such as rectangular waveguide

YOUt(x) = e (x) + 5 (x). We useyei(x) here to refer a!’\d coaxial waveguide, complete analyti(_:a! solut_ions for the
to the quantity on the left side of (121). The result is eigenmodes are k”.OW'?- In SUCh. cases, itis a simple matter
to calculate the projection of a given eigenmode onto the set
/ ds' (6(x — x') + R(x, X/))/ ds" H(x', x" o (x") of basis functions. In the general. case, an eigenvalue equation
w w must be constructed for computing the modes.
, , , , e In this Appendix we describe a means for computing the
- /w ds'(6(x,x7) — R(x, x)p(x') — 20 (x). (130) modes of cylindrical waveguides of arbitrary cross section.
There are three subsections. The first and second subsections
describe methods for numerically solving the scalar Helmholtz
2vspee — (NW — R)SW — (NY + Ry(NY)~1 XV TV equation for the waveguide modes when the waveguide walls
(131) obey either Dirichlet or Neumann boundary conditions, respec-
tively. The third subsection describes a method for numerically
is the obvious analog to (36) and reduces to it for— 0. solving the scalar Laplace equation for the electrostatic poten-
Even more generally, one can imagine the situation tral of a multiply-connected cylindrical waveguide, all but one
which each incoming mode can be scattered into one or mafewhose surfaces is held at zero potential.
outgoing modes. Any number of practical effects (such asThe Helmholtz modes are directly applicable to scalar prob-
nonuniformities in the cross section or imperfect terminatiod@ms such as acoustic radiation and scattering. The Helmholtz
could cause this to happen. In such a case, the reflectivityd Laplace modes are applicable to electromagnetic radiation
matrix R contains the amplitude for every mode to scattemd scattering problems in that the TM and TE modes can
into every other mode and is no longer diagonal. be deduced from the scalar Helmholtz modes with Dirichlet
Analogous results obtain for the alternative form of thand Neumann boundary conditions, respectively, and the TEM
scalar waveguide boundary condition and for the vector case®des are derivable from the scalar Laplace modes. The

Its discretized form
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correspondence is described further in Section IlI-B of the 2) Neumann Boundary Conditions om: The Neumann
main text. boundary condition demands th@, - V )u,(x, € W) =

We will assume the availability of scalar basis functions th&t If we had basis functions whose values were nonzero on
are continuous across patch boundaries. A simple exampletteé boundary but whose edge derivatives vanished on the
such a basis function is a function that spans two triangullaoundary, we could construct the modes directly from them,
patches sharing a common edge and whose value goes lineprdy as we did in the Dirichlet case. Since we do not, we need
from unity on the common edge to zero at the opposirtg augment our usual set of basis functions on the interior of
vertices. The extension of continuous scalar basis functiol$ with extra basis functions associated with the boundary of
to higher order polynomials in the surface parameterizatidfi. Edge-based basis functions supported on the patch pairs
results in three types of basis functions that may be classifigmhe each froms and W) that share a common edge 6/
according to whether they span two patches that sharecamprise this set.
common edge, span multiple patches that share a commoithe generalized eigenvalue equation again derives from
vertex, or have single patch support. Basis functions of the fi{435) and (136). In this case, however, the unknown coeffi-
variety go to zero at the opposing vertices and are nonzero@entsA,,,,, also need to obey the added constraint that the edge
the common edge; basis functions of the second variety goderivative of each eigenmode must vanish on the boundary. We
zero on all edges not touching the central vertex (where themay write this constraint in integral form as
are nonzero); basis functions of the third variety are zero on

the boundary of a patch and nonzero in its interior. dlé)(x1) Viun(x1)=0 (140)

oW
which, after substituting the discretized approximationdgr
A. Scalar Helmholtz Modes becomes

1) Dirichlet Boundary Conditions oAW: Operating on

both sides of (5) byf;;, dx_ f,,,(x1) turns it into an integral Z CmAnm =0 (141)
equation, which may be written as m
where
[ e MV LV )
w Cm = dlél (Xl) . VLfm(xL). (142)

= (K* —/3721,)/ dx) fo (X0 )un(x1). (134) o

w Thus, we seek solutions to the eigenvalue equation
Integrating the left-hand side by parts and applying Gauss’z( Moo — Lot ) vt = ( L2 [32) Z N,oo A
theorem to convert one of the resulting surface integrals into “ "
a boundary integral, we get (143)

/ x0) (1) where
dx Vi fr(x1) - Viua(x1 )
w Lo = 74 Al (X )(@L(X1) - Vo fur(x1))  (144)
oW
- jgw dlfm(xi)(@L(xL) - Viua(xL)) and the matriced/ and N are defined as in the Dirichlet case,

subject to the constraint given by (141).
= (K* —/32)/ dx | fm(x1)un(x1) (135)  We can subsume the constraint information directly into
w the eigenvalue equation by use of the projection oper&tor
where é, (x, ) is the unit edge normal t@W at x,. The defined by
unit edge normal is in the plane ¥ and points into the P=1-Cr(CCT) L0 (145)
waveguide wall. o _ _ )
The Dirichlet boundary condition demands that(x, € WhereC is given above and represents the identity matrix of
OW) = 0. If we expand the modes,, in a set of basis the proper dimensionality” has the property that it reproduces

functions f,,, that are continuous and vanish on the boundaﬁfﬁorsyj that obeyCzx = 0 and it annihilates vectors that
0

of W, ie., not. P also has the property that the vectarsthat
simultaneously obey the eigenvalue equatigm = Az and
un(X1) = ZAnmfm(XL) (136) the constraint equatio®xz = 0, are the same vectors that
. m . obey the eigenvalue equation
then the boundary integral term vanishes and (135) becomes POPz = \z. (146)

a generalized eigenvalue equation for the mode coefficients ) . ) ) .
Applying this to (143), we obtain the following the generalized

ZMmm’Anm’ = (kQ - /3721) ZNmm’Anm’ (137) eigenvalue equation for Neumann boundary conditions:

" " PN YM = L)P| Aps = (K = 2) Ay (147
Where ; [ ( ) ]nnn,’ ( [n) ( )
Ny E/ Ax ) frn(X20) frr (X1) (138) Rows of A (i.e., eigenvectors) corresponding to eigenmodes
w that do not obey the constraint will vanish (to numerical

M E/ dz V1 frm(x1)- Vi far(x1).  (139) precision) when left multiplied byP. All such eigenmodes
w and eigenvectors should be discarded.
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evaluates to unity ordW,,. For example, given triangular
patches parameterized by the three (nonindependent) triangle
coordinatesy;, u», and uz, we could takey, = 0 on all John J. Ottusch was bom in Landstuhl, West

. . Germany, in 1955. He received the B.S. degree
patches that are not in contact with the boundary,= u; from the Massachusetts Institute of Technology,
on all patches that have the vertex = 1 on the boundary, Cambridge, in 1977, and the Ph.D. degree from the
and+,, = 1 — u,; on all patches that have edgg = 0 on the

University of California, Berkeley, in 1985, both in
. hysics.
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2 _ )
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Z Mm,m,’Anm,’ = / dxlvlfm,(xl) N VL"(/)n(.’L'L) (150)
W

m/
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_ / X1V 1 - (un(21)V Lt (21)
w

where M is as defined in (139).
To make normalized TEM modes out of these Lapla
modes, we need them to obey

1= /ﬂ dx w,(z1)  u,(zy)

= / dXLVLU,n(aZl) . Vlun(xl)
w
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= / dl(éJ_(XJ_) - VJ_U/n(XJ_)) (151)
aWwW,,
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1= / dléJ_(XJ_) M VJ_ Z Anrn’frn’(xJ_)
OW,, ’

m

= A / dléy(x1) - Vifm(x1). (152)
7 oW,



