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Abstract— In this paper, we present an accurate method
of moments (MoM) solution of the combined field integral
equation (CFIE) using the multilevel fast multipole algorithm
(MLFMA) for scattering by large, three-dimensional (3-D),
arbitrarily shaped, homogeneous objects. We first investigate
several different MoM formulations of CFIE and propose a
new formulation, which is both accurate and free of interior
resonances. We then employ MLFMA to significantly reduce the
memory requirement and computational complexity of the MoM
solution. Numerical results are presented to demonstrate the
accuracy and capability of the proposed method. The method can
be extended in a straightforward manner to scatterers composed
of different homogeneous dielectric and conducting objects.

Index Terms—Electromagnetic scattering, moment methods.

I. INTRODUCTION

T HE calculation of electromagnetic scattering from arbi-
trarily shaped three-dimensional (3-D) homogeneous or

layered homogeneous dielectric bodies has been of consider-
able current interest owing to the wide application of materials
in a variety of radar targets. Analytical solutions are available
for only very limited geometries such as a sphere and a
spheroid. For dielectric objects having an arbitrary shape, one
has to resort to some approximate numerical techniques based
on either integral or differential equations. The integral equa-
tion approach is often preferred for homogeneous or layered
homogeneous objects because it limits the discretization of
the unknown quantity to the surface of the object and the
discontinuous interfaces between different materials.

Given a homogeneous dielectric object, using either the
equivalence principle or the vector Green’s theorem, we can
formulate a set of four integral equations to calculate the
electric and magnetic fields and in terms of equivalent
electric and magnetic currentsand on the surface of the
object [1]–[3]. The equation to calculate the electric field is
known as the electric field integral equation (EFIE) and there
are two such equations: one is for the field outside the object
(EFIE-O) and the other is for the field inside the object (EFIE-
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I). The equation to calculate the magnetic field is known as
the magnetic field integral equation (MFIE) and there are also
two such equations: one is for the field outside the object
(MFIE-O) and the other is for the field inside the object
(MFIE-I). Since there are four equations and two unknowns,
it is possible to develop a number of different formulations
to solve for and . For example, one can select one
equation for the field outside the object (EFIE-O or MFIE-
O) and another equation for the field inside the object (EFIE-I
or MFIE-I) to form a system of equations for a solution of

and . Unfortunately, such a solution becomes inaccurate
at frequencies that correspond to the resonant frequencies of
a cavity formed by covering the surface of the object with
a perfect conductor and filling its interior with the exterior
medium. This problem is commonly referred to as the problem
of interior resonance and it is particularly troublesome for
large objects because of a large probability to hit a resonant
frequency. One popular solution to this problem is to combine
EFIE and MFIE linearly to form a combined field integral
equation (CFIE) [4], [5].

Although the CFIE formulation has been used extensively
for conducting and impedance bodies, few researchers have
applied it to the analysis of scattering by 3-D dielectric
bodies. Rao and Wilton claimed the first use of CFIE for this
problem [5]. In their approach, is expanded in terms of the
Rao–Wilton–Glisson (RWG) [6] vector basis functions
and is expanded in terms of another set of basis functions

that are orthogonal to the RWG functions, withbeing
the unit vector normal to the scatterer’s surface. The resulting
EFIE and MFIE are then converted into matrix equations
using line-testing functions and a combined EFIE and MFIE
is then solved for an approximate numerical solution ofand

. Although Rao and Wilton argued that it is advantageous
for a stable numerical procedure to use two sets of spatially
orthogonal basis functions and to represent and ,
representing in terms of actually violates the property
of at the edges of dielectric because imposes the
continuity of the component tangential to the edge. Since

is related to the electric field by ; this, in turn,
requires the surface tangential electric field normal to the edge
to be continuous across the edge from one patch to another,
which is not true if the two patches are not in the same plane.

Another formulation, which is widely used for scattering by
3-D dielectric bodies [7]–[9], is the so-called Poggio, Miller,
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Chang, Harrington, and Wu (PMCHW) [2] who originally
developed the formulation [1], [10], [11]. In this formulation,
the EFIE for the field outside the object is combined with
the EFIE for the field inside the object to form a combined
equation (EFIE-O EFIE-I). Similarly, the MFIE for the
field outside the object is combined with the MFIE for the
field inside the object to form another combined equation
(MFIE-O MFIE-I). These two equations are then solved by
the method of moments (MoM) for and . This formulation
is found to be free of interior resonances and yields accurate
and stable solutions. However, by mixing the EFIE and MFIE
for the fields inside and outside the object, the PMCHW
formulation cannot produce a matrix equation that can be
considered as a constraint for the field outside the object. As
a result, the PMCHW formulation cannot be easily combined
with other methods such as the finite-element method (FEM)
for scattering by inhomogeneous objects [12].

In this paper, we first consider the MoM solution of CFIE
for scattering by 3-D dielectric bodies. We use the RWG
basis functions to expand both and and then use the
RWG functions as the testing functions to convert EFIE and
MFIE into matrix equations. By combining the resultant EFIE
and MFIE in a traditional manner, we obtain four different
formulations. We show that none of these formulations can
yield accurate solutions and at the same time be immune to
the problem of interior resonance. We then propose a new
formulation of CFIE, which, like the PMCHW formulation,
produces accurate MoM solutions and is free of interior reso-
nance. We then apply the multilevel fast multipole algorithm
(MLFMA) [13]–[18] to the new formulation to significantly
reduce the memory requirement and computational complexity
of the MoM solution.

II. FORMULATION AND ANALYSIS

In this section, we study a variety of discretization schemes
using the RWG functions as both the expansion and testing
functions for solving CFIE for scattering by a homogeneous
body. Our goal is to identify an accurate formulation to be
used for the implementation of MLFMA for a fast solution
of the problem.

Consider the problem of electromagnetic wave scattering
by an arbitrarily shaped and homogeneous body characterized
by a permittivity and a permeability and immersed in
an infinite and homogeneous medium having a permittivity

and a permeability . Introducing equivalent electric and
magnetic currents and on the surface of the homogeneous
body, which are related to the surface fields by
and , respectively, and applying the equivalence
principle to the exterior fields, we obtain an electric field
integral equation (EFIE)

(1)

and a magnetic field integral equation (MFIE)

(2)

TABLE I
MATRIX CONDITION NUMBERS FOR THETHREE SCATTERERS IN FIG. 1

where , denote the incident fields, and
the operators and are defined as

(3)

(4)

where denotes the surface of the body,is
related to by , and

(5)

in which . The bar integral symbol is used to
denote the principal value and the parameteris given by

where is the solid angle subtended by
the observation point [1]. For a smooth surface, and

.
Equations (1) and (2) can be discretized by first expanding
and as

(6)

(7)

where denotes the total number of edges onand
denotes the RWG vector basis functions [6]. Substituting (6)
and (7) into (1) and using as the testing function, we obtain
the TE formulation (short for where denotes a unit
vector tangential to )

(8)

where

(9)

(10)

(11)
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(a) (b)

(c)

Fig. 1. Bistatic RCS. (a) Dielectric sphere. (b) Dielectric finite cylinder. (c) Dielectric cube.

Similarly, from (2) we obtain the TH formulation (short for
)

(12)

where

(13)

(14)

(15)

Alternatively, we may choose as the testing function
and obtain from (1) the NE formulation (short for )

(16)

where

(17)

(18)

(19)

and from (2) the NH formulation (short for )

(20)

where

(21)

(22)

(23)

Equations (16) and (20) can also be obtained by taking the
cross product of with (1) and (2) and then using as the
testing function. That is the reason we used the abbreviations
NE and NH for the two equations.

Theoretically, any of (8), (12), (16), and (20) can be used to
provide a matrix relation between and , which can
be written as

(24)

However, it is well known that each of them suffers from the
problem of interior resonance and fails to produce accurate
solution at and near frequencies corresponding to the resonant
frequencies of the cavity formed by coveringwith a perfect
electric or magnetic conductor and filling it with the exterior
medium. To eliminate this problem, one has to combine an
equation from EFIE with another equation from MFIE to
obtain a combined equation [5]. For example, one can combine
(8) with (12) to obtain the TETH formulation or (8) with (20)
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to obtain the TENH formulation. One can also combine (16)
with (12) to obtain the NETH formulation or (16) with (20) to
obtain the NENH formulation. The combined matrix equation
can still be written in the form of (24).

Equation (24) cannot be solved unless another relation
between and is specified. Such a relation can be
derived by applying the equivalence principle to the interior
fields and doing so we obtain an EFIE

(25)

and an MFIE

(26)

where and the operators and are defined
similarly to and , provided that all the subscripts are
changed from “1” to “2.” Equations (25) and (26) can be
discretized in the same manner as for (1) and (2), result-
ing in the corresponding TETH, TENH, NETH, and NENH
formulations, which provide a matrix relation

(27)

Equation (27) can be combined with (24) to form a complete
set of linear algebraic equations for and . In addition
to the four formulations described above, another approach is
to first combine (1) and (25) to form one equation

(28)

and (2) and (26) to form another equation

(29)

and then discretize these two equations to provide a complete
set of linear algebraic equations for and . This
approach is commonly known as the PMCHW formulation
[2], [7]–[11] and instead of is often used as the
testing functions.

Among those described above, the PMCHW formulation is
known to yield an accurate solution and is free of the interior
resonance corruption. Although the CFIE for a homogeneous
scatterer has been solved by a number of researchers using
different expansion or testing functions, it has not been solved
before using the RWG functions as both the expansion and
testing functions as is done in this section. Therefore, it is not
clear which of the four formulations (TETH, TENH, NETH,
and NENH) can yield an accurate solution and is immune to
the problem of interior resonance. For this, we consider the
inner products and , which arise in the
TE and TH formulations. Apparently, both terms in
contribute to ; however, when , both terms in

do not contribute to and moreover, when
and are in the same plane the second term in does

not contribute even if . Therefore, the
is not well tested by . Next, we consider the inner products

and encountered in the NE and
NH formulations and, in this case, we find that when or
when and are in the same plane the second term in
does not contribute to ; however, the first term
always has a dominant contribution. Furthermore, when ,

Fig. 2. Bistatic RCS of a dielectric sphere.

Fig. 3. Bistatic RCS of a dielectric sphere.

the first term in has no contribution to .
This suggests that is not a good testing function for
and is not a good testing function for . Therefore,
in the TE formulation, is not well tested, while in the TH
formulation, is not well tested. Similarly, is not well tested
in the NE formulation, while is not well tested in the NH
formulation. As a result, in the TENH formulation is not
well tested and in the THNE formulation is not well tested.
Therefore, both TENH and NETH would fail to produce the
correct solution.

To verify the analysis above, we consider the problem of
plane-wave scattering by a dielectric sphere, a finite dielectric
cylinder, and a dielectric cube in a free-space. The sphere has
a diameter of , the cylinder has a diameter of and
a length of , the cube has a side length of and
all have a relative permittivity . The first four rows in
Table I give the condition number for the matrices involved
and the result indicates that indeedis a good testing function
for and a poor testing function for and, on the
other hand, is a good testing function for and
a poor testing function for . Fig. 1 shows the bistatic
radar cross section (RCS) of the three objects, obtained using
the four formulations and the exact Mie series or the PMCHW
formulation. It is observed that both TENH and NETH produce
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(a) (b)

(c)

Fig. 4. Bistatic RCS. (a) Dielectric sphere. (b) Dielectric finite cylinder. (c) Dielectric cube.

completely incorrect results. This observation agrees well with
our analysis. Among the two remaining formulations, TETH
produces a very good result since bothand are well
tested, whereas NENH is rather inaccurate. However, our
analysis above shows that is a good testing function for

and the inaccuracy of NENH must be rooted in other
causes. Further numerical experiment reveals that the matrix
equation produced by NENH is a very ill-conditioned matrix.
As a result, a small error introduced in the discretization can
render the final solution meaningless.

It is apparent that among the four formulations, only TETH
yields the most accurate solution. Unfortunately, because of its
improper combination, TETH still suffers from the problem of
interior resonance and this is demonstrated clearly in Fig. 2,
where the bistatic RCS is given for a sphere having a diameter
of 0.888 and a relative permittivity . The size of the
sphere corresponds to the first resonant frequency of the air-
filled spherical cavity. It is well known that CFIE removes the
interior resonance by combining EFIE and MFIE in such a
manner that the resultant integral operators correspond to that
for a cavity with a resistive wall. The proper combinations
are TENH and NETH; however, neither of them produces
accurate solution, as demonstrated earlier. Both TETH and
NENH are the improper combinations in the sense that the
combined integral operators do not correspond to those for a
resistive cavity and, therefore, they still experience the interior

resonance. However, because of the numerical discretization
error, the singularity (resonance) of the TE (or NE) equation
does not coincide exactly with that of the TH (or NH) equation.
As a result, the bandwidth of the incorrect solution is extremely
narrow (less than 1%), compared to those resulting from either
EFIE or MFIE (about 10%).

To obtain a formulation that is both accurate and free of in-
terior resonances, we should find a proper combination among
TE, TH, NE, and NH, which tests both and well and
contains a true CFIE. Based on the analysis described above,
we find that any of the following combinations—TENENH,
TENETH, THNHNE, and THNHTE—satisfies both require-
ments. Fig. 3 shows the RCS of a dielectric sphere obtained
using TENENH and TENETH, along with the results obtained
using PMCHW and Mie. Good results are obtained both away
and at the frequency of interior resonance. Note that THNHNE
and THNHTE are the dual formulations of TENENH and
TENETH, respectively, and their validity is expected by
duality, which has been verified numerically.

III. FURTHER ANALYSIS

In the preceding section, we provide a heuristic analysis
to explain why NETH, TENH, and NENH fail while TETH
succeeds to produce an accurate solution. In this section, we
offer a different perspective to explain these issues since the
understanding of these problems is vital to the development of
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(a) (b)

(c)

Fig. 5. Bistatic RCS of a dielectric sphere in theE plane. (a)d = 1:0�0. (b) d = 3:0�0. (c) d = 6:0�0.

an accurate numerical formulation. To understand the results
of the numerical experiment, we note two very important facts.

1) If we define the space spanned by the set of the RWG
functions to be and the space spanned by
the set of to be , then is quite a
different space from :

a) if , then is a piecewise constant
function while is a singular function that is
not square integrable;

b) if , then is piecewise constant while
is singular and not square integrable; because
and are not the same space, then the

matrix is a singular matrix where
the inner product is taken over the surface of the
scatterer.

2) The operator has the property that for a flat surface
and . In

other words, the second term in (4) does not contribute
to a tangential component for a flat surface. The above
property implies that if we focus on the tangential com-
ponent produced by , then ,
where contains the tangential component of .
Consequently, . Therefore, ,
when operating on the domain of space, maps
to a range space spanned by . Consequently, the

matrix is a very ill-conditioned matrix.
This remains true for nonflat surfaces. For the three
scatterers considered in Fig. 1, the condition number of
this matrix is given in the fifth row of Table I, which
clearly indicates the ill-conditioned nature of the matrix.
Therefore, we can say that the space spanned by
is quasi-orthogonal to the space spanned by
on the surface of the scatterer.

It is to be noted that when an electric field is produced
by , the electric field is produced via two
mechanisms: the first term in (3) corresponds to the induction
term where the current first produces a magnetic field and then
the time-varying magnetic field in turn produces an electric
field. This is confirmed by the disappearance of the first term
when . The second term in (3) corresponds to the
electric field produced by charge accumulation in the current.
It remains finite in the limit as long as .

On the other hand, the electric field produced by
is mainly produced by induction or nonzero curl in the

. The induction field in is quite different from the induc-
tion field in : They are quasi-orthogonal to each other. Nu-
merical experiment shows that and
are ill-conditioned while and
are well conditioned (see Table I; denotes scalar Green’s
function). But, the testing of the second term in (3)

is always well conditioned because of its charge nature.
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Therefore, if alone is used to test (1), when the RWG
function is used as an expansion function, both matrices for

and the charge term in are well conditioned, but the
induction term in is poorly tested corresponding to an ill-
conditioned matrix. However, the induction term is important
physically and its negligence cannot yield the correct physics.
Therefore, the NE formulation alone cannot work (as shown
in Fig. 4).

If alone is used to test (1) instead, the term is poorly
tested and, hence, the TE formulation alone cannot work.
This is also shown in Fig. 4. As a remedy, we suggest using

as a testing function. When this is used, both
the induction term and the charge term in are well-
tested as well as . We call this the TENE formulation.
It is shown to work well for small scatterers (see Fig. 4) when
the solution is not plagued by the interior resonance problem.
At the interior resonance, it yields an incorrect solution, as
demonstrated in Fig. 2.

As mentioned earlier, the interior resonance problem can
be removed by using MFIE in addition to EFIE. Note that
the TE formulation establishes little information on
and hence , while a TH formulation would make the matrix
from well-conditioned and hence provide information
on . Hence, a TETH formulation will provide a stable
formulation as validated by numerical results in Fig. 1.

However, the TETH formulation does not yield a lossy
internal resonance problem where the internal resonance mode
of the corresponding metallic cavity is damped. To alleviate
this problem, we propose to use the TENENH or TENETH
formulation. In these formulations, the TENE part provides a
well-conditioned matrix for both and operators, while
the NH or TH part generates a lossy interior resonance problem
where the internal resonance modes are damped.

A final note is in order for the NENH formulation. This
formulation generates a well-conditioned matrix for in
(1) and it generates a well-conditioned matrix for in (2).
However, and produce induction field which
are generated primarily by and , respectively.
Since the curl of the RWG function is singular, they do not
approximate the curl of a current well. Therefore, the error
in the NENH formulation is in general higher than the TETH
formulation while both are unable to induce a lossy internal
resonance problem.

IV. SOLUTION BY MLFMA

It is clear now that both PMCHW and TENENH (and its
variants) are accurate, reliable, and immune to the problem
of interior resonance. However, their MoM solution requires
the generation and solution of a fully populated matrix. The
associated memory requirement is and the compu-
tational complexity is with being the number of
unknowns. This significantly limits the size of the scatterer
to be handled. As a result, only very small dielectric objects
have been considered in the past.

One solution to the problem discussed above is to employ
an iterative method to solve the MoM matrix equation and
within each iteration the required matrix–vector multiplication
is performed by the fast multipole method (FMM) [13], [14].

Fig. 6. Memory requirement and CPU time per iteration as functions of the
number of unknowns for MLFMA solution of scattering from a dielectric
sphere.

Fig. 7. Bistatic RCS of a lossy dielectric sphere in theE plane.

The basic idea of FMM is first to divide the subscatterers
into groups. The addition theorem is then used to translate the
scattered field of different scattering centers within a group into
a single center, and this process is called aggregation. Doing
this, the number of scattering centers is reduced significantly.
Similarly, for each group, the field scattered by all the other
group centers can be first received by the group center,
and then redistributed to the subscatterers belonging to the
group. This process is called disaggregation. It has been
shown that the FMM can reduce the memory requirement and
computational complexity to .

The memory requirement and computational complexity
can be further reduced to using the multilevel
fast multipole algorithm (MLFMA) [15]–[18]. To implement
MLFMA, the entire object is first enclosed in a large cube,
which is divided into eight smaller cubes. Each subcube is
then recursively subdivided into smaller cubes until the edge
length of the finest cube is about half of a wavelength. For
two points in the same or nearby finest cubes, their interaction
is calculated in a direct manner, as is done in the direct MoM.
However, when the two points reside in different nonnearby
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cubes, their interaction is calculated by the FMM, as described
above. The level of cubes on which the FMM is applied
depends on the distance between the two points. The detailed
description of MLFMA is given in [16] and [18] and is not re-
peated here, although the equations to be treated are different.

The basic formulas, derived with the addition theorem to
calculate the matrix elements for nonnearby groups are given
by

(30)

(31)

(32)

(33)

where

(34)

(35)

(36)

(37)

(38)

and

(39)

In the above, the integrals in (30)–(33) are over the unit
spherical surface, resides in a group centered at ,

resides in a group centered at , ,
, and . Also in (39),

denotes the spherical Hankel function of the second kind,
denotes the Legendre polynomial of degree, and denotes
the number of multipole expansion terms, whose choice is
discussed in [18]. Similar multipole expressions for other
matrix elements can be obtained. The multipole expressions
for the field inside the object can also be obtained provided
that all the subscripts are changed from “1” to “2.” Note that
since is different from , in (39) must also be different
for good accuracy.

As described earlier, MLFMA converts the direct interaction
component or between two “far-away” points and

into three indirect components: the radiation component
from the point to the group center , which is represented
by ; the translation component from the group center

to another group center , represented by ; and

(a)

(b)

Fig. 8. Bistatic RCS for a plane wave incident along thez axis from the top
with the incident electric field in thexz plane. (a) A finite dielectric cylinder.
(b) A dielectric cube.

the receiving component from the group center to the
point , which is represented by . Among these three
components, only the receiving component is different for
different formulations, the other two components, the trans-
lation, and the radiation components, are the same. Therefore,
even though the number of the terms in the TENENH and
its variants is increased, the increase in computing time is
insignificant provided that the different receiving components
are merged into one receiving component before performing
the matrix–vector multiplication. This advantage is, however,
not shared by PMCHW since, as indicated in (28) and (29),
there are two different operators and (or and ) on
a single current (or ). Since the radiation, translation, and
receiving components are all different for the two different
operators, the matrix–vector multiplication has to be done
twice on both and in each of (28) and (29).

The MLFMA described above is implemented for the so-
lution of the TENENH formulation. Several representative
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results are given in Fig. 5 for a sphere whose diameter varies
from to as large as 6 . The results are compared to those
obtained using the Mie series and good agreement is observed.
The memory requirement and the total central processing unit
(CPU) time on one processor of an SGI Power Challenge
(R8000) are given in Fig. 6. Fig. 7 shows the result for a
lossy sphere having a diameter of 3and
and , demonstrating for the first time the
applicability of MLFMA to lossy materials. Finally, Fig. 8
gives two additional examples: one for a finite dielectric
cylinder having a diameter of 4 and a length of 4 , and
the other for a dielectric cube having a side length of 4. The
number of unknowns is 50 844 and 63 684, respectively.

V. CONCLUSION

In this paper, we have studied a variety of CFIE formu-
lations for scattering by 3-D arbitrarily shaped homogeneous
objects using the RWG functions as both the expansion and
testing functions. We have shown that due to the deficiency
of the RWG functions as the testing functions, among the
four CFIE formulations (namely, TETH, TENH, NETH, and
NENH), only TETH can test both the equivalent electric and
magnetic currents well and thus can yield accurate solution.
However, because of its improper combination, TETH suffers
from the problem of interior resonance.

Based on the analysis, we then proposed new formulations
(namely, TENENH, TENETH, THNHNE, and THNHTE) that
have a good accuracy and are free of interior resonances.
These formulations can be derived using two approaches. The
first approach formulates the CFIE as a linear combination of
the two tangential components of EFIE and MFIE (that is,
CFIE EFIE EFIE MFIE MFIE) and then uses
the RWG as the testing functions. Since bothand are
already well tested in the first two terms (EFIE EFIE), one
can neglect either MFIE or MFIE for the sake of efficiency.
The other term, MFIE or MFIE, is needed to remove
the problem of interior resonance. The resulting formulation
is TENENH or TENETH, depending on the neglected term.
Similarly, since both and are also well tested in the
last two terms (MFIE MFIE), one can neglect either
EFIE or EFIE and the resulting formulation is THNHNE
or THNHTE. The second approach formulates the CFIE as a
linear combination of EFIE and MFIE (CFIE EFIE MFIE)
and then uses as the testing functions. Again, one
of the four terms can be dropped for the sake of efficiency,
resulting in one of the four formulations described above.

Having identified the accurate and reliable CFIE formu-
lations, we then applied MLFMA to significantly reduce
the memory requirement and computational complexity of
their MoM solutions. Numerical results were presented to
demonstrate the accuracy and capability of the proposed
method. The method can be extended in a straightforward
manner to scatterers composed of different homogeneous
dielectric and conducting objects.

REFERENCES

[1] A. J. Poggio and E. K. Miller, “Integral equation solutions of three
dimensional scattering problems,” inComputer Techniques for Electro-
magnetics. Oxford, U.K.: Permagon, 1973, chap. 4.

[2] J. R. Mautz and R. F. Harrington, “Electromagnetic scattering from a
homogeneous material body of revolution,”AEU, vol. 33, pp. 71–80,
Feb. 1979.

[3] R. F. Harrington, “Boundary integral formulations for homogeneous
material bodies,”J. Electromagn. Waves Applicat., vol. 3, no. 1, pp.
1–15, 1989.

[4] J. R. Mautz and R. F. Harrington, “H-field, E-field, and combined-
field solutions for conducting body of revolution,”AEU, vol. 32, pp.
157–164, Apr. 1978.

[5] S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field
solution for arbitrarily shaped three-dimensional dielectric bodies,”
Electromagn., vol. 10, no. 4, pp. 407–421, 1990.

[6] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,”IEEE Trans. Antennas Propagat., vol.
AP-30, pp. 409–418, May 1982.

[7] K. R. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic
scattering by arbitrary shaped three-dimensional homogeneous lossy
dielectric objects,”IEEE Trans. Antennas Propagat., vol. AP-34, pp.
758–766, June 1986.

[8] S. M. Rao, C. C. Cha, R. L. Cravey, and D. Wilkes, “Electromagnetic
scattering from arbitrary shaped conducting bodies coated with lossy
materials of arbitrary thickness,”IEEE Trans. Antennas Propagat., vol.
39, pp. 627–631, May 1991.

[9] L. N. Medgyesi-Mitschang, J. M. Putnam, and M. B. Gedera, “Gener-
alized method of moments for three-dimensional penetrable scatterers,”
J. Opt. Soc. Amer. A, vol. 11, no. 4, pp. 1383–1398, Apr. 1994.

[10] Y. Chang and R. F. Harrington, “A surface formulation for characteristic
modes of material bodies,”IEEE Trans. Antennas Propagat., vol. AP-25,
pp. 789–795, 1977.

[11] T. K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy
dielectric bodies of revolution,”Radio Sci., vol. 12, pp. 709–718, 1977.

[12] J. M. Jin,The Finite Element Method in Electromagnetics. New York:
Wiley, 1993.

[13] V. Rokhlin, “Rapid solution of integral equations of scattering theory in
two dimensions,”J. Comput. Phys., vol. 86, pp. 414–439, Feb. 1990.

[14] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,”IEEE Antennas
Propagat. Mag., vol. 35, pp. 7–12, June 1993.

[15] C. C. Lu and W. C. Chew, “A multilevel algorithm for solving boundary
integral equations of wave scattering,”Microwave Opt. Tech. Lett., vol.
7, no. 10, pp. 466–470, July 1994.

[16] J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for
solving combined field integral equations of electromagnetic scattering,”
Microwave Opt. Tech. Lett., vol. 10, no. 1, pp. 14–19, Sept. 1995.

[17] B. Dembart and E. Yip, “A 3-D fast multipole method for electromag-
netics with multiple levels,”11th Ann. Rev. Progress Appl. Computat.
Electromagn., pp. 621–628, Mar. 1995.

[18] J. M. Song, C. C. Lu, and W. C. Chew, “MLFMA for electromagnetic
scattering by large complex objects,”IEEE Trans. Antennas Propagat.,
vol. 45, pp. 1488–1493, Oct. 1997.

Xing-Qing Sheng, for a photograph and biography, see p. 311 of the March
1998 issue of this TRANSACTIONS.

Jian-Ming Jin (S’87–M’89–SM’94), for a photograph and biography, see p.
311 of the March 1998 issue of this TRANSACTIONS.

Jiming Song (S’92–M’95), for a photograph and biography, see p. 245 of the
February 1997 issue of this TRANSACTIONS.

Weng Cho Chew (S’79–M’80–SM’86–F’93), for a photograph and biogra-
phy, see p. 245 of the February 1997 issue of this TRANSACTIONS.

Cai-Cheng Lu (S’93–M’95), for a photograph and biography, see p. 543 of
the March 1997 issue of this TRANSACTIONS.


