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Penetration Through Slots in
Conducting Cylinders—

Part 1: TE Case
John D. Shumpert,Student Member, IEEE, and Chalmers M. Butler,Fellow, IEEE

Abstract— Three methods for determining the penetration
through small apertures in closed conducting surfaces are
outlined and their salient features discussed. These methods
are designated: 1) the scatterer method; 2) the short-circuit
current method; and 3) the equivalent current method. They are
implemented by integral equation techniques but are amenable
to differential equation or hybrid methods. Procedures for
applying each method are outlined, as are schemes for repairing
singular equations rendered invalid by the presence of false
resonances. Reasons for inaccuracies in the three methods are
also delineated. Data determined for a given structure by all three
methods are presented and numerical examples that illustrate
important features of the methods and their relative accuracies
are described. It is pointed out that some methods yield incorrect
penetration data. In this part of the paper, is found an outline
of the integral equation formulations and numerical schemes
needed to accurately determine the field that penetrates through
a slot in a conducting cylinder excited by an axially independent
TE source. In Part 2, the TM case is presented.

Index Terms—Apertures, electromagnetic coupling, numerical
analysis.

I. INTRODUCTION

ONE of the problems that researchers have been interested
in for several years is that of computing fields that pene-

trate via very small apertures through conducting surfaces. (An
extensive bibliography appears in [1].) In particular, we are
concerned with the determination of the field that penetrates
through slots in conducting cylinders. The straightforward
solution of this problem in which one simply treats the body
as a scatterer and determines the interior field as the sum
of the incident field and the scattered field contributed by
the current induced on the body surface, can yield inaccurate
results if the aperture is very small or is a thin slit oriented
on the body surface in such a way that the leakage is small.
Alternate integral equations methods, namely what we have
termed theshort-circuit current methodand theequivalent
current method, do yield accurate penetrated fields, but they
fail at the internal resonances of theequivalentclosed body,
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even though the interior region of the body is not actually
a cavity with a complete impenetrable boundary. Because
the alternate methods are susceptible to interior resonance
difficulties, which are not easy to avoid directly when bodies
are of complex shape, we propose still additional formulations
that remain valid over the entire spectrum of interest.

Unfortunately, the two alternate methods themselves suffer
from inherent difficulties and often entail far more work and/or
require greater computer resources than does the scatterer
method; and they are not equally easy to apply to complex
structures. Through the judicious choice of equivalent sources
and appropriate basis functions, some of these difficulties can
be remedied. For example, one can devise a variation of an
aperture method involving only equivalent electric currents
(but with no magnetic current as is typical in the traditional
implementation of this solution procedure) to enable one to
determine the total field both inside and outside a conducting
body with a hole in its surface.

Although the classic problem of determining the electro-
magnetic scattering by conducting cylinders with axial slots
has been investigated by many researchers [2], [3] using
a variety of techniques, the determination of the penetrated
field through slots in conducting cylinders has received little
attention. Senior [4], [5] investigated the field inside infinite,
conducting slotted circular cylinders due to an-polarized
(TM to cylinder axis) incident plane wave. Schuman and
Warren [6] applied the Schelkunoff equivalence principle [7]
to bodies of revolution in order to improve the accuracy of
field computations for cases when the aperture is small and/or
when the field at points deep within the cavity is sought.
A hybrid technique combining the frequency-domain method
of moments and the finite-difference time-domain (FDTD)
method has been employed by Taflove and Umashankar [8] to
solve various penetration problems. Beren [9] implemented the
aperture field integral equation (AFIE), electric field integral
equation (EFIE), and -field integral equation (HFIE) to
determine fields in and around an axially slotted cylinder.
Johnson and Ziolkowski [10] developed a generalized dual-
series solution of an -polarized plane wave incident on a
circular cylinder with an axial slot. Ziolkowskiet al. [11],
[12] produced extensive contour plots for the field penetration
of - and -polarized plane waves incident on concentrically
loaded, slotted cylinders using the dual series approach de-
veloped in [10]. Recently, Mautz and Harrington calculated
the electromagnetic field in the vicinity of a vanishingly thin
conducting circular cylindrical shell with an axial slot due to
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both TE [13] and TM [14] polarizations. Butler [15] investi-
gated the field penetration into conducting circular cylinders
with small apertures for both polarizations. Our research
is primarily focused on methods for determining the field
which penetrates conducting cylinders with arbitrary contours
containing infinitely long narrow axially directed slots.

In Section II, the solution methods are described and inte-
gral equations are derived that, when solved, yield currents
from which penetrated field can be determined. These equa-
tions are developed for the: 1) scatterer method; 2) short-circuit
current method; and 3) equivalent current method. Procedures
for applying each method are outlined as are schemes for re-
pairing singular equations rendered invalid by the presence of
false resonances. In Section III, moment-method solutions are
developed to solve the integral equations derived in Section II.
It is pointed out that some methods yield incorrect interior
fields when the level of penetration is small and what must be
done to obtain correct fields is discussed. Data determined
for a given structure by all three methods are presented
and numerical examples that illustrate important observations
about the methods and their relative accuracies are described
in Section IV. The TM case formulation, numerical scheme,
and pertinent data are presented in Part 2.

II. FORMULATION OF INTEGRAL EQUATIONS

Three methods for determining penetrated field through slots
in conducting cylinders are outlined and procedures for apply-
ing the methods are delineated. The first, the scatterer method,
treats the body as a scatterer and determines the interior field
as the sum of the incident field produced by a known source
and the scattered field contributed by the current induced on
the body. The second, the short-circuit current method, is
based upon a field equivalence theorem due to Schelkunoff [7],
which allows one to change the excitation of the structure from
the known source or incident field to an equivalent surface
current placed in the aperture. The penetrated field can then
be determined by a procedure similar to that of the scatterer
method but without the inherent inaccuracies. The third, the
equivalent current method, employs the equivalence principle
[16] to solve for equivalent magnetic currents and then deter-
mines the penetrated field from knowledge of these currents.

A. Scatterer Method

The scatterer method is the simplest technique for comput-
ing the field that penetrates through an aperture in a conducting
surface. A representative body with conducting surfaceand
aperture is illustrated in cross section in Fig. 1. In this
method, the body is treated as a scatterer and the penetrated
field is determined as the sum of the incident field produced
by a known source and the scattered field contributed by the
current induced on the body. The total electric field can be
viewed as the sum of an incident field due to radiation
from a known source with the scatterer absent and a scattered
field , which is due to radiation by the current on a
surface

(1)

Fig. 1. General conducting surface with opening excited by known source.

Fig. 2. Cross-sectional view of axially slotted circular conducting cylinder
of radiusa and slot angle2�o excited by plane wave.

in which the operator can be expressed in terms of
potentials as

(2)

with

(3)

where is the free-space Green’s function ,
and represents a generic or dummy surface on

which sources reside. The field must satisfy

(4)

on the conducting surface where the subscript “” denotes
the tangential component of the operator or field on the surface

.
Consider the slotted cylinder shown in Fig. 2 excited by an

incident plane wave propagating in a direction normal to the
axis with its magnetic field parallel to the axis (TE). For

such an excitation, the induced electric currenthas only a
component in the direction where is a unit vector tangential
to the contour in the transverse plane that is defined at a surface
point by in terms of the axial direction and the unit
normal outward from the surface. In light of (4), an EFIE
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(a)

(b)

(c)

Fig. 3. Illustrations for the short-circuit current method. (a) Original struc-
ture. (b) Short-circuit current over aperture region. (c) Equivalent model.

can be formulated to determine the induced electric current
on the scatterer

(5)

where is the contour of the conductor and where is
the directional derivative along in the direction. The
subscript “” is appended to quantities to indicate the vector
component in the direction. The two-dimensional Green’s
function in cylindrical coordinates is where

is the zeroth-order cylindrical Hankel function of
the second kind. The total electric field is computed as the
sum of the scattered field produced by the induced electric
current found in (5) and the incident electric field. Given

, the corresponding incident
electric field is

(6)

which impinges upon the cylinder of Fig. 2 along a ray in the
direction defined with the angle

with respect to the axis.

B. Short-Circuit Current Method

Schelkunoff developed field analogues of the
Helmholtz–Th́evenin and Norton circuit theorems that
allow one to replace the effect of an aperture in the surface
of a body shown in Fig. 3(a) with equivalent “impressed”
currents in the aperture. In the short-circuit current method,
we short the aperture and compute the short-circuit current

induced on the equivalentclosedsurface depicted in
Fig. 3(b). The short-circuit current is determined from

(7)

where is given in (2). To overcome problems caused
by false interior resonances, one may replace (7) by the
corresponding combined field equation

(8)

where is given in (2) and, is given by

(9)

is the outward normal to at and is a multiplicative
parameter that is usually chosen to be in the range
[17]. The minus superscript in (8) indicates that the magnetic
field must be evaluated in the limit as the field point
approaches the surface electric current along a path in the
interior region.

Knowing from the solution of (7) or (8), we return to
the original structure of Fig. 3(a), with the short and external
source removed and, following Schelkunoff, impress in the
aperture a known current in which is the
short-circuit current over . The equivalent -field excitation
in the interior region can be found from

(10)

The new problem is then solved by treating the conducting
body as a scatterer with surface excited by the current
source as suggested in Fig. 3(c). The resulting induced
current on the conductor (different from the current found
in Section II-A) can be determined by solving

(11)

The interior (penetrated) field is the sum of the field produced
directly by the current source and the scattered field
contributed by the current induced on the conducting surface

(12)

To compute the short-circuit current over the aperture re-
gion, an equation similar to (5) can be enforced over the entire
cylinder with the slot shorted

(13)

where is the component of , is the contour
of the conductor, and is the contour of the aperture. As
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before, false resonances can be overcome by replacing (13)
with the corresponding combined field integral equation

(14)

in which is defined

(15)

with for consistency with of (6). is the
outward normal illustrated in Fig. 1 located at the source point
defined by the vector and in which

. In the event that the radius of curvature
of a surface is discontinuous at, must be replaced by

where is the angle of the indentation or protrusion of
the surface at as defined in [18].

Using the aperture short-circuit current found in (13) or (14),
we solve the new problem by treating the body as a scatterer
and determining the induced current on the scatterer
from

(16)

where the right-hand side of (16) is the negative of thecom-
ponent of the known field excitation due to .

It is important to understand the behavior of the current
at a slot edge, i.e., at a boundary between the aperture and
the conducting surface, in this auxiliary problem by means of
which one determines the currenton the surface of the
slotted cylinder due to the impressed current
in the aperture . We claim that in and on must
together form a continuous function at the common edge.
If these currents were not equal at the edge, a line charge
would reside there in order to complete the electrical system,
and this line charge would create an unbounded electric field,
too singular to be physically acceptable. Thus, the impressed
current in must be equal to the induced current onat the
common aperture-conductor edge.

(a)

(b)

(c)

Fig. 4. Illustrations for the equivalent current method. (a) Original structure.
(b) Interior equivalent model. (c) Exterior equivalent model.

The penetrated field is

(17)

where in (17) both and are known currents. is
known from the solution of (13) or (14) and is known from
the solution of (16).

C. Equivalent Current Method

In the equivalent current method, we propose an electromag-
netic model valid in the interior region and another valid in
the exterior and we utilize the equivalence principle to express
field components valid for the interior and exterior regions.
This method is based on satisfying the conditions that the
tangential component of electric field be zero on the surfaces
of the conducting body and that both the electric and magnetic
fields be continuous through the aperture. Of course, the field
components of the exterior model must satisfy the radiation
condition.

The equivalent interior and exterior models are displayed in
Fig. 4. In theinterior equivalent model of Fig. 4(b), we place
magnetic currents in the region and over the surface

. The region outside is then filled with material
characterized by that of the interior region . For the
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exterior equivalent model of Fig. 4(c), we place equivalent
magnetic currents over andover and the inside region
is then filled with material characterized by that of the exterior
region . Even though the slotted cylinder is a perfect
electric conductor there are no electric currents involved in the
formulation. The fields must satisfy

(18)

(19)

(20)

(21)

where and can be expressed in terms
of potentials as

(22)

and

(23)

with

(24)

in which is the free-space Green’s function,
, and . The “ ” superscript simply indicates

that a quantity so identified pertains to the exterior model,
as opposed to the interior model. Expressions for
and are similar to those in (22)–(24) but with

, , , and replaced by , , , and , respectively.
The minus (plus) superscripts in (18)–(20) indicate that the
tangential electric field is evaluated in the limit as the field
point approaches the surface magnetic current from the
interior (exterior) region of either model. Because it is not
discontinuous at a surface magnetic current, such precaution is
not needed in the case of a tangential component of magnetic
field.

If we again consider the slotted cylinder shown in Fig. 2
excited by the same -polarized incident plane wave, then
the equivalent magnetic currents and are only in the
direction. Equations (18)–(21) for the slotted cylinder become

(25)

(26)

(27)

(28)

is the outward normal defined in Fig. 1 and with
. For a surface with a discontinuous

radius of curvature, the comment following (15) [18] should
be observed. Note that (25)–(28) appear to be four equations
in two unknowns, but this is not actually the case. One may
view and over as different from the same currents
over

(29)

and

(30)

Once the interior and exterior equivalent currents have been
determined, the correct interior and exterior fields can be
calculated from the appropriate model. Referring to the interior
model of Fig. 4(b), one can use the interior equivalent current
found in (25)–(28) to solve for the correct interior field. Thus

(31)

where is the direction of the vector
from the source point on the cylinder to the observation
point in the interior of the cylinder.

III. N UMERICAL SCHEME

In this section, the integral equations are converted into
matrix equations that can be solved on a computer. The
first step in our moment-method solution [19] is to discretize
the geometry and approximate the unknown current over
the contour. The unknown current is expanded in a linear
combination of basis functions and the resulting integral
equations are then tested in order to obtain equations to solve
for the unknown basis function coefficients.

A. Scatterer Method

We discretize the contour into subdomains. The
induced current on the surface is approximated by a linear
combination of piecewise linear functions with unknown
current coefficients . The piecewise linear basis functions
(triangles) are ideal for accurately representing the unknown
electric current induced on the cylinder for the TE case. They
not only help to alleviate the difficulty of the derivative in the
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equation, but they also lend themselves to the condition that
the current goes to zero at the slot edges. In order to solve for
the unknown coefficients, the linear expansion functions
are substituted into (5) and the equation is tested with a pulse
function centered at . When the substitutions are made, the
resulting equation can be written in matrix form as

(32)

in which is a column vector containing the unknown
current coefficients and is a matrix whose elements are

(33)

where is the length of the subsection extending from the
th subcontour endpoint to theth subcontour endpoint,

is the length of the subsection extending from theth
subcontour endpoint to the th subcontour endpoint,
is the unit vector from the th subcontour endpoint to the
th subcontour endpoint, and is the unit vector from the
th subcontour endpoint to the th subcontour endpoint.

The first two integrals of (33) result from approximations of
the integral of the triangle basis functions by an equal-area
unit-amplitude pulse function to facilitate integration, while
the second pair reflects the piecewise constant derivative of
the triangle basis function employed to represent the current

. is a column vector whose elements are values of the
incident field tangential to the contour tested with theth
pulse function

(34)

where and are the Cartesian coordinates of .
The scattered field can be computed by integrating

over the induced current obtained from the integral equation
solution

(35)

The total field is computed as the sum of the scattered field
above and the incident field

(36)

where is the field point. The gradient operator in (35) is
replaced by its finite-difference approximation.

B. Short-Circuit Current Method

With a minor modification the numerical scheme used to
implement the scatterer method can be employed in the short-
circuit current method. One solves (13) or (14) using the
method outlined above to determine the short-circuit current
on the cylinder. The matrix equation can be written for this
method as

(37)

where and are the unknown current coefficients over
the shorted aperture and conductor surfaces, respectively. The
matrix elements , , , and represent the
contributions from the shorted aperture to itself, the conductor
to the shorted aperture, the shorted aperture to the conductor
and the conductor to itself, respectively. and are
the values of the tested incident electric field at on the
aperture and conductor surfaces, respectively.

Once the short-circuit current is available from the solution
of (37), the equivalent -field excitation is determined
from

(38)

It is emphasized again that this impressed electric field is used
to find the “new” impressed current on the cylinder. This is
conveniently written in matrix form as

(39)

where is the unknown induced current, where is
the known impressed current equal and opposite to the aperture
short-circuit current and where the right-hand
side of (39) is the component of equivalent -field excitation.
The penetrated field is simply the sum of the field due to the
equivalent induced current on the conductor and that due to the
impressed current in the aperture as indicated earlier in (17).

C. Equivalent Current Method

To solve (25)–(28), we discretize the contour into
straight-line subsections that approximate the original
contour and we approximate the equivalent magnetic current
by a linear combination of piecewise constant functions
(pulses) with unknown current coefficients . Substitut-
ing the current representation for the equivalent current into
(25)–(28) and enforcing the new equations at match points
(collocation) located at the subcontour centers yield

(40)
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Fig. 5. Cross-sectional view of axially slotted rectangular conducting cylin-
der of side2s, height2h, and slot width2w excited by plane wave.

(41)

(42)

(43)

is the number of unknowns over the conductor region
and is the number of current unknowns over the aperture
region, while represents the field contribution of the
magnetic current in the th subsection to the tangential
electric field in the same subdomain and

. The interior (penetrated) field is then determined from
the interior equivalent currents as indicated earlier in (31).

IV. RESULTS AND DISCUSSION

Computer codes have been developed for the scatterer
method, equivalent current method, short-circuit current
method, and combined-field short-circuit current method to
determine currents from which the penetrated field can be
calculated. To the extent possible, the currents determined
from the codes were checked against known solutions or
published data. The earliest published data concerning electric-
field penetration into slotted conducting circular cylinders are
due to Senior [4], [5]. Mautz and Harrington [13] determine
the field amplitude at the center of a conducting
circular cylinder as a function of for and .

Fig. 6. Magnitude ofy-directed (normalized) electric field onx axis of
slotted circular cylinder excited by TEz plane wave[ka = 0:7, �o = 10�,
�i = 0�].

Fig. 7. Magnitude ofy-directed (normalized) electric field onx axis of
slotted circular cylinder excited by TEz plane wave[ka = 0:7, �o = 5�,
�i = 180�].

Fig. 10 of [13] is reproduced as accurately as possible for
and in Fig. 10 of this work which is

extended to include .
To illustrate the methods of this paper and their relative

accuracies, we select as a sample structure the axially slotted
circular cylinder and axially slotted rectangular cylinder ex-
cited by TE (to cylinder and slot axes) incident plane waves. A
cross-sectional view of the slotted circular conducting cylinder
is found in Fig. 2 from which one observes that the cylinder
radius is , that the slot subtends an angle , and that an
axially independent plane wave is incident at an angle
measured with respect to theaxis. A cross-sectional view
of the slotted rectangular conducting cylinder is depicted in
Fig. 5. The cylinder length is , the cylinder height is ,
the slot width is , and an axially independent plane wave
is incident at an angle measured with respect to theaxis.

Figs. 6 and 7 display the magnitude of the-directed
normalized electric field along the axis of the slotted
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Fig. 8. Magnitude ofy-directed (normalized) electric field onx axis of
slotted circular cylinder excited by TEz plane wave[ka = 2�, �o = 10�,
�i = 180�].

Fig. 9. Magnitude ofy-directed (normalized) electric field onx axis of
slotted circular cylinder excited by TEz plane wave[ka = 2�, �o = 5�,
�i = 180�].

circular conducting cylinder of Fig. 2 excited by a plane
wave for and ,
respectively. The values of penetrated field calculated by
means of the scatterer method, equivalent current method,
short-circuit current method, and combined field short-circuit
current method are nearly indistinguishable from one another.
The -directed normalized electric field along theaxis of
a closedcircular conducting cylinder , subject to
a TE incident plane wave , was determined from
solutions of the EFIE in order to establish a reference value for
the noise floor of the solution identified in figures as “closed
cylinder.” Of course, in all cases these values should be
identically zero. Values of in the figures indicate the number
of unknowns employed to obtain a given solution andis the
value of the “combined-field solution parameter” of (8).

If the diameter of the circular cylinder is increased to
, the interior field distribution exhibits

greater spatial variation than observed in the small cylinder
cases. The log magnitude of the-directed electric field along

Fig. 10. Magnitude ofy-directed (normalized) electric field at center of
slotted circular cylinder excited by TEz plane wave for variouska[�o = 5�,
�i = 0�].

Fig. 11. Magnitude ofy-directed (normalized) electric field onx axis of
slotted square cylinder excited by TEz plane wave[2s = 2h = 1:7�,
2w = 0:17�, �i = 0�].

the axis of a slotted circular cylinder excited by a
incident plane wave is presented in Figs. 8 and 9

for and , respectively. When the slot angle
is relatively large, good agreement is again obtained by all
methods for the field penetration. Even if the slot angle is
decreased to , the agreement of the penetrated field
determined by the three methods remains good.

When the field that penetrates through the slot is very small,
comparable to the noise floor of the problem, the accuracy of
the values given by the scatterer method very is poor. This
error can be attributed tosubtractive cancellation. Because
the scattered electric field produced by the induced current on
the cylinder and the incident electric field are almost of the
same magnitude but opposite in sign, in order to yield a sum
near zero, the sum of the two can be very inaccurate, leading
to questionable results.

Fig. 10 shows the -directed normalized electric field am-
plitude for various at the center of the circular cylinder
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Fig. 12. Magnitude ofy-directed (normalized) electric field onx axis of
slotted square cylinder excited by TEz plane wave[2s = 2h = 1:7�,
2w = 0:085�, �i = 180�].

Fig. 13. Magnitude ofy-directed (normalized) electric field onx axis
of slotted rectangular cylinder excited by TEz plane wave[2s = 2:1�,
2h = 0:75�, 2w = 0:075�, �i = 0�].

Fig. 14. Magnitude ofy-directed (normalized) electric field onx axis
of slotted rectangular cylinder excited by TEz plane wave[2s = 2:1�,
2h = 0:4�, 2w = 0:04�, �i = 0�].

for and . As can be clearly seen, specific
near-modal solutions come to the fore as of the cylinder
increases. The TE mode begins to dominate at ,
the TE mode at , the TE mode at ,
the TE mode at , the TE mode at
and the TE mode at .

The penetrated field along the axis of a slotted square
cylinder with and excited by
a plane wave is presented in Fig. 11. The results
from the different methods are found to be in good agreement.
However, if the incident angle is changed to and the
slot width is decreased to , the field penetration
determined by the scatterer method is less accurate (Fig. 12).
The scatterer method fails because of the loss of accuracy in
subtracting two nearly equal numbers.

In Fig. 13 is displayed the interior field distribution for a
rectangular cylinder with , ,

, and incident field angle . Since this structure
is effectively a shorted parallel-plate guide operating above
cutoff for the TE mode, standing wave patterns can exist and,
indeed, are observed. In Fig. 14, the interior field distribution
for a rectangular cylinder with , ,

, and incident field angle is shown. Although
this guide is below the TE cutoff, the TEM mode propagates
in the guide and produces the standing wave patterns.
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