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Penetration Through Slots in
Conducting Cylinders—

Part 2: TM Case
John D. Shumpert,Student Member, IEEE, and Chalmers M. Butler,Fellow, IEEE

Abstract— Three methods for determining the penetration
through small apertures in closed conducting surfaces are
outlined and their salient features discussed. These methods
are designated: 1) the scatterer method; 2) the short-circuit
current method; and 3) the equivalent current method. They are
implemented by integral equation techniques but are amenable
to differential equation or hybrid methods. Procedures for
applying each method are outlined as are schemes for repairing
singular equations rendered invalid by the presence of false
resonances. Reasons for inaccuracies in the three methods
are also delineated. Data determined for a given structure
by all three methods are presented and numerical examples
that illustrate important features of the methods and their
relative accuracies are described. In Part 1, the TE (to cylinder
axis) case is presented. In this part of the paper is found an
outline of the integral equation formulation and numerical
scheme needed to accurately determine the field that penetrates
through a slot in a conducting cylinder, excited by an axially
independent TM source.

Index Terms—Apertures, electromagnetic coupling, numerical
analysis.

I. INTRODUCTION

PART 1 outlined the integral equation formulation and
numerical scheme needed to accurately determine the field

that penetrates through a slot in a conducting cylinder, excited
by an axially independent TE (to cylinder axis) source [1].
Data determined for a given structure by three methods are
presented and numerical examples that illustrate important
observations about the methods are described. The reader
is referred to the first paper for a bibliography concerning
penetration of fields through slots in conducting surfaces.

Integral equations are derived that can be solved for equiv-
alent currents from which the TM penetrated field can be
determined. These equations are developed in Section II for
the: 1) scatterer method; 2) short-circuit current method; and
3) equivalent current method. Procedures for applying each
method are outlined and the limitations of each method are
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discussed, as are schemes for repairing singular equations
rendered invalid by the presence of false resonances. In
Section III, moment-method solutions are developed for the
integral equations derived in Section II. Data determined for
a given structure by all three methods are presented and nu-
merical examples that illustrate important observations about
the methods are described in Section IV.

II. FORMULATION OF INTEGRAL EQUATIONS

Three methods for determining penetrated field through
slots in conducting cylinders are outlined and procedures for
applying the methods are delineated in detail in Part 1. These
methods include thescatterer method, short-circuit current
method, andequivalent current method. We include here only
the final equations for the TM case.

A. Scatterer Method

In the scatterer method, the body is treated as a scatterer
and the total field everywhere is determined as the sum of the
incident field produced by a known source and the scattered
field contributed by the current induced on the body. Consider
the slotted cylinder in [1, Fig. 2]. The cylinder is excited by
an incident time harmonic plane wave propagating in
a direction normal to the axis with its electric field parallel
to the axis (TM), which induces an electric current
with a component only. The following electric field integral
equation (EFIE) can be formulated to determine the induced
current on the scatterer

(1)

where is the contour of the cylindrical conductor. Note that
since all quantities are-invariant and the induced electric
current is directed, of (3) in [1] is zero. The
total electric field everywhere is computed as the sum of
the scattered field produced by the induced electric current
found in (1) and the incident electric field given by

, which impinges upon the cylinder
along a ray in the direction defined
by an angle with respect to the axis.

B. Short-Circuit Current Method

The short-circuit current method is based on a field equiv-
alence theorem due to Schelkunoff [2] that allows one to
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(a)

(b)

(c)

Fig. 1. Illustrations for the equivalent current method. (a) Original structure.
(b) Interior equivalent model. (c) Exterior equivalent model.

replace the effect of an aperture in the surface of a body with
equivalent “impressed” currents in the aperture. The short-
circuit current over the conductor and shorted aperture can be
found from

(2)

where is the component of , is the contour of
the conductor and is the contour of the shorted aperture.
Note that (1) and (2) differ only in the inclusion of the
shorted aperture. To overcome problems caused by false
interior resonances, one may replace (2) by the corresponding
combined field integral equation

(3)

with defined as

(4)

where is a unit vector in the transverse plane tangential to the
contour and is the direction of propagation of the incident
field. with , is the outward
normal depicted in [1, Fig. 1] located at the field point defined
by the vector , and is a multiplicative parameter that is
usually chosen to be in the range [3]. In the

Fig. 2. Magnitude of axially directed (normalized) electric field onx axis of
slotted circular cylinder excited by TMz plane wave[ka = 0:7, �o = 10�,
�i = 0�].

event that the radius of curvature of a surface is discontinuous
at , must be replaced by where is the angle
of the indentation or protrusion of the surface atas defined
in [4].

Using as a source the negative of the aperture short-circuit
current on the aperture found by solving (2) or (3), we
determine the induced current on the cylindrical
scatterer as the solution of

(5)

in which the right-hand side is thecomponent of the known
-field excitation due to on . The penetrated

electric field is where

(6)

where in (6) both and are known currents. is
known from the solution of (2) or (3) and is known from
the solution of (5).

C. Equivalent Current Method

In the equivalent current method, we introduce an elec-
tromagnetic model valid in the interior region and another
valid in the exterior and we construct fields which satisfy the
conditions that the tangential component of electric field be
zero on the surfaces of the conducting body and that both
the electric and magnetic fields be continuous through the
aperture [5]. Of course, the field of the exterior model must
satisfy the radiation condition. The interior and exterior models
are suggested in Fig. 1. In theinterior equivalent model of
Fig. 1(b), we remove the conductor and place electric current
over the combined surface . All space of this model is
filled with material characterized by that of the original interior



1624 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 11, NOVEMBER 1998

region . For theexterior equivalent model of Fig. 1(c),
we place equivalent electric currentsover andover and
fill all space with material characterized by . Neither

nor is a physical current as is that in the scatterer and
short-circuit current method. The fields of the two models must
satisfy

(7)

(8)

(9)

(10)

where and can be expressed in terms of
potentials as

(11)

and

(12)

with

(13)

is the free-space Green’s function, ,
, and represents a generic or dummy surface

on which sources reside. The “o” superscript simply indicates
that the quantity so identified pertains to the exterior model
as opposed to the interior model. Expressions for
and are similar to those in (11)–(13) but with,
, , and replaced by , , , and , respectively. The

minus (plus) superscripts in (10) indicates that the tangential
magnetic field be evaluated in the limit as the field point

approaches the surface electric current from the interior
(exterior) region of either model. Such precaution is not needed
in the case of a tangential component of electric field because
it is not discontinuous at a surface electric current.

Again we consider the slotted cylinder depicted in [1,
Fig. 2]. Because the cylinder is excited by an-polarized
incident plane wave, the induced equivalent electric currents

and are directed. Consequently, and are
zero forcing the scalar potential terms of (7) through (9) to be
zero. Hence, these equations for the slotted cylinder become

(14)

(15)

(16)

and

(17)

Note that (14)–(17) appear to be four equations in two un-
knowns, but this is not the case as is clear if one distinguishes

and over from the current over :

(18)

and

(19)

Once the interior and exterior equivalent currents are deter-
mined from solutions of (14)–(17), the correct interior and
exterior fields can be computed from the appropriate model.
Appealing to the interior model, one employs the interior
equivalent current found in (14)–(17) to compute the correct
interior field

(20)

III. N UMERICAL SCHEME

In this section, schemes for converting the integral equations
into matrix equations are presented. The first step in the numer-
ical method [6] is to discretize the geometry and approximate
the unknown electric current over the contour. The current is
expanded in a linear combination of basis functions and the
equations are tested in order to obtain an adequate number of
equations to solve for the unknown coefficients of the basis
functions.

A. Scatterer Method

We discretize the contour into straight-line subsec-
tions that approximate the original contour and approx-
imate by a linear combination of piecewise constant
functions with unknown current coefficients . Collocation
at the match points located at the subcontour centers yields

(21)

which can be written in matrix form as

(22)
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where is a column vector containing the unknown coef-
ficients, is a matrix whose elements are

(23)

and is a column vector whose elements are values on the
right-hand side of (21)

(24)

where and are the Cartesian coordinates of . Since
is a straight-line subsection, one may replaceby

and write (23) as

(25)

where is the length of the th straight-line segment and
is a unit vector along theth straight-line subsection

in the direction of increasing arc displacement.
The scattered field can be computed by integrating over the

induced current obtained from the integral equation solution

(26)
The total field everywhere is

(27)

where is the observation point of interest.

B. Short-Circuit Current Method

With a minor modification the numerical scheme used to
implement the scatterer method can be employed in the short-
circuit current method. One solves (2) or (3) using the method
outlined above to determine the short-circuit current on the
cylinder. The matrix equation for this method can be written
differently from (22) as

(28)

where and are the unknown current coefficients
over the aperture and conductor surfaces, respectively, and
where the matrix elements , , , and
represent the contributions from the shorted aperture to itself,
the conductor to the shorted aperture, the shorted aperture to
the conductor and the conductor to itself, respectively.
and are the values of the right-hand side of (2). If the
combined field formulation of (3) is needed for accuracy, (28)
would be appropriately modified.

Once the short-circuit current has been found, the equivalent
-field excitation is found from

(29)

where is the impressed current used in (5) to determine
the induced current on the “scatterer.” This is conveniently
written in matrix form as

(30)

where is the induced current, where is the known
impressed current, equal, and opposite to the aperture short-
circuit current and where the right-hand side
of (30) is the component of the equivalent-field excitation
evaluated at the points .

The penetrated field is simply the summation of the field
due to the equivalent induced current on the conductor and
that due to the impressed current in the aperture

(31)

where and are the numbers of current unknowns on
the cylinder and in the aperture, respectively.

C. Equivalent Current Method

Following the procedure in Section III-B above, we expand
the equivalent electric currents in (14)–(17) in linear combi-
nations of piecewise constant functions and enforce the new
equations at match points located at the subcontour centers

(32)

(33)

(34)

and

(35)

in which , while represents the
field contribution of the basis function at due to (more
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Fig. 3. Magnitude of axially directed (normalized) electric field onx axis
of slotted circular cylinder excited by TMz plane wave[ka = 0:7, �o = 5�,
�i = 180�].

Fig. 4. Magnitude of axially directed (normalized) electric field onx axis of
slotted circular cylinder excited by TMz plane wave[ka = 2�, �o = 10�,
�i = 180�].

precisely, due to the product of and the basis function
centered at ). The penetrated field is then determined from
the interior equivalent currents from

(36)

IV. RESULTS AND DISCUSSION

Computer codes have been written to implement the various
methods presented in Sections II and III, and the currents
determined from the codes have been checked in special cases
against known solutions or published data. Early work in de-
termining the electric field penetration into slotted conducting
circular cylinders is due to Senior [7], whose results have
been reproduced with high accuracy by the present methods.

Fig. 5. Magnitude of axially directed (normalized) electric field onx axis
of slotted circular cylinder excited by TMz plane wave[ka = 2�, �o = 5�,
�i = 180�].

Fig. 6. Magnitude of axially directed (normalized) electric field at center of-
slotted circular cylinder excited by TMz plane wave for variouska[�o = 5�,
�i = 0�].

Senior’s results are for moderately wide slots ( and
), so any of the methods discussed in Sections II

and III should yield accurate penetrated field. Mautz and
Harrington [8] determine the field amplitude at the center
of the cylinder as a function of for and and

. Fig. 9 of their paper [8] is reproduced with excellent
accuracy for and in Fig. 6 of this work and
is extended to include .

We select as sample structures the axially slotted circular
conducting cylinder and axially slotted rectangular conducting
cylinder excited by TM (to cylinder and slot axes) incident
plane waves to illustrate the methods of this paper and
their relative accuracies. A cross-sectional view of the slotted
circular cylinder is found in [1, Fig. 2] from which one
observes that the cylinder radius is, that the slot subtends
an angle , and that an axially independent plane wave is
incident at an angle measured with respect to the-axis.
A cross-sectional view of the slotted rectangular cylinder is
shown in [1, Fig. 5]. The cylinder length is , the cylinder
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Fig. 7. Magnitude of axially directed (normalized) electric field onx axis
of slotted square cylinder excited by TMz plane wave[2s = 2h = 1:7�,
2w = 0:17�, �i = 0�].

Fig. 8. Magnitude of axially directed (normalized) electric field onx axis of
square cylinder excited by TMz plane wave[2s = 2h = 1:7�, 2w = 0:085�,
�i = 180�].

height is , the slot width is , and an axially independent
plane wave is incident upon the slotted cylinder at an angle

measured with respect to theaxis.
Figs. 2 and 3 give the magnitude of axially directed nor-

malized electric field along the axis of the slotted circular
cylinder excited by a plane wave for and

, respectively. Very close agreement is
seen for the values of penetrated field calculated by means
of the scatterer method, equivalent current method, short-
circuit current method, and combined field short-circuit current
method for this small cylinder. In order to establish a reference
value for the noise floor of the solution, identified in the figures
as “closed cylinder,” the axially directed normalized electric
field along the axis of aclosedcircular cylinder
subject to a TM incident plane wave is determined
from a solution of the EFIE. In all cases these values should
be zero. The value of the interior field of the closed cylinder is
not discernible from the value zero in Figs. 2 and 3. Values of

in the figures indicate the number of unknowns employed

Fig. 9. Magnitude of axially directed (normalized) electric field onx axis
of slotted rectangular cylinder excited by TMz plane wave[2s = 2:1�,
2h = 0:75�, 2w = 0:075�, �i = 0�].

Fig. 10. Magnitude of axially directed (normalized) electric field on
x axis of slotted rectangular cylinder excited by TMz plane wave
[2s = 2:1�; 2h = 0:4�;2w = 0:04�;�i = 0�].

to obtain a given solution and is the value of the “combined
field solution parameter” of (3).

As in the TE case, if the diameter of the circular cylinder
is increased to , we again see that the
interior field exhibits greater spatial variation different from
that observed in the smaller cylinder cases. The log magnitude
of the axially-directed electric field along the axis of a

slotted circular cylinder excited by a
incident plane wave is presented in Figs. 4 and 5. When the
slot is relatively large , good agreement among data
obtained from all methods is observed. However, if the angle
is decreased to , the penetrated field determined by
the scatterer method disagrees with that of the other methods.

When the interior field is very small comparable to the noise
floor of the problem (closed cylinder values), the accuracy
of the values obtained by the scatterer method may be very
poor. An example of this can be seen in Fig. 5 where, for
a slotted circular cylinder with angle ,
the values of the penetrated field calculated by means of the
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equivalent current method, short-circuit method, and combined
field short-circuit method are very close in value, but the
scatterer method fails to yield the correct penetrated field
because the scattered electric field produced by the induced
current on the cylinder and the incident electric field are almost
of the same magnitude but opposite in sign. A more dramatic
example ofsubtractive cancellationerror is found in the square
and rectangular cylinder data of Figs. 8 and 10.

In Fig. 6 the field amplitude of the axially directed nor-
malized electric field at the center of the circular cylinder is
displayed as a function of for and . The
TM mode manifests itself at , the TM mode
at , the TM mode at , and the TM
mode at .

In Fig. 7, is displayed the penetrated field for a slotted
square cylinder with and
excited by a TM plane wave ( ). The results from
the different methods are in good agreement. However, if the
incident angle is changed to and the slot width
is decreased to , as seen in Fig. 8, the field
penetration determined by the scatterer method is inaccurate.
The field predicted by the scatterer method is bounded by the
noise floor at the precision used.

In Fig. 9 is displayed the interior field distribution for a
rectangular cylinder with , ,

, and incident field angle . Since this structure
can be viewed as a shorted parallel-plate guide operating above
cutoff for the TM mode, standing wave patterns due to waves
traveling in the positive and negative directions can be
clearly seen. In Fig. 10, the field distribution in a rectangular

cylinder with , , , and incident
field angle is shown. Since this guide operates below
the TM cutoff and because there is no TEM mode (in the

-direction) in the guide, there is no standing wave pattern.
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157–164, 1978.

[4] N. Morita, N. Kumagai, and J. R. Mautz,Integral Equation Methods in
Electromagnetics. Boston: Artech House, 1990.

[5] R. F. Harrington,Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961.

[6] , Field Computation by Moment Methods. Piscataway, NJ: IEEE
Press, 1993.

[7] T. B. A. Senior, “Electromagnetic field penetration into a cylindrical
cavity,” IEEE Trans. Electromagn. Compat., vol. EMC-18, pp. 71–73,
May 1976.

[8] J. R. Mautz and R. F. Harrington, “Electromagnetic penetration into
a conducting circular cylinder through a narrow slot, TM case,”J.
Electromagn. Waves Applicat., vol. 2, nos. 3/4, pp. 269–293, 1988.

John D. Shumpert (S’89), for a biography, see this issue, p. 1620.

Chalmers M. Butler (S’55–M’63–SM’75–F’83), for a photograph and biog-
raphy, see p. 1644 of the November 1997 issue of this TRANSACTIONS.


