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Scattering of Arbitrarily Polarized Plane
Waves Obliquely Incident on Infinite Slots
or Strips in a Planar-Stratified Medium

John L. Tsalamengasember, IEEE

Abstract—An exact analysis of three-dimensional scattering by ~ The following analysis is based on thep(+jwt) time

a slot or by a strip right on an interface between two adjacent dependence, which is suppressed throughout.
layers of a planar stratified isotropic medium is presented. The

most general case of arbitrarily polarized obliquely incident plane
waves is considered. The formulation is based on systems of Il. BASIC FORMULATION

singular integral-integrodifferential equations (SIE-SIDE). These . -
systems are discretized with the help of two independent algo-  1h€ geometry of the problem is shown in Fig. 1. Tile

rithms recently developed in [1]. Filling up the matrix elements layer is characterized by the scalar constafts ;. ki =
involves rapidly convergent spectral integrals. The expression w,/g;z1;),—n — 1 < ¢ < m + 1. The slot/strip is located at
of the far-radiated field is derived and numerical results are y=0 —w<z<w —00<z< +00.
presented for several cases. The primary excitation is an arbitrarily polarized plane
Index Terms— Electromagnetic scattering, nonhomogeneous wave propagating in the direction &f"°(ky1, ©,®) in the
media. outmost regior(m+1). This wave is fully described in terms
of its z components

[. INTRODUCTION . . Eine .-
: . o [E2(7), H(7)] = (Eo, Ho) e 1)
HIS paper is concerned with electromagnetic diffraction
by infinite strips or slots that reside on an interfac@here £, and H, denote field amplitudes and
between two adjacent layers (worst case) of a planar stratified
linear isotropic medium. The most general case of arbitrarily %™ = k41 (sin © sin &4 + cos OF + sin © cos ©2)
polarized obliquely incident plane waves is considered. = ko2 + ki + B2 2)
Such problems are commonly formulated via a system of
coupled integral equations of the first kind [(3), (6) below], Let [E<*¢(7), H=<(7)] = [e(v),h(y)]exp(jk.z + j32)
which may be systematically derived using, for instance, thignote the known [11] field excited by the incident wave when
immittance approach [2]. w = 0 (slot\strip absent). TherE(z,v), H(z,y)] /P> =
The coupled character of the equations differs from tH&tt(7), H*°(7)] — [E*°(7), H*°(7)], where (£, H°!)
case of normal incidence wherein TE and TM (to strip/slattands for the total field, defines the scattered field. In con-
axis) waves decouple and can be treated separately by sesetion with the structure of Fig. 1(a)/(x) = E(z,0)x § =
eral analytical or numerical methods. For example, low/high#,.(z,0) — 2E.(z,0) = &#M,(z) + 2M.(z) will be the
frequency techniques, dual-integral equations, moment megfquivalent surface magnetic current density across the slot.
ods, SIE, etc. (see [3]-[11] where further references are citeHpr the structure of Fig. 1(b), the induced current density on
It is found in connection with this system that from thehe strip will be denoted by/(z) = #J.(z) + 2J.(z) (the
spectral integrals, which represent its kernels, one converge$: factor has been suppressed for convenience).
rather slowly (conditionally) while the other three diverge. For the configuration of Fig. 1(a) on the basis of the
To overcome this inconvenience, suitable singularity extragamittance-like approach outlined in Appendix A, the fol-
tion procedures similar to those used in [8] and [9] arewing system of two-coupled integral equationsif, and
followed (see Sections Ill and V). These procedures hell.,
recast the initial rather inconvenient kernels into sums of o e
singular closed-form terms plus rapidly convergent spectral K" (Gy,Ga52) = hy(04) 57, -
integrals. Discretization of these systems with the help of KM(Ga, G3;2) = h(04) 7%= (2| < w)
two independent, efficient algorithms recently developed in
[1] enables filling up the matrix elements in terms of rapidljs obtained. HereX™(G;, G;;x) stands for the shorthand
converging spectral integrals solely. notation
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Fig. 1. Geometry of a stratified medium loaded by (a) an infinitely thin slot and (b) an infinitely thin strip right on an interface between two layers.

(i = 1,2;5 = 2,3) where G;(u) = G;(u; ¢, V") (j = continue to vary aslu|>~/, the inverse Fourier integrals
1,2,3) are given by I g;(w) e@==) gy can be evaluated in closed form.
_u20h 4 320 Leaving aside all intermediate derivations, (3) finally takes

G1(u) = Gy(u; U, UM = the following form of a system of singular integral-

P2+ 5) integrodifferential equations (SIE-SIDE) of the first kind
e 4+ \I/h U,2\I/€ _ /32\I/h ( )
Go(u) = uff———, 3(u) = ————5— 1
32_’_ 2 32 + 2 1 . d s
3% +u 2 +u ICM(G(1)7 G(2);1’) - Z 5 [‘7/3%/\/1;/(3:)
with ¥¢(w) and " (w) defined in (42) in Appendix A. s=o “WHs
For the structure of Fig. 1(b), the equations torand J,, d? s P
analogous to (3) are M Gh dz? Mi ()| = ho(04) '™ (102)
K7 (Zy, Za; ) = e (04) 74" :
N Ze) = a0 6) KM(GD,GP ) -3 2 [miMi(x) T REME(2)
K (Zy, Z3;x) = e.(0+) ™ = 2wps [ dr
(Jz| £ w) whereK” is given by (4) after settingyd — J = h(04) ¢ (10b)
everywhere while
where
Zj(u) = Z;(u; U, U") = G 1/ 97, 1/0"). (D) 2z
Systems (3) and (6) will be treated separately in the follow- w
ing two sections. M (x) = /_ My(aYHE (sl — o' |y da’ - (p = 2, 2).

11
I1l. REDUCTION OF (3) TO ASYSTEM OF SIE-SIDE ()
SinceG;(u) (j = 1,2, 3) vary asju|>~7 whenu — 400, (3) Sy_stem _(10) is_of the type _encountered in [1] and can
is rather impractical as it involves either divergent or (at bedtf discretized using the algorithms explored there. In the
conditionally convergent real-axis inverse Fourier integrals. 18/10Wing, two of these algorithms (termed methods A and
recast it into a convenient form we take advantage of tfe Will be independently applied.
decompositions

A. Disretization of (10) by Method A
i(u) =V +Y5 +Q%(u) (g=¢,h)

(8) We setr = wt, 2’ = wt’ (=1 < ¢t,# < 1) and expand\/,

Gi(u) = g;(u) + GV (u) and M,, in series of Chebyshev polynomials of the first and
where !, V? are defined in (39) in Appendix A and of the second kind
g;(u) = Gj(w; Vi + V5, V' + W) @ ME®I=EO/N1-2, E@#)=3 Ty, (123)
GP(u) = G;(u; Q°, Q). N=0

One may verify thatQ°(u) and Q"(u) as well asGW (v) M [z(t)] = V1 —t2F.(t), F.(t) = Z byUn(t)  (12b)
decay exponentially. On the other hand, althougf{u) N=0
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ay, by being expansion constants. Using the Galerkin apm =1,2,---,

proach one arrives at the infinite linear algebraic system

oo

5 1
> (Kiivan + Kifyby) = Sha(0+)(ear — en2), (130)
N=0

> (Kiivan + Kifyby) = h(0+)en (13b)
N=0
(M =0,1,2,---,00) where
= [III(M N;GW)
: 1 (1) 2 +
+ ; T D (K w)] df;n (14a)

vinv = K3y = IlO(MvN?G(Q))

+ B Z OJ(WN "vsw)] dyrn

(14b)
K&y = [IOO(M N;G®) +wz M>N(m w)] dt

(14c)
df =1+ (=DMN/2, ey = ndM Iy (kw).  (15)

Here Jy;(-) is the Bessel functlonFMN (F=A,C,D) stand

for numerically efficient analytical expressions given in [1],
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L) where the integeL is sufficiently large to
ensure convergence of (21) below. The matrix elements are
given by

1

g 1
RZE = % (f, b GI) L p@ (k2. k
mn ( s bny ) + jwmw Sz: 1t mn( )
(19a)
R = J (fty; GP) + £ Z o<1> (rsw)  (19b)
mn »bns o mn
ZT a 2 (2) /3 - (1)
R"l" =J (t"l’t"; G ) +— Bnln(hSw) (190)
wr s=0 s
1
jom & i

Here,.J and J* are exponentially converging spectral inte-
grals defined by

. w . .
']a(tvtn; G) = —(1 - ti)]c(tvtru G)7
2u(]L +1) (20a)
b . _ 7 . .
J (tvtThG) - 2LJ (t7tTL7G)7
Jt, ;G = / G(u)exp[—jw(t — T)u]du.  (20b)

On the other hancE(,i,)L (F = A, B, C, D) are most efficiently
given either in closed form or in terms of simple single series
in [1].

In terms of {F.(¢,), F.(f,)} the distribution of surface

and I"™"(M, N, G9)(m,n = 0,1;5 = 1,2,3) are real-axis magnetic currents may be found from (12) with the help of [1]

spectral integrals defined by
I (M, N;GY)
— —7rw( 1)]\4 ~J\4+N(M + 1)m(N+ 1)n
/ GD(u JM_|_m (ww) Inpn(wu)

(wu)™ (wu)"

du. (16)

The very strong (exponential) convergence of these integr:gf
is a powerful feature which greatly enhances the efficiency

the algorithm.

B. Disretization of (10) by Method B

The unknowns in
whereas
t, = cos[(2n — 1)n /(2L)],

tp = cos[nm /(L +1)]. (17)

L-1 L
Fot) = 7 +1 ZMZI (1 - 2)U.(E)Un (D) Falfn) (21a)
- L
)= % 2(2_5N Z DTN(OFE.()  (21b)
N=0 n=1
1).

0o =0if N #£0,600 =
ote: In the casem = n = 0 (a slot separating two
Helectric half spaces)7t) = G = G® = 0 and, thus,

all spectral integrals in (14) and (19) vanish. In this case,
therefore, all matrix elements assume completely analytical
expressions in the context of both methods A and B.

this method are the quantities
L} where L is an integer

IV. REDUCTION OF (6) TO ASYSTEM OF SIE-SIDE

For the same reasons explained in connection with (3),
system (6), connected with the structure of Fig. 1(b), is also
rather impractical. To recast it into a convenient form one

Proceeding along the lines outlined in [1] one ends up withay use the decompositions

the linear algebraic system

L
> (R Fulta) + Ry7 Fe(ta)] = ho(0+) exp(ikawi,)
n=1

(18a)

)+ Rf,an (t )] = I (04) exp(jhrwt,,)

L ~
Y [RanFu(tn)

n=

an

(18b)

1 1

Ta(u) = Ry + Piu) (¢g=e,h) 22)
Z5(u) = 2Z;(u) + Z9(u)
where
Zj(w) = Z;(w Vi + V5, VI + V0)
(23)

; 1 1
Z(J)(“) = Zj <U§ pe’ ﬁ)
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(j = 1,2,3). One observes thaP?(v) as well asZ’(u)
decay very strongly (exponentially) as — =+oco, whereas
Z;(u) continue to vary as|ul?>77,

I

system

d?
KRy, Roso) + (K +12 ) 720)

d2 N ipd g2 7t
+ kij(a:)] = e, (0+) eIk (24a)
I (R, B ) + - (RT3 () + K T2(a)]
— Ty JHx) = TpT*(x) = e.(04) &/*= (24b)
(lz| < w). Here
@) = [ S HP Guafe - o
o (25)
T = [ DK (e - hd (p=2.2)
1
Ko =o' =~ == > (D' 2[H (sl — o))
1 s=0
+ HP (s|z = 2/)]. (26)

The quantitiesR;(j = 1,2,3) (rapidly converging functions
of the spectral variable), k%.(P = A, B,C, D), and1o(Q =
A, B) are defined in Appendix B.

A. Discretization of (24) Using Method A

Settingz = wt, 2’ = wt/, L[z(t)] = F.(¢)/VvV1—12
J.[z(t)] = V1 — t?F,(t), and expandlngl andZ}, according
to (12), we again obtain the system (13) with(0) in place
of h,(0+); p = z,z. Now

1
Ky = {~IHOLN R+ 2 (B0 (2.0 )

+ k7 D§\24)N(k /K%, k1w, Kow)] }d;{},\r (27a)

K3y = =Ky = {~1"%(M, N; Ry) + jB[KAC T (rw)

+ k% C,(é),\,(/ilw, ﬁow)] }d;ﬂ\, (27b)
K3y = {~I°(M.N; Ry) — w[T1 A5y (k1)
+ TBAgé)N(ﬁlw, ﬁow)] }dLN. (27¢)

The quantitiesFJ(\%, (F=A,C,D) are given in [1] in an ef-
ficient analytical form. On the other han#t?” (A, N; R;) =
Jwe I (M, N; ZONY4-I""(M, N; RY)) where the first term
is exponentially converging while the second converges
1/ub.

i.e., rather inconve- (18) with ¢,,(0)
nlently By properly handling the inverse Fourier integrals
Ye u@=") gy, as outlined in [1] one arrives at the
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B. Discretization of (24) Using Method B

Using method B we obtain again the linear algebraic system
in place ofh (0+) p = z,2. Now
(kC/k~17 K’lw)

mn

REE, = T (B, s R1) + —— [KD)
Jrw

+k3D3) (K3, /k,;,mw row)] (28a)
RS, = (Enotes Ba) + /3[/@4 Chan(r1w)
+ E5C3) (k1w, Iﬁ;ow )] (28b)
RE2 = J(tp, s Ro) + /3[k BY (ki)
+ k3B (kyw, Iﬁ;ow )] (28c)
RZ = J'(tm,tn; R3) — — [TAAﬁ}lZL (K1w)
+ T AR (k1w l‘vow)] (28d)
2 (F = A,B,C,D) are given in [1] either in closed
form or in terms of simple single series, solely. On the

other hand J%(t,7; R;) = jwe  JU(t, 73 ZGY + Ja(t,; RY))
(¢ = a,b;j = 1,2,3) where J(t,7; Z0)) are exponen-
tially converging whileJ(¢, 7; R)) converge uniformly as
1/[uf+.

In terms of { F,(£,,),
again from (21).

F.(t,)} F.(t) and F.(t) are evaluated

V. FAR-SCATTERED FIELD

Notation: The symbol: is used throughout this section to
designate any of the outmost regiofisn — 1) or (m + 1).

In the system of cylindrical coordinatés(p, ¢, z) where¢
is measured from thg axis counterclockwise, the far-scattered
field radiated atF(p, ¢, z) € (¢) is given by

E(p,¢.2) = /j2nr;[pcos peIhitioz
280 + ﬁﬁc‘; + </3<5; . ¢5;> L }
Fo; Ky cos ¢
(29)
_ 1 - - _ . .
H(p,(/),Z): kl XE(p,(/),Z), kZ:_ﬁZ—i_K’lp (30)
Here &) = E,(u,y) (p = z,z), the Fourier transforms with

respect toz of E,(x,y) are evaluated as in Appendix A at
u = u; = k;sing, y = y; (=h,, Wheni = m+1, h_,,
wheni = —n — 1).

The power P,,q carried by the space-wave part of the
far-scattered field is given by

Pra_d = Pr(:(i—'—l) + Pr(adn 1) (31a)
Here
= [ v v
: "
l|g;|2+|5;;|2+ uis — PE; ] (31b)
K COS @

if k2 > 0, otherwiseP'"), = 0 (i = —n — 1 or i = m + 1).
@5 in (31) denotes the intervals 5 < ¢ < 5 (if i =m + 1),

™

5 < ¢ <35 (ifi=—-n-1).
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' x/w ’ ’ x/w x/w
(b) (@) (b)
Fig. 2. Equivalent surface magnetic current densities across a slot on theftigp 4. Normalized current densities induced on a strip right on the surface
surface of a dielectric slab. (@M-|. (b) |M.|. of a grounded dielectric slab. (4J-[Zo. (b) |Jz]Zo.
TABLE |

RADIATED POWER OF (31) AND SCATTERED POWER OF (32) FOR A SLOT
BETWEEN AIR AND A DIELECTRIC HALF-SPACE WITH RELATIVE DIELECTRIC
CONSTANT & = 2 (2w = Ao /2,® = © = 45°, Ey = ZpHy = 1)

N P of (31) P of (32)

r rad scat

s s

5 7.0275433047637097><10:s 7‘0275433047637084X10:5
10 7.0275434383853202><10_5 7.0275434383853188xlO_S
15]7.0275434383853202x10 7.0275434383853188x10

e Te2) T forig e 6727
1.5 Joo ,Fig. ,Fig.6(a r 1.0
2w=MA, 2w=3Ag
. . . . . . il Eo:1 d:}\/B EOZO —
Fig. 3. Normalized current densities induced on a strip right on the top —1.0 4|Ho=0 ZoHo=1 =
surface of a dielectric slab. (&)-|Z,. (b) |Jz|Zo. s d=A/8 F0.5 ;.:
= DERGERIRN B
- ; 5 05 r/4 <
The total scattered power (radiation plus surface wave, if N 0.0
any) may be found by integrating the Poynting vector over <0.0 A /8 \asa _-\3\_(‘},,*\\ g
the cross section of the strip/slot. The final result is = R Rt N
N SN A/8  —0.5
=0.5 1 AN — 2w A b
w > 1 N 2t L T
Pscat = —Re Z (b}kafw‘i‘aRfC]Zw) (32) —-1.0 . . . "*/ Z - Z1 3 —1.0
2 = =1.0 =05 0.0 05 1.0
- x/w

x z ; : : ig. 5. Normalized equivalent surface magnetic currents on a slot right on
wherecj, andcj, denote, respectively, the right side of (13aﬁ1e top surface of a dielectric slab for several slab widths=(\/8, A/4;

and (13b) [taking into account the modifications mentioneglthe wavelength in the dielectric). The excitations are normally incident TE
just before (27a), in the case of the structure of Fig. 1(b¥r T™ (to slot axis) plane waves.

Form = 0 = n (single-layered structures) (31) and (32) must

yield coinciding results. This equality of results, which ha

A and B. As a further test, the results in Table | ascertain

been used as a partial check of the validity of the numericaly onergy conservation principle to within 13 decimals in the

_codes, has been ascertained to vyithin 13 significant decimgé%e of a single slot separating two half-spaces [see comments
in all cases that have been considered. after (32)]. The entryV, in this table stands for the number
of terms used in each of (12).
In addition to the above internal checks, extensive compar-
Fig. 2 shows typical results for the equivalent surface maions with previously published results have been also carried
netic current density across an open microslot-lineZer= out in the special case of normal inciden@e = 90°). Some
Ao (Mo is the free-space wavelengthl, = 1 = ZyH, typical results of this comparison are shown in Fig. 5 for an
(Zy is the free-space wave impedancé),= 45°, and for open microslot line and reveal an excellent agreement with
three values oB (5°,45°,85%). Fig. 3 shows the normalized corresponding ones taken from [6]-[7]. (We also reproduced
current densitie.J. |Zy, and|J,.|Z, induced on a strip right all curves of [6, Figs. 5, 6], [7, Figs. 2, 3], [10, Figs. 2—7] (not
on the top surface of a dielectric slab, while in Fig. 4 the slathown), noticing thaRw/A, in [10] should read agw/A,).
is grounded. The frequency is taken to be 10 GHz in all caskesthe case of a strip right on the surface of a dielectric slab
whereas the magnetic permeability of all regions is taken to f&ther grounded or surrounded by air), the computer programs
that of free-space. As a patrtial test of their correctness, resuls/eloped here have also been tested with the help of the
in all Figs. 2—4 have been independently derived by methodsmerical codes of [8] and [9].

VI. NUMERICAL RESULTS AND DISCUSSION
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0.8 4

VIl. CONCLUSION

Two independent, direct singular integral equation tech-
nigues outlined in [1] were used here to analyze advanta-
geously three-dimensional scattering by strip/slot-loaded pla-
nar structures. This novel approach enables one to arrive at

— 2w +

0.4 W - S linear algebraic systems whose matrix elements are given by

s NS rapidly convergent real-axis spectral integrals. The numerical

0==45 " Method B i i

£, vethod A codes have been exhaustively tested by several internal and
00 65 00 05 1o °%io 45 " o009 o5 1.0 external checks.

x/w x/w
() (b) APPENDIX A

16 1.6 Description of the Immittance-Like Formulation Technique:

In the Fourier transform domain

=5 [t

o0 (33)
fea) = [ Fuye
let us define
Method B . . .
0.5 1o %%70 s o.}) 05 1.0 Eéz)(u, y) = ub (v, y) — BE.(u,y) (34a)
@ E{(u,y) = BE.(u,y) +uE.(u.y)
Fig. 6. Convergence of the algorithms for the equivalent surface magnetic = (i) . .
current densities across a slot separating two dielectric half-spaces. (a) and Hy (u,y) = vHy(u,y) — BH. (v, y)
(c) Method A. (b) and (d) Method B. - (0) o ) (34b)
H(u,y) = BHL(u,y) + uH.(u, y)
0t .- o8 o where the superscrifft) is used to designate thih region in
2w=ho/2 T ®=§’;: 2w=ho/2 ‘| each of the structures of Fig.(:n —1 <i <m+1). Then
Ev=ZoHo=1 7 * 05 [Tt —— e=sz 1 ES and B (q = e, ) satisfy dual decoupled equations
_ 0.4 ; | I .
K B J - 20) (1) = — (2 4 42T
§ %/%%% ”"(:' }&04— % 2 7 E; (U'v y) J(U' +4 )dyHe (U,, y) (35a)
Toz) i " B (u,y) = —wpa(u? + FILY (u, )
/ o d ~¢
! J 0.0 - ; > 3 > H(Z) u,Y) = _j U'2 +/32 _H(Z) u,Y),
180 270 90 0 QWO 180 270 h ( ) ( )dy h ( ) (35b)

(b) HO (u,y) = we; (u? + B2ID (u, y)

Fig. 7. Normalized radiation intensities for (a) a slot and (b) a strip right oyyhen the representation in terms of the Hertzian potentials

the interface between two dielectric half-spaces for several angles of incideny:.:fIe (% y) %% and Qﬂh(a:, y) 2982 is used for the scattered

field. These potentials, satisfying homogeneous Helmholtz's

To appreciate the convergence characteristics of both mefyations, are given by
ods A and B, Fig. 6 showis\/. | and |}, versuse for several

values of N, (the number of basis functions used in each of ™ (u, ) = AP (w) e (0=hom) (36a)
(12), method A) orl, (method B). As seen both methods yieldﬁgfn*l)(u’ y) = Af}*nfl)(u) Y1y —h—n_1) (36b)
indistinguishable final results. Method A, however, converges

more rapidly. L (u.y) = AP (u) coshyi(y — ha)] + B (w)
Finally, in Fig. 7 we show the normalized radiation intensity x sinh[y;(y — h;)] (-n<i<m) (36¢)

U (@) / Pecar versusy for a slot [Fig. 7(a)] or a strip [Fig. 7(b)]

. . — H A(i) B(i) ;
right on the interface between two half-spaces for sevefal ¢,h. Here,4;” and B, denote expansion constants

angles of incidencel/(¢) has been defined in (31b) for () = 42 — k2 2 _12_ 32
v =vi(uw) =/u?—r:, K=k —pf (37)
-5 < ¢ < 33. )
Note: By the algorithms developed here, one can treat in-a5 < arg(y,) < 5 (p = —n — 1 or p = m + 1) (radiation

unified fashion any layered strip- or slot-loaded, structure. bondition). Let
this respect, perfectly conducting regions (for example groung, _ a _ ) 0 _

planes in microstrip or microslot lines) can be accounted fo? (uy) = 1/ Y (w,y) = B (w,9)/Hy  (wy) (a=e,h)
simply by equating to zero their impedancgsand¢”, defined (38)

in (39). G =1/Y; = jvif(wei), ¢ = 1/} = jwpi/vi  (39)
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where, fory # 0, Z%(u,y) and Y?(u,y) are continuous
functions ofy. Then
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APPENDIX B

Expressions ofR; (; = 1,2,3), k% (P = A,B,C,D),

FU(u, hy +0) = f1 1 FUu,hpey —0) = —f2 | (408) T (@ = A,B): Let

qu(u, hz—) + fzq tanh(fyiDi)

* 4 Fa(u, h;—) tanh(v; D;)
(—n<i<m)

¢ FU(u, hi1+) — fitanh(y;D;)

* ff = Fa(u, hi_1+) tanh(v;D;)
(—n < i< m)

Fq(uv hi—l+) =

(40b)
Fq(uv h’z_) =

(40c)

F = Z,Y;,f = (,)Y. Equation (40) enable one to obtain
Y4(u, h;) recursively for anyi.

Derivation of (3) and (6): In connection with both struc-
tures in Fig. 1, using (38) one readily gets

HY (u,04) = H(u,0-) = V() Ey(u) (g=c,h) (41)

Then

where E,(u) = E& (u,04+) = ES(u,0-)
Ui(u) =Y (u,04) =Y (u,0-) (¢=eh)  (42)

with  Y?(u,0+)\Y%(u,0—) evaluated from (40b)40c)
downwardgupwards. We use (34) to expre&s(u), H” (u,
0-), and A (w,0+) (¢ = e,h) in terms of E, and H,

(t = x,2) and then substitute into (41). Taking the inverseltz = dwe ZP + R R® = —2j8u[¢, A, F,(u)

Fourier transform of both sides of the resulting equations and
applying the continuity of the andz components of the total

(i.e., scattering plus excitation) magnetic field across the slot®

€0 _ Mo 1—p?
T MT o 1= p
(43)
-1 2.2 _ .2
H=T"" g =MHT
e— U e— U
4 2(p—1) _ 4
s o2 (44)
Fp(u) = (ki ~ k) (p=e,n)
g nn+1)3 0 +pn) T
k?& = SIAH + £2A€7 k% = SIBH + £2B€7 k%‘ = Nk%Auv
k3 = pk?B,; Tg=&Q, + &Q. (Q=A,B) (45)
Ry =4we, ZM + RW, RW = 2j{[61 A Fu(w)
+ LHAF(w)u? — kfp A F(u)} (46)
+ E2A.F-(u)] (47)
Ry =4we1 Z® + R® | R® = 2j[¢3 A, F, (u)
+ B2 AL F. (u)) (48)

the system of integral equations (3) is obtained. System (6)
may be obtained in a similar manner.

Evaluation of E,(u, h,,) and E,(u,h_, 1) (p = x,2) in
(29): We refer to the structure of Fig. 1(a). Beginning with
the relations

Ea(u,0) = M.(u) = 5 3" ani" Jn(wu) =

n=0
. . W, .. T (wu (2]
—E.(u,0) = M,(u) = 3 Z bnj™(n + 1)% @l
n=0

[where a,, b, are known from the solution of (13)] we [
successively evaluatB\” (u.0) = ESV(u,0) (¢ = ¢, h) from (5]
(34a), B (u,0+) and A (u,0—) from (38), TI" (u, 0—)
and ﬁgl)(u, 0+) from the second of each of (35a) and (35b).[6]
We next use the relation implied by (36c¢)
I (u, ) = 157 (u, h;){coshyi(y — hs)]
= Agsinh[vi(y — h)]} (—n<i<m)

(where, = Z¢(u, h;) /5, A = Y (u, hy)/VP) as well as
Ezﬁg) (U,, hz) = 5i+11:[g"’+1)(u, hz)
pally) (u, hi) = paga IO (u, )

(7]
(8]

El
[20]

starting from{i = 1, y = 0+}\{i =0, y = 0—} to evaluate [1q
5" (g, NI (w, h_n—1) (g = e, k). Then we use
again the second of each of (35a) and (35b) to ﬂ?}%ﬂ"“)
(s P )y ES P (w, hn_1) (g = ¢, h) and, finally, in terms
of them, the sought values using (34a). The case of t
structure in Fig. 1(b) is treated in a similar manner.

with Z@) (5 = 1,2,3) defined in the second of (23).
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