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Radiation and Scattering from Infinite Periodic
Printed Antennas with Inhomogeneous Media

Wen-Jiunn Tsay and David M. Pozdkellow, IEEE

Abstract—The hybrid method of moments (MoM)/Green’s

function method [1] technique is applied to infinite periodic D
printed antenna arrays containing dielectric inhomogeneities. Er
The solution uses an integral equation for an infinite periodic Er
printed array on or over a homogeneous dielectric substrate
[2], coupled with equivalent volume polarization currents for (€Y (b)
dielectric inhomogeneities on top of the homogeneous substrate.

Volume pulse-basis functions were used to expand the volume | - s -
polarization currents. A hybrid MoM/Green’s function method

solution was then obtained through the matrix form of the Er Er

problem. The two-dimensional (2-D) solution of plane wave scat-

tering from a grounded dielectric slab was used to validate (© (d)

the reaction impedance of the dielectric inhomogeneity. Several _. ) ) ) )
infinite periodic printed dipole arrays with dielectric supports Fig. 1. Printed antenna arrays with (a) homogeneous substrate, (b) dielectric

and overlays were studied with this solution and good agreement Pa7ers. (¢) dielectric supports, and (d) dielectric overlays.

was observed between the hybrid MoM/Green’s function method

and waveguide simulator experiments. Through the interruption of surface waves or other propagating
Index Terms—Microstrip antennas, nonhomogeneous media. Modes that cause scan blindness, it may be possible to control

blindness by using inhomogeneous loading [3], [4] and still

maintain a reasonable impedance bandwidth.

Another application is to increase the bandwidth of an
HE objective of this work is to develop a hybridarray by using dielectric overlays. Generally speaking, any
method of moments (MoM)/Green’s function solutionmprovement in bandwidth for printed antennas can only be

(abbreviated as the hybrid moment method) to analyaehieved by an increase in volume or a loss in efficiency [5].
three-dimensional (3-D) periodic antenna and scatteriigall et al. [6] have experimentally shown that the bandwidth
problems involving a dielectric substrate with dielectriof alumina patches can be increased by a factor of 16 by
inhomogeneities. There are four types of geometries in whiolerlaying pieces of substrate. Such a dielectric overlay can
we are interested. Fig. 1(a) shows an infinite planar arrég considered as a type of resonator antenna, as reported
of printed antennas on a homogeneous grounded dielectric McAllister et al. [7]. Recently, Kishket al. [8] have
substrate; Fig. 1(b) shows an infinite planar array of printexjudied the problem of a dielectric disk antenna above a
antennas with dielectric barriers; Fig. 1(c) shows an infinigrounded dielectric substrate. By replacing the conducting
planar array of printed antennas with dielectric supports; apdtch with a low-loss dielectric disk resonator, they were able
Fig. 1(d) shows an infinite planar array of printed antennas achieve 30% bandwidth. These examples suggest that if
with dielectric overlays. By analysis of these geometriethe configuration in Fig. 1(d) can be implemented, it may
we can study the effect of dielectric inhomogeneities dpe possible to significantly increase the bandwidth of a large
the performance of an infinite periodic array antenna wheaeray.

potentially improved bandwidth or scan range may be achievedAll of the above configurations can be categorized as prob-
and novel antenna geometries may be investigated. lems of radiation and scattering in periodic inhomogeneous

One application of such geometries is to obtain an additionalkdia. If a solution for these problems is available, we will be

degree of freedom for an array beyond the substrate thickneste to solve a large variety of useful radiation and scattering

to optimize the impedance bandwidth and scanning rangeoblems involving inhomogeneous media.

of large printed arrays. Pozar and Schaubert [2] discoveredThe finite-difference time-domain (FDTD) method is a

that surface wave coupling can lead to scan blindness wheseful computational technique for a wide variety of problems

no effective power is transmitted or received by the arrain radiation and scattering, especially when inhomogeneous
material are involved [9]-[11]. However, the FDTD method
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transverse material inhomogeneities. Hybrid moment-method y
solutions have been implemented to solve inhomogeneous ]‘
problems for a single antenna [1], [18]. This paper extends
this concept to an infinite planar array with dielectric in-

homogeneities. A disadvantage of this method is that the -

derivation of the dyadic Green’s function and the integral Q —
equation matrix elements are tedious and complicated. Also, T z

memory requirements and central processing unit (CPU) time b 1

becomes large.

Following the standard moment-method procedure for an
infinite periodic array antenna [2], the equivalent volume
polarization current that is induced inside a dielectric in- —_— Q — g —
homogeneity is used to create a second integral equation
according to the volume equivalence theorem. To indepen-
dently verify the reaction impedance elements generated by
the dielectric inhomogeneity, two-dimensional (2-D) scattering
from a grounded dielectric slab with parallel polarization plane
wave incidence was studied. Volume pulse-basis functions @
were chosen to expand the equivalent polarization current.
Excellent agreement is observed for the reflection coefficient 2
when compared with a closed-form solution. When applying
the hybrid moment method procedures to a 3-D numerical test /

increase sharply as the electrical size of a unit cell in the array _/_ g Q
— —— —eX

case with volume pulse-basis functions, good prediction of the
scan blindnessH-plane scanning) and reflection coefficient
is obtained. Finally, several waveguide simulator experiments
were performed to validate the 3-D hybrid moment-method
code. Very good agreement is observed between theory and
measurements for several different array geometries.

Er d

Il. THEORY

Conventional moment-method and other full-wave solutions
that employ dielectric substrate Green’s functions are generally (b)
limited to geometries without transverse material inhomdig. 2. (a) Infinite periodic printed dipole array on a homogeneous substrate
geneities [2]. When inhomogeneities are present, only mulffith nomogeneities. (b) lts unit cell configuration.
layer dielectric substrates have closed-form Green'’s functions
[19], [20]. Newman and Tulyathan [21] successfully employed. Dyadic Green's Function Formulations

& moment me.thod t_o ;olve the pro_blem of an antenna in thePozar and Schaubert [2] showed that the Poisson sum for-
presence of dielectric inhomogeneity by using volume pulsgg la can be used to obtain the Green'’s function for an infinite

basis funct?ons o expand the polariza_tion currents and gog ay. In this work, the antenna and dielectric inhomogeneity

reﬁ_ur:Fs for input mgedsnche ;v_e;re obtained. hod techni are positioned on or above a grounded homogeneous dielectric
IS paper extends t € fybrl QO_ent'met od tec nlquestl?slb, thus, the infinitesimal source current element must be

solve the problem of an infinite periodic printed antenna arr sitioned above the substrate, > d) (detailed derivation

on a grounded homogeneous dielectric substrate with dielec Qcpresented in [22]). In dyadic form, the Green’s function for

inhomogeneities, as shown in Fig. 2 This solu_tlon_ IS 9€NCIA 4 and source points above the substrate can be expressed as
enough to treat each of the geometries shown in Fig. 1, as the

conducting antenna element may be placed on the dielectricE(% Y, %
substrate on top of the dielectric block or below the dielectric
block. Since we are implementing the hybrid moment methovhere:, 5 = z, y, or z
for periodic problems, the major tasks include: 1) deriving the

xo, Yo, %0) = 11 Ei;(x, y, 2 | o, Yo, 20) (1)

necessary Green's functions for the homogeneous dielectric Eij(x, y, 2 | %o, yo, 20)
substrate; 2) choosing basis functions to expand the unknown _1 & Gl T
equivalent surface and polarization current densities; 3) em- “ab Z Z ij (ks by, 2 | 20)

p=—00g=—00

ploying Galerkin’s procedure; 4) solving the resulting matrix i () ey (0—v)

equation to obtain the current amplitudes; and 5) computing
input impedance and reflection coefficient. i=xo0oryorz andj =x ory or z.
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The Green’s function componengs;; are simple extensions This can be expressed using the Green’s function as

to those given in [2] and [25] for - .
. 0:—// E - J% dsg
z = z9 = d . s
ke = kou + 222 h _ o
ky = kov + &4 _/// E-JPdvy + ————. (3)
u = sSiné cosg; Va Jw(eq — €o)
v = sindsing; . _ -
a is the unit cell dimension in the direction,b is the Equations (2) and (3) are the integral equations for the problem

unit cell dimension in theJ direction; ¢ and d) are of an infinite periodic printed array antenna with the presence

the scan angles, andandq are integers representingof @ dielectric inhomogeneity.

discrete Floquet modes.
C. Current Density Expansion and Reaction

B. Integral Equation Derivation Impedance Generation

To carry out the moment-method solution, we need to

Once the Green’s functions are derived, the next task i basis funcii ¢ dt K valent
to set up integral equations subject to required bounda‘f@oose asts urlp Ions 10 expand two unknown equivalen
rrent densities/}” and J2. We use piecewise sinusoidal

conditions. Consider a unit cell of the infinite periodic printe WS des for th duct t and oulse funct
array antenna with dielectric inhomogeneity, as shown ) modes for the conductor current and puise functions

Fig. 2 (notice that the dipole is not necessarily on the substratt%,eXpand‘]f

but can be moved to any desired position above the I Lo NedNe
substrate). Assume the surface current density induced on J.° =#» I¥J¥andJ? =& > I7,JF
the conductor is7* and that the volume polarization current n=1 n=Ny+1
density induced in the dielectric inhomogeneity.ji. Let N 42N, N 43Ny

B = /D S SO R S AW

E* be the incident field n=Nw+No+1 n=Nuw+2N,+1

E" be the field due to/* and

R ) I where

EP be the field due to/?. o oy " .

L, 1., 1,,, andI; are the unknown expansion
- , sinfk.(h — |z — x;
_ o _ coefficients and/¥ = [k ( . o — @]

Then the tangential electric field must vanish on the conductor Wsin(k.h)
and the relationship between the total electric field and the vol- for |z — z;| < h and|y| < %

ume polarization current density (from the volume equivalence
theorem) can be used to create two integral equations. Since
the tangential electric field must vanish on the conductor, vie a piecewise-sinusoidal expansion mode with terminals at

have z;, a half-lengthh, andk. = koy/ <3t (assuming a uniform
distribution representing the current variation across the width
w of the dipole)

1, for a(n) <z < a(n+1), y(n) <y <
JP = y(n+1)andz(n) < 2 < 2(n+1)

0, otherwise

Eft = (E' 4+ E¥ 4 EP)ian = 0.

tan

The above equation can be rewritten using the Green'’s func-
tion as
. is a pulse-mode basis function for the dielectric inhomogeneity
El =-E% _EP =—_ <// E-J* dso) (the dielectric inhomogeneity is divided into small rectangular
Su tan volumes, as shown in Fig. 3V, is the number of PWS
_<// E.Jrd ) modes on the conductor anll,, is the number of rectan-
v, v . gular volumes in the dielectric inhomogeneity. Thén),
y(n), and z(n) are the lowest corner coordinates of thth

rallelepiped as defined in Fig. 3.
From the volume equivalence theorem [23], the inducé)cf‘-l-he urﬁ)k?lown current expangion coefficieds, I¢,, IV

. . . . . . . _ i ) nxe! ny! .
volume polarization current density in the dielectric mhomoand_,zz can be determined through Galerkin's procedure. First,

geneity Is we test (2) with.J} to obtain
7 [itot Nu, Nu+N, N, 42N,
D = jw(eq — o) ™. o o o
" Y Iwzwr+ Y LnZwi.+ Y LnZe,
Rearranging the above equation gives n=1 n=N,+1 =N, +N,+1
N, 43N,
S SV > LZnn=Ve @

 jw(eq — €o) . n=Nu 2N+l
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z is the spatial discretization step

No+N, Nou+2N,
///// lezb wmnya}"" Z Irl;a;Zrl;mlzlﬂf Z I,l;yzrl;lnzy
N
/ / / / / +o DL LA
n=N,+2N,+1
.x3  Nu+2N,
///// « o JA Z Ii,6(m—n)=0 (6)

Ckoerg—1
0 &rd = =N N, +1

(x{(n+1), y(n+1), z(n+1))
Erd in the dielectric inhomogeneitys = N, + N, +1,-- -, Ny, +
2N, where

== [ | | [ Gustyrras.av.,
Vam Swn

Zrl;lnl;z:_/// // GJZJrI;UJZ;dV dVrna
Vam Vin

1 =2x Ory or z.

ZrLrl;nw = _// // waJrL;;JrLLU dSon dSrn
Swm Sun Nuw+N, Nu+2N,

ZIwZL wrnnza; + Z Irl;a;Zrl;lnl;ac Z ITl{yZ;;lnl;y

. © 1p n=Nu, =Nyt No+1
Zrnnam = - Gl‘l‘]rn‘]nz dV:)n dSTna N
Swm Van

¢ =x Or y Or 2. + Z L Zn

nz mnzz

n=Ny,+2N,+1

(x(n), y(n), z(n))

Fig. 3. Discretization of the dielectric inhomogeneity.

on the conductorn =1, 2,---, N, where

N

LT — Mo ia’ ID.6(m—n)=0 (7)
Next, we test (3) withJZ, ko €pg — 1 nz
. n=N,+2N,+1
ZNW [z NZJFN o N“§N” v gv—v  In the dielectric inhomogeneityy = Ny, + 2N, +1,---, N,
mnrx nac mnrx ny mnxy Where

n=Ny,+1 n=Ny,+N,+1

.
v g o, / / / / / w2 T Ao AV
+ Z I’n/;« annm;« ‘/fdm Su .

n=Ny,+2N,+1

770 1A3 Nuy+Ny

IfO Crd — 1 %: B n) =0 (5) rnnm - /// /// G/«l]r]r)l;. ]r]:7 d‘/on dv’"’
= Vim Van

t=x Oryorzxz

in the dielectric inhomogeneityn = N, +1,---, N, + N,, o o
where When the volume polarization current densify is ex-

panded by the pulse-mode basis functions, (4)—-(7) can be

AN / / / / / GowJ? T dSon AV, written in more detail as

rnnam - /// /// Gﬂm‘]r]:wcjgz d‘/on dVTnv
Vam Vin Ny+ N,

i=z OF y Of zi - Z {bZZG“’”F* }

n=~N,,
l\u,+21\v
S(m—n)y={b =" - Z { bZZG“’”F }
~ 10, otherwise nZMJ,:fMH

- > {bZZG“’“’F* }:Vm (8)

andA = z(n+1)—z(n) = y(n+1)—y(n) = 2(n+1)— 2(n) n=Ny+2N,+1
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on the conductorn = 1, 2,---, N, where

_ Ny+1
Vrn = 17 m= 2
0, otherwise

Ny
- Yy enen)
n= p q
Ny+N, 1
SO RES S T
n=N,+1 r g
Nyu+2N,

-y %{%ZZG;;Q;CJN}
n=Ny+N,+1 P g
:

v 1 VU Yk

n=Ny,+2N,+1

o jA3 Ny +N, -
—o o7 2 LLbm—n)=0 9)
0 €rd n=N,+1

in the dielectric inhomogeneity, = N, +1,---, N, + N,

Al w 1 VU YF

Noy+Ny 1
Y nfiyyae
n=Ny+1 P g

]\‘ruy + = ]\Tu v 1 v *
- Z Iny{@ZZnyQan}
n=Ny+N,+1 p g

8

- IZ{Z{%ZZGQJZQL%}
n=N,,+2N,+1 P g
N.,,+2N,

> ém-n)=0  (10)

n=Ny+N,+1

_ o GA°
k‘o €rd — 1

in the dielectric inhomogeneitys = N, + N, +1,- -+, Ny +

2N,
N
i { %ZZGZ;"Q:@}
n= P q
Ny+Ny i .
B n:%:,-kllnm { E;%:GZWQWLQn }
N,+2N, .
T Iﬁy{@ZZGzzQ;Qn}
n=Nu+No+1 i
N
g Iﬁz{%ZZGﬁﬁQLQn}
n=Ny+2N, +1 ab
. N
_ o GA° S stm-n)=0 (11)

koerqg—1
0 rd = & Ne 2N, +1

in the dielectric inhomogeneity, = N,, + 2N, +1,---, N.

i A i
H Einc i
1 1
1 1
1 1
1 1
1 1
i Hinc !
1 I
i I
: Href i
2 Eref :
|
=tl 4
‘ Erd
T d
d1 Er

Unit Cell

R
X __

Fig. 4. Two-dimensional plane wave scattering from a grounded dielectric
slab.

Equations (4)—(7) formV = N, + 3N, linear equations
with V unknown current expansion coefficients, which can be
shown in matrix representation as

oo Bl -l oo

The expansion coefficient and ¥ can be obtained by
solving the matrix equation (12). The input impedance at a
center-fed dipole element in the array is defined as

N, +1
5

Zin(0, &) = %, wherek = (13)

Then the active reflection coefficient [2] can be calculated as

Zin(ev ¢) - Zin(07 0)
Zin(ea d)) + Zi*n(o’ 0) '

This completes the hybrid moment-method formulation for
an infinite-periodic printed-array antenna with a dielectric
inhomogeneity. Since the reaction impedance formulation for
the dielectric inhomogeneity itself is quite complicated, it is
useful to validate this part separately. Two-dimensional plane
wave scattering from a grounded dielectric slab is sufficient
to serve this purpose, as will be explained in the following
section.

R(0, ¢) = (14)

D. 2-D Plane Wave Scattering from a
Grounded Dielectric Slab

Consider a parallel polarized uniform plane wave incident
on a grounded dielectric slab, as shown in Fig. 4. The incident
and reflected plane waves can be expressed as

Detail expression of those related functions can be found in E'(x, 2) = [#cos (6;) + 2 sin (6)]

[22].

3 e—jkg[m sin (8;)—(z—dy) cos (6;)] (15)
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E"(w, 2) = Dpar [ cos (6;) — zsin (6;)] in the dielectric layern = 1,---, N,, and
. e—jkg[ac sin (6;)+(z—dy) cos (6;)] (16)

Ny
DWRE W
n=1 P

wherel',,,, is the parallel polarization reflection coefficient at

z = dy, which is known in closed form [26§; is the incidence N 1
angle, and¥, is the transmission angle. - > I’,’{Z{—ZG;’ZQ;Q,L}
In order to incorporate the reaction impedance formulation n=N,+1 “%
for a dielectric inhomogeneity into the problem, we divide the 10 AL, N
original grounded dielectric slab of thicknegsnto a thinner — k—‘ ”_ i Z I 6(m—n)= vz (29)
grounded homogeneous dielectric slab of thicknésand a 0 €rd n=N,+1
dielectric layer with thicknes$; = d — d; to be modeled
using volume polarization currents. Then we have two casésthe dielectric layerm = N, + 1,---, N. Definition of all

for comparison. One is the canonical problem of the reflectée related functions can be found in [22].
field of a grounded dielectric slab with thicknedswith no Once the unknown current expansion coefficients are found
polarization currents. The other is the reflected field of tarough the standard matrix formulation of the moment
homogeneous grounded dielectric slab of thicknéssplus method, the scattered field due to the dielectric layer can
the scattered field due to the discretized volumetric modelifg easily obtained. The reflection coefficient of a plane wave
of the remaining layer of thicknegs. Obviously, these two incident on a grounded dielectric slab of thicknéss equal to
cases should be equivalent. the reflected field of the grounded dielectric slab of thickness
The scattered field and current density inside the dielectrde, Plus the scattered field of the discretized dielectric layer
layer of thicknesg; in the presence of a grounded dielectri©f thicknesst; divided by the incident field amplitude

slab of thicknessl; can be written as el4 Ef(z=d)+ E(z =t tan(6;), z = d)
Tpar = —2 = G d (20)

. where
s total 3% or T T
ES = ptotal _ pe_ pr //s E-J?dS, E (z =d) = cos (gi)e—jko sin (6;)[t1 tan (6;)]
d
and.J? = jweg(epg — 1) EBL
jweolera—1) E(z=d) =T par(z = d1) cos (6;)

) e—jko sin (05)[t1 tan (05)16—jk0 COS(@{)Qtl .

Rearranging the above equations gives an integral equation as

_/ . jrds n Jp By 17) _Since_ we use p_u_lse-mode basis functio_ns to_model the
s, 0 jweolerg —1) : dielectric layer, fictitious surface charges will be introduced
on the interface of adjacent discretization cells, which may
Now, we let cause the solution to converge slower. To see the effect of
these fictitious charges, we selected discretization steps of
N, IN, 0.1\, 0.05, and 0.025, to verify the convergent speed.
JP = gzz_rgm,]g + 3 Z IV_J? where Both magnitude and phase of the reflection coefficient were
n=1 n=N,+1 compared with the closed-form solution. The magnitude al-
1, for z(n) <z < z(n+1) and ways maintains at least six significant digit accuracy and the
g z(n) < z<z(n+1) phase error improves from 1 to 0.1%. These results seem
"~ Y0, otherwise to suggest that as long as the discretization step is smaller
than 0.023,, those fictitious surface charges will not have a
significant effect on the moment-method solution as compared
is a pulse-mode basis function for the dielectric layer. with the closed-form solution.
Using the standard Galerkin’s procedure, we obtain the The 2-D scattering formulation provides a good validation
following equations: for the 3-D scattering formulation, because all the key inte-
grations in the 3-D formulation are in thedirection, while
N, 1 in the 2-D formulation, the same functions are used. The
- ZI;{QC{—ZG;;Q;Q”} differences between the 2-D and 3-D formulations are simply:
n=1 “% 1) two summations of, andk, are replaced with only one
N 1 k. summation and 2}, drops to zero for all the Green’s
— Z I’,’{Z{—ZG;ZQ;Q,L} functions in the 2-D case. This simpler problem thus offers
n=N,+1 o a necessary but not completely sufficient analytical check on
0 JALA, N, . . the solution. Further validation of the 3-D results are p_rovided
Bl Z—%ﬁ(m -n)=V, (18) by comparison with measured data from waveguide simulator

n=1 experiments, as discussed in the following section.



TSAY AND POZAR: RADIATION AND SCATTERING FROM INFINITE PERIODIC PRINTED ANTENNAS WITH INHOMOGENEOUS MEDIA 1647

® Hybrid Method Closed-form 3
PN 2
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Eb ]
§/ 140_ ® E‘E
o 100 2
8 1 g
A 60 7] l é
8 207 g
Q ] ‘B
aq:é -20 ] %
O 601 [
: 1 T T T T T T
'% -100 0 10 20 30 40 50 60 70 80 90
% -140 . Theta (degrees)
& -180 LD R S — T & 2180
(53
0 10 20 30 40 50 60 70 80 90 & 140_'
Incidence Angle (degrees) ) ]
g 1007
Fig. 5. Phase of the reflection coefficient of a 2-D grounded dielectric slab g«‘“: 60
with dy = 0.1Xp andt; = 0.1Ao. g 904
Bt E
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= -
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O
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Fig. 7. Comparison of the magnitude and phase of the reflection coefficient
from the MoM and the hybrid MoM solutions for an infinite array of printed
dipoles on a homogeneous substrate.

l« a >

o _ _ _ ~case were chosen as followg: = 0.19)g, di = 0.165),
Fig. 6. Unit cell of an infinite array of printed dipoles on a dielectric

—_ = —_ —_ —_
substrate, modeled using the hybrid MoM solution for comparison witf — O'Or)‘o’ b = 0.1, L1 = 0'39):0’ W = 0;(202)‘0’
homogeneous substrate solution. Ly = 05X, Wa = 01X, ta = 0.025), ¢, = 2.55, and

era = 2.55. With E-plane scanning¢ = 0°) and a spatial
discretization ofA = 0.0125)¢, the magnitude and phase of
the reflection coefficient of the hybrid MoM solution show
To check the self- and mutual-reaction impedances fgood agreement with that of the MoM solution described in
the volume polarization currents, the example of 2-D plarjg], as shown in Fig. 7.
wave scattering from a grounded dielectric slab is used. SinceThe first waveguide simulator was fabricated with a thick
all the media are assumed lossless, the magnitude of ghdbstrate to produce a pronounced scan blindness. The wave-
reflection coefficient should be unity. Fig. 5 shows the phageide was standard brasd-band (4—6 GHz) guide, with
of the reflection coefficient wherd;, = 0.1\, t; = 0.1Xg, inner dimensions of 4.755 cnx 2.215 cm. Two printed
d = d; +t1, ande, = 2.55. An excellent agreement (the errormonopoles (fed with a power divider) of length 1.85 cm
is within 0.3 degree) is observed when compared with tleend width 0.19 cm were laid on a plexiglass substrate of
closed-form solution for a spatial discretization smaller thahicknessd = 1.86 cm, permittivity ¢, = 2.60, and loss
0.025)\,. The hybrid moment-method solution takes about fAngent of 0.0057 [24]. The element spacings were 4.43
s per data point on a DEC3000 AXP workstation. cm andb = 2.38 cm. A de-embedding technique [22] was
Next, a 3-D test case of an infinite printed dipole arraysed to remove the loss and phase shift effects of the two-
[2] was used to verify the hybrid MoM code, as shown invay power divider from the measured data. Fig. 8 shows
Fig. 6. The bottom substrate layer of thicknessis handled good agreement for the magnitude and phase of the reflection
exactly through the Green’s function, while the top layer afoefficient from the hybrid MoM solution and the waveguide
thicknesst, is discretized using volume polarization currensimulator experimental result. Notice that the scan blindness
basis functions. The array input impedance (or reflectimtcurs at 4.99 GHz with a measured reflection coefficient
coefficient) of an element in the infinite periodic printed dipolenagnitude of 0.89. This nonunity value is the result of copper
array with a homogeneous substrate of thicknésfiould be and dielectric loss in the simulator.
equal to the impedance (or reflection coefficient) of the array One purpose of this work was to obtain extra degrees of
shown in Fig. 6, which consists of a homogeneous dielectfieedom for an infinite periodic array by introduction of a
slab of thicknessd; and a layer of thickness, modeled dielectric inhomogeneity to allow improved bandwidth without
with volume polarization currents. The parameters for this tebte usual concomitant scan blindness that occurs with a thick

I1l. V ALIDATIONS AND RESULTS
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Fig. 8. Comparison of the magnitude and phase of the reflection coefficigny 9. Comparison of the magnitude and phase of the reflection coefficient
calculated from the hybrid MoM solution, and measured in a waveguid@|culated from the hybrid MoM solution and measured in a waveguide
simulator for an infinite dipole array on a uniform dielectric substratgimuylator for an infinite dipole array on an inhomogeneous dielectric substrate
[Fig. 1(a)]- of the type shown in Fig. 1(c).

substrate. After some numerical testing, the geometry shofiglent between the hybrid MoM solution and the waveguide
in Fig. 1(b) did not achieve this objective due to the fact thaimulator experimental result. Notice that the scan blindness
it failed to reduce the surface wave coupling between dipolggoves from the previous frequency of 4.99 up to 5.64 GHz.
However, the geometries shown in Fig. 1(c) and (d) provagking the surface wave theory of scan blindness discussed in
to be better candidates for this purpose. It is well know?], the blindness angle of 3%t 4.99 GHz for the array of
that a thick substrate for an infinite periodic printed dipolgig. 8 corresponds to an effective surface wave propagation
array improves bandwidth, but at the expense of a smallgnstant 085 /ko = A\/b — sinf;, = 1.889. For the array of
available scan range due to the excitation of surface waveg. 9, however, the blindness angle of 33.& 5.64 GHz

and the resulting scan blindness. If the height from the grounfiplies an effective surface wave propagation constant of
plane to the dipole is fixed at as shown in Fig. 1(a), we cang,,, /ky = 1.676. While both of these values are atypically
trim away part of the substrate to give the geometry shoviarge for purposes of illustration, the significant reduction of
in Fig. 1(c). By doing so, the effective substrate thickness ise surface wave propagation constant means that blindness
reduced away from the dipoles and the scan blindness eff@gt £ plane scanning will occur further from broadside for the
can be alleviated significantly. array of Fig. 9 due to the inhomogeneous dielectric.

In order to show a pronounced change in the occurrence offhe dielectric overlay has been suggested to increase the
scan blindness, the previous waveguide simulator was refaliyandwidth of printed antennas [5], [6]. Also, with a small
cated to use the inhomogeneous substrate geometry showmatlification of the feeding structure, we can model a dielectric
Fig. 1(c). The same printed monopole of length 1.85 cm anlisk resonator antenna above the grounded dielectric substrate
width 0.19 cm was laid on a plexiglass support post of lengffi]. For these two applications, the structure shown in Fig. 1(d)
Ly = 2 cm, width W, = 0.28 cm, thicknesg, = 0.86 cm, is relevant. A third waveguide simulator was fabricated to
permittivity ¢, = 2.60, and loss tangent 0.0057. The substratealidate the hybrid MoM solution for this geometry. Two
was also plexiglass with thicknegg = 1 cm, permittivity printed monopoles of length 1.2 cm and width 0.2 cm were
e = 2.60, and loss tangent 0.0057. The element spacingsd on a plexiglass substrate of thicknegs = 1.05 cm,
werea = 4.43 cm andb = 2.38 cm. Fig. 9 shows a good permittivity . = 2.60, and loss tangent 0.0057. The dielectric
agreement for the magnitude and phase of the reflection coferlay was also plexiglass, with length, = 1.7 cm,
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; 20 conducting element was modeled using PWS mode electric
3 s surface current basis functions and the dielectric inhomogene-
% -207] ity was modeled using pulse-mode equivalent volume current
< 607 basis functions. Two coupled integral equations were derived
g -100 7 and a Galerkin procedure was implemented.

o%j -140 - Several numerical and experimental test cases were used to
# 180 F—1r0 validate the hybrid MoM computer code. A numerical result

40 42 44 46 48 ' 5‘0' 52 54 56 58 60  for2-D plane wave scattering from a grounded dielectric slab
Frequency (GHz) was used to validate the self- and mutual-reaction impedances
of the dielectric inhomogeneity. Even though surface fictitious

Fig. 10. Comparison of the magnitude and phase of the reflection coefficitHarges are introduced in the process of expanding the po-
calculated from the hybrid MoM solution and measured in a waveguide 9 b P 9 P

simulator for an infinite dipole array on an inhomogeneous dielectric substr. ?Jized current denSity in the diele_ctric Iayer* gOOd agreement
of the type shown in Fig. 1(d). was observed when compared with the closed-form solution.

Waveguide simulators were built to validate the calculations
from the hybrid moment method. By using dielectric supports
€. = 2.60, and loss tangent 0.0057. The element spacin% overlays, we are able to introduce a degree of freerm

. resolve the usual tradeoff between frequency bandwidth
were a = 4.43 cm andb = 2.38 cm. In general, Fig. 10 . . : :
; ang available scan range in printed phased arrays. Waveguide
shows a good agreement for the magnitude and phase o S ;
simulators were used for validation of several geometries,

the reflection coefficient between the hybrid MoM solution . S ey .
) . . showing a significant shift in the scan blindness angle. A
and the waveguide simulator experimental result. Some 0f . . . : ; )
: typlcal hybrid MoM solution requires about 40-min CPU time
the difference between measured and calculated results’is

probably due to measurement and fabrication tolerance. e data point when running on a DEC3000 AXP workstation.

“rounding” of nulls and peaks in the calculated data is probably
due to discretization error. For broadside radiation, Fig. 11
shows a noticeable bandwidth increase with the dielectrifl] E. H. Newman, “An overview of the hybrid MM/Green’s function

overlays, in contrast to the same array without the overlays. Method in electromagneticsProc. IEEE vol. 76, pp. 270-282, Mar.
A simple explanation for this bandwidth enhancement is thag] p. M. Pozar and D. H. Schaubert, “Scan blindness in infinite phased

the dielectric overlay is slightly larger than the dipole, so arrays of printed dipoles/EEE Trans. Antennas Propagatol. AP-32,

' i i '« pp. 602-610, June 1984.
two relatively close resonant frequencies contribute to this,, \* Davidovitz, “Extension of the E-plane scanning range in large

bandwidth increase. Notice that the scan blindness occurs a{ microstrip arrays by substrate modificationEEE Microwave Guided
5.61 GHz, whereas the scan blindness occurs at 4.93 GHz Wave Lett.vol. 2, pp. 492494, Dec. 1992.

. . ] J. R. Bayard, D. H. Schaubert, and M. E. Cooley, “E-plane scan
when the homogeneous substrate thickness equal to 1.86 performance of infinite arrays of dipoles printed on protruding dielectric

cm. This is another example of the significant shift in the scan substrate: coplanar feed line and E-plane metallic wave effe@&E
blindness angle. Trans. Antennas Propagatvol. 41, pp. 837-841, June 1993.
[5] A.Henderson, J. R. James, and C. M. Hall, “Bandwidth extension tech-
niques in printed conformal antennas,” Military Microwaves, MM86,
Brighton, U.K., June 1986.
IV. CONCLUSION [6] P. S. Hall, C. Wood, and C. Garrett, “Wide bandwidth microstrip

The hybrid moment method has been developed and applied antennas for circuit integrationElectron. Lett, vol. 15, pp. 458-459,

e - . : 1979
to infinite periodic antennas and scatterers having dielectrig; p. w. mcalister, S. A. Long, and G. L. Conway, “Rectangular

inhomogeneities and printed conductor radiating elements. The dielectric resonator antennalectron. Lett, vol. 19, pp. 218-219, 1983.

width W, = 0.6 cm, thicknesst; = 0.38 cm, permittivity
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